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New methods of dosimetry in computed tomography (CT) X-ray fields require 
the use of high-resolution detectors instead of pencil-type ionization chambers 
typically used for CT dose index (CTDI) measurements. This paper presents a 
study on the suitability of a wide range of ionization chambers, diodes, and a two-
dimensional detector array, used primarily in radiation therapy, for CT and cone-
beam CT dosimetry. Specifically, the energy dependence of these detectors from 
50 kVp up to 125 kVp is reported. All measurements were performed in reference 
to a calibrated diode for use in this energy region. The radiation quality correc-
tion factors provided by the manufacturer were used, depending on the measured 
half-value layer (HVL) for the particular X-ray beam. Our study demonstrated the 
general usability of thimble ionization chambers. These thimble ionization cham-
bers showed a maximum variation in energy response of 5%. Ionization chambers 
with even smaller sensitive volume, and which exhibit similar variation in energy 
dependence, can be used if higher spatial resolution is required. Furthermore, 
the investigated detectors are better suited for dosimetry at CT and CBCT units 
than conventional large volume or flat detectors, due to their rotational symmetry. 
Nevertheless, a flat detector can be used for certain measurement tasks, such as the 
acquisition of percent depth-dose curves or beam profiles for nonrotating beams, 
which are important for beam characterization.
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I. INTRODUCTION

Dosimetry for CT devices is mostly limited to measurements of so-called computed tomography 
dose index (CTDI) values and various dose conversion factors.(1-4) These conversion factors 
are usually obtained with Monte Carlo simulations, which are calibrated themselves again with 
CTDI measurements.

According to the international (IEC 60601, EUR 16262) and national codes of practice (FDA 
amendments, DIN 6809-3), the definition of the CTDI100 is expressed as follows:

  (1)
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where nT is the total nominal collimation and D(z) the axial dose profile. The quantity CTDI100 
serves as the primary dose descriptor for computed tomography.(5-9) Its value is measured within 
a PMMA phantom of 16 cm (head phantom) or 32 cm (body phantom) diameter and 15 cm 
length with an ionization chamber of 10 cm length.

For new 256 slice CT scanners, the X-ray cone beam already exceeds this integration length 
without even consideration of scattering.(10,11) Furthermore, the human torso exceeds the body 
phantom length by a factor of more than two. Therefore, absorbed dose components from scat-
tering inside the patient are not correctly accounted for in this concept.(12) 

Additionally to the enlargement of the scanning beam, the routinely used scanning protocols 
are becoming more complex. Now common, tube current modulation (TCM) is utilized to ensure 
homogeneous image quality for scans of body regions with large variations in diameter, or to 
spare sensitive organs by reducing the tube current for certain arc segments within the tube 
rotation. These new technologies complicate the interpretation of the associated CTDI.(13)

Further dosimetry challenges result from the diversity in scanning techniques such as longi-
tudinal and angular TCM, as well as variable pitch and z-collimation like the new “rolling col-
limator”. The transfer of the CTDI concept also is problematic for scans without couch increment 
like perfusion studies or cone beam CTs in general. Therefore, new nonstandard measurement 
protocols for CTDI and CT dose profiles with small sensitive volume ionization chambers 
instead of pencil-type ionization chambers in longer dosimetry phantoms  were introduced.(14-18)

General X-ray radiography ionization chambers, intended to measure incident doses, are 
usually plane parallel flat chambers with a relative large volume. In contrast, for dosimetry 
in CT fields, axially symmetric probes are needed and, especially for dose profile measure-
ments, a small volume is required. Additional parameters needed for modeling X-ray beams 
in Monte Carlo calculations, such as geometric efficiency, can only be determined using small 
volume detectors.(5)

In previous studies, several ionization chambers designed primarily for dosimetry of mega-
voltage photon beams have been investigated in terms of their usability in X-ray therapy.(19,20,21) 
These studies showed the general feasibility of these detectors for kV dosimetry, provided 
that detector-specific correction factors for the spectral composition of the radiation fields are 
taken into consideration. Snow et al.(22) showed the usability of small detectors composed of 
low-Z materials for kV dosimetry by comparing the response of microionization chambers 
in weak filtered beams from 20–250 kVp relative to 60Co. Scandurra and Lawford(23) used a 
linear diode array for dose profile measurements at a kilovoltage cone-beam CT attached to a 
linear accelerator.

In this work, the usability of common dosimeters for megavoltage photon beams in diag-
nostic CT radiation fields is systematically evaluated. Additionally, the results complement the 
hitherto existing beam quality correction factors for several detectors in the energy range from 
125 kVp down to 50 kVp with filtrations commonly used in modern CT scanners.

 
II. MATERIALS AND METHODS

A.  X-ray beams
An Oldelft Simulix MC X-ray device (Oldelft Benelux, Veenendaal, The Netherlands) with a 
Hofmann Selector MD HV generator (Hoffmann GmbH, Hamburg, Germany) and Varian G297 
X-ray tube in a Varian DO10 housing (Varian Medical Systems, Palo Alto, CA) was used for 
irradiation of all detectors. The X-ray tube is mounted on a gantry in a focus-isocenter-distance 
of 100 cm with a collimator. This enables full control of focus-surface distance, field size, 
and shape. Inherent filtering of the whole unit is 3.3 mm Al. Additional filters were used in a 
tray located 30 cm from focus, mounted at the collimator. The high voltage generator allows 
accelerating potentials ranging from 40 kVp up to 125 kVp.
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In order to evaluate the performance of various detectors in CT radiation fields, beam qualities 
similar to those common for CT devices were used. The total filtering was adjusted according 
to data provided by Siemens AG (Erlangen, Germany) with a mean value for the bowtie filter 
in a Siemens SOMATOM Sensation 64 CT unit. Table 1 lists the chosen beam qualities and 
the beam qualities listed in the CT scanner user guide, which are measured at minimal bowtie 
filter thickness.(24) The half-value layer (HVL) was measured with a PTW T60004 diode (PTW-
Freiburg, Germany) for kV dosimetry inserting additional Al absorbers in steps of 0.1 mm into 
the tray until the initial reading is halved.

A CT radiation field is typically composed of a rotating collimated fan beam and may be 
moved along the craniocaudal axis for the actual scan length, resulting in a rectangular rotat-
ing radiation field. To eliminate differences in angular response of each detector, a stationary 
field was used. The X-ray radiation field was collimated to a 20 cm × 20 cm field in a focus 
distance of 100 cm. The manufacturer-defined reference point of each detector was placed in 
this plane. Since the dose distribution of the radiation field is not completely uniform, a specific 
area of interest providing a flat homogeneous dose distribution was identified using the PTW 
2D-Array (Fig. 1), which is located at the upper right quadrant of the radiation field centering 
at x = 5 cm and y = 5 cm. The detectors were positioned with their reference points located 
at the center of this homogeneous field to minimize the influence of volume-related weighted 
dose averaging.

Table 1. The X-ray beam qualities used in this study. Each beam quality is listed with tube potential, measured half-
value-layer (HVL) Al, and the corresponding air-kerma beam quality correction factor PQ for the PTW 60004, used 
as reference for cross calibration. The beam classification code according to the IEC 61267 and the minimal HVL 
(HVLSiemens) provided by the manufacturer were added where appropriate.

 IEC 61267 Peak Potential HVL(Al) HVLSiemens(Al) 
 code (kVp) (mm) (mm) PQ

 RQA 3 50 3.8  1.020
 RQA 5 70 6.8  1.000
  80 7.1 6.8 0.996
  100 8.5 8.1 0.979
  120 10.4 9.1 0.975
 RQA 9 125 11.6  0.980

Fig. 1. Relative dose distribution for the Oldelft Simulix MC, measured with the PTW 2D-Array at 120 kVp and 800 mAs 
and a field size of 20 × 20 cm² and normalized to the maximum dose within the field. The physical crosshair and outer 
field size marking wires of the collimator box are clearly visible. The upper right quadrant of the radiation field, centered 
at x = 5 cm and y = 5 cm, has been identified as most homogeneous, in which subsequent measurements were carried out.
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B.  Detectors
In this study, three Si-diodes, a pencil-type ionization chamber, five thimble ionization chambers, 
six small volume pinpoint chambers, and three parallel plate chambers (including a 2D-Array) 
were investigated. The specifications of all investigated detectors are listed in Tables 2 to 4 
based on data from the manufacturers.(25,26) All investigated detectors, except the parallel plate 
chambers, possess rotation-symmetric designs, which is crucial for CT dosimetry. The parallel 
plate chambers were included in this study for comparison with previous studies.(20,21)

These detectors were chosen also by taking into consideration their general suitability according 
to DIN 6809-4 and DIN 6809-5, which state that the sensitive volume of parallel plate chambers 
or compact chambers should not exceed 1 cm³ when used for X-ray dosimetry in this energy 
range. For CTDI measurements, only pencil-type chambers are recommended.(27,28) In general, 
plane parallel detectors are not suited for rotating radiation fields. Since certain measurement 
tasks, such as acquiring percent depth-dose curves or the localization scan at the beginning 
of a CT examination, are done with a stationary X-ray tube, these detectors can still be used. 
General physical properties of the 2D-Array seven29 have been investigated and described by 
Poppe et al.(29-31)

The PTW 60004 diode was used with a PTW DIADOS electrometer which was included 
in the original calibration process.(32) All remaining detectors were used in combination with a 
PTW UNIDOS electrometer in electrical readout mode, so no further detector specific calibra-
tion factors were applied.

Table 2. Thimble ionization chambers and the pencil type chamber used in this study, including the calculated maxi-
mum variation in energy response and a short summary of the physical properties and geometry.

 Energy Response
 Variation
    In Free 2 cm 
	 Name	 Model	Code	 Specifications	 Air	 Water

 0.125 Semiflex PTW 31010 Semiflexible ionization chamber with 0.55 mm 2.9% 10.4% 
   PMMA, 0.15 mm graphite wall (total wall area 
   density 78 mg cm-2) and 0.125 cm³ sensitive 
   volume, 1.1 mm diameter Al central electrode 
 0.3 Semiflex PTW 31013 Semiflexible ionization chamber with 0.55 mm 4.1% 12.2% 
   PMMA, 0.15 mm graphite wall (total wall area 
   density 78 mg cm-2) and 0.3 cm³ sensitive 
   volume, 0.9 mm diameter Al central electrode 
 Compact Chamber 08 IBA CC 08 Semiflexible ionization chamber with 70 mg cm-2 9.4% 11.6% 
   air-equivalent plastic C552 wall, 0.08 cm³ 
   sensitive volume and C552 central electrode 
 Compact Chamber 13 IBA CC 13 Semiflexible ionization chamber with 70 mg cm-2 3.2% 8.1% 
   air-equivalent plastic C552 wall, 0.13 cm³ 
   sensitive volume and C552 central electrode 
 Compact Chamber 13S IBA CC 13-S Semiflexible ionization chamber with 154 mg cm-2 3.4% 11.8% 
   air-equivalent plastic C552/PEEK wall, 0.13 cm³ 
   sensitive volume and C552 central electrode 
 CTDI chamber PTW 30009 Pencil-type ionization chamber with 1 mm PMMA 2.3% - 
   wall (total wall area density 119 mg cm-2) and 
   3.14 cm³ sensitive volume, 3 mm outer and 
   2 mm inner diameter Al tube central electrode
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Table 3. Parallel plate ionization chambers and diodes used in this study, including the calculated maximum variation 
in energy response and a short summary of the physical properties and geometry.

 Energy Response
 Variation
    In Free 2 cm 
	 Name	 Model	Code	 Specifications	 Air	 Water

 kV diode PTW 60004 Si diode for 40 – 150 kVp X-rays, calibrated 2.5% 2.5% 
   in different radiation qualities for air kerma 
   by manufacturer 
 Capsuled diode PTW 60008 p-type Si diode with 1 mm² × 2.5 µm sensitive 35.0% 37.7% 
   volume and 2.2 mm water-equivalent 
   window thickness 
 Uncapsuled diode PTW 60012 p-type Si diode with 1 mm² × 2.5 μm sensitive 23.7% 30.6% 
   volume and 0.7 mm water-equivalent 
   window thickness 
 Markus chamber PTW 23343 Parallel plate ionization chamber with 0.03 mm 19.0% 3.4% 
   PE entrance foil and 0.055 cm³ sensitive volume 
 Roos chamber PTW 34001 Parallel plate ionization chamber with 1.0 mm 15.4% 2.5% 
   PMMA entrance window and 0.35 cm³ 
   sensitive volume 
 2D-Array PTW 10024 27 × 27 ionization chambers of  - 15.4% 
   5 mm × 5 mm × 5 mm dimension and 
   0.125 cm³ sensitive volume

Table 4. Small volume ionization chambers and diodes used in this study, including the calculated maximum variation 
in energy response and a short summary of the physical properties and geometry.

 Energy Response
 Variation
    In Free 2 cm 
	 Name	 Model	Code	 Specifications	 Air	 Water

 PinPoint 06 PTW 31006 Small volume ionization chamber with 0.57 mm 18.9% 20.8% 
   PMMA, 0.09 mm graphite wall (total wall area 
   density 85 mg cm-2) and 0.015 cm³ sensitive 
   volume, steel central electrode 
 PinPoint 14 PTW 31014 Small volume ionization chamber with 0.66 mm 8.6% 4.5% 
   PMMA, 0.09 mm graphite wall (total wall area 
   density 89 mg cm-2) and 0.015 cm³ sensitive 
   volume, 0.3 mm Al central electrode 
 PinPoint 15 PTW 31015 Small volume ionization chamber with 0.66 mm 8.3% 4.8% 
   PMMA, 0.09 mm graphite wall (total wall area 
   density 89 mg cm-2) and 0.03 cm³ sensitive 
   volume, 0.3 mm Al central electrode 
 PinPoint 16 PTW 31016 Small volume ionization chamber with 0.66 mm 12.4% 20.9% 
   PMMA, 0.09 mm graphite wall (total wall area 
   density 89 mg cm-2) and 0.01 cm³ sensitive 
   volume, 0.3 mm Al central electrode 
 Compact Chamber 01 PTW CC 01 Small volume ionization chamber with 88 mg cm-2 15.4% 18.4% 
   air-equivalent plastic C552 wall, 0.01 cm³ sensitive 
   volume and steel central electrode 
 Compact Chamber 04 PTW CC 04 Small volume ionization chamber with 70 mg cm-2 2.7% 11.9% 
   air-equivalent plastic C552 wall, 0.13 cm³ sensitive 
   volume and C552 central electrode
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C.  Relative detector response
The relative detector response (RDR) of an ionization chamber or dosimetry diode was deter-
mined according to the previously published method.(20,21) The RDR for a detector of interest 
RDR(E)x at a particular beam quality, E, was determined as follows:

  (2)
 

where PQ(E)Ref is the air-kerma beam quality correction factor (see Table 1) for the PTW 
60004 reference diode provided by the manufacturer within the calibration sheet, M(E)Ref is 
the electrometer reading for the PTW 60004 reference diode, and M(E)x is the reading for the 
ionization chamber or diode under investigation. If the measured beam quality did not match 
the provided values, PQ(E)Ref was calculated using the two closest given qualities and a short 
range linear interpolation. Since all measured data were normalized to the reading at 70 kVp 
and taken in a close timely manner to their normalization readout, additional corrections like 
pressure and temperature correction were not applied, but monitored. This peak potential was 
chosen because the PTW 60004 reference diode was calibrated at this beam quality, and a 
correction factor has to be applied for every other quality. The maximum variation in energy 
response for this diode is 2.5% (Table 3).

The RDR in air was measured with each detector listed in Tables 2 to 4, except for the 
2D-Array. Measurements in free air for this detector could not be performed due to the inherent 
detector housing material (water-equivalent window thickness of 5.9 mm). Similarly, the RDR 
was measured at 2 cm depth in a water tank for all waterproof ionization chambers. Since the 
PTW 60004 reference diode and the 2D-Array are not waterproof, the measurements of these 
detectors were performed in a Solid Water phantom made from RW3. RW3, as well as PMMA 
(the standard phantom material in X-ray beams up to 100 kVp according to DIN 6809-4) are 
not recommended for measurements of depth dose data, but relative measurements at a fixed 
depth are still feasible.(27,33)

The uncertainties associated with a comparable measurement setup as used in this study have 
been analyzed by Hill et al.(20) Uncertainty components attributed to the used detector, phantom 
material, movement of phantom, dose rate variations and linearity in output of the X-ray tube, 
temperature, and pressure stability were taken into account. The overall uncertainty amounts 
to 1.5%. In this study, a monitoring ionization chamber was used to control the output from 
the X-ray unit. Less than 0.2% variation in dose rate and linearity of the tube was observed. 
Therefore, the main uncertainty with the RDR measurement can be attributed to the calibration 
process and the used correction factor, which is provided by the manufacturer, and stated at 5%.

In order to evaluate the influence of the different phantom materials, a comparison mea-
surement was performed with the PTW 31010 and PTW 31013 Semiflex chambers. For these 
chambers, the RDR was measured in water as well as in the Solid Water phantom. The difference 
in RDR was smaller than 2.6% for the PTW 31010 Semiflex chamber and smaller than 2.3% 
for the PTW 31013 Semiflex chamber, which is within the uncertainty of this measurement.

 
III. RESULTS & DISCUSSION 

The RDR calculated according to Eq. (2) for the thimble ionization chambers and the pencil-
type chamber, normalized to the response at 70 kVp, are presented in Figs. 2 and 3, showing the 
RDR in air and water respectively. The RDR for the parallel plate ionization chambers and the 
2D-Array are shown in Figs. 4 and 5. Similarly, Figs. 6 and 7 show the RDR in air and water 
for the ionization chambers with small sensitive volume. The variations in energy response over 
the entire investigated energy region for each detector are listed in Tables 2 to 4.
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Fig. 2. Relative detector response (RDR) of the investigated thimble ionization chambers and the pencil chamber in free air.

Fig. 3. Relative detector response (RDR) of the investigated thimble ionization chambers and the pencil chamber at 2 cm 
depth in water.

Fig. 4. Relative detector response (RDR) of the investigated parallel plate ionization chambers and diodes in free air.
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Fig. 5. Relative detector response (RDR) of the investigated parallel plate ionization chambers, detector array, and diodes 
at 2 cm depth in water.

Fig. 6. Relative detector response (RDR) of the investigated pinpoint ionization chambers in free air.

Fig. 7. Relative detector response (RDR) of the investigated pinpoint ionization chambers at 2 cm depth in water.
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A.  Thimble and pencil-type ionization chambers
The RDR for the thimble ionization chambers were found to decrease with decreasing energy 
both in free air and in water (Figs. 2 and 3). This trend indicates the overresponse of the detector 
signal for lower energies compared to the PTW 60004 reference diode that can be attributed to 
the high-Z components within the chambers, such as the inner electrodes, resulting in increased 
photoelectric effect interaction cross section relative to water or air. The amplification of this 
effect in water may be caused by the perturbation of the radiation field caused by the ioniza-
tion chamber in terms of spectral and angular composition, as well as the conversion from air 
kerma in free air to air kerma in water.

The two Semiflex chambers, PTW 31010 and PTW 31013, and the Compact Chambers IBA 
CC08, CC13, and CC13-S (IBA Dosimetry GmbH, Schwarzenbruck, Germany) show a similar 
RDR due to their very similar design. Major differences for these chambers are the length of 
the sensitive volume and the wall material. The PTW chamber wall is made of PMMA (Zmean = 
5.85, 78 mg cm-2) and IBA uses C552 plastic (Zmean = 7.11, 70 mg cm-2). Therefore, the PTW 
chambers are equipped with a lower Zmean, whereas the total wall density is higher than for 
IBA chambers. The ionization chambers with about 0.1 cm3 sensitive volume show the lowest 
variation in energy response. Especially the PTW 31010 Semiflex chamber (0.125 cm³) and 
IBA CC13, as well as IBA CC13-S (0.13 cm³) Compact Chambers, all having nearly the same 
sensitive volume, showed very similar energy response variation in free air of 2.9%, 3.2%, 
3.4%, respectively. This implies that the combination of lower Z and higher density in case 
of the PTW Semiflex chambers results in a similar photoelectric absorption for chambers of 
comparable volume. The results for the Semiflex chamber PTW 31013 are consistent with the 
results from the previous study by Hill et al.(20) who reported a variation of 11% for an energy 
range up to 280 kVp.

Since the CTDI pencil-type ionization chamber PTW 30009 is not waterproof and no suit-
able adapter for the Solid Water phantom was available, only measurement in free air was pos-
sible. A direct comparison to the manufacturer-provided correction factors is not possible since 
the CTDI chamber was calibrated at a different energy. Nevertheless the variation in energy 
response of 2.3% found in this study is comparable to the manufacturer-provided value of 3%.

The largest variation in RDR in this detector group was found for the Compact Chamber 
IBA CC08. With the smallest sensitive volume of 0.08 cm³ in this group this chamber shows 
the properties similar to the small volume chambers discussed later.

B.  Parallel plate ionization chambers and dosimetry diodes
In this study, an increasing RDR in free air of 19% variation for the PTW 23343 Markus chamber 
and 15.4% for the PTW 34001 Roos chamber (Fig. 4, Table 3) was found. A relatively flat RDR 
with 3.4% variation for the Markus chamber and 2.5% for the Roos chamber in solid water was 
found. Previous studies showed deviating results. Hill et al.(20) reported a rapidly increasing 
RDR for the Markus chamber as the energy of the incident X-ray beam decreases from 280 kVp 
down to 50 kVp. Contrary to this, Li et al.(21) found a decreasing RDR in the range from 300 kVp 
down to 200 kVp, which was not confirmed by Hill and colleagues. However, from 200 kVp 
down to 50 kVp, the Li study reported an increasing RDR. Direct comparison of these results 
in the literature is difficult due to discrepancies in the experimental setup and the normalization 
of the calculated values in these three studies. One reason for the observed differences could 
be the different effective Z of the entrance window of the Markus type chambers. Hill et al. 
used a Markus chamber with Mylar (PET) foil, whereas, in our study, a Markus chamber with 
PE foil was investigated that is expected to show weaker energy dependence. Additionally, the 
used X-ray field varied in size (10 × 10 cm² in Li et al, 6 cm diameter in Hill et al., and 20 × 
20 cm² in our study), as well as in SSD (50 cm in Li et al., 30 cm in Hill et al., and 100 cm in 
our study), and spectral composition (e.g., HVL(Al) of the 100 kVp beam: 2.43 mm in Li et al., 
3.9 mm in Hill et al., and 8.5 mm in our study).
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The Roos type chamber was only used by Hill and colleagues and showed a similar behav-
ior like the Markus chamber which could be confirmed here. The Hill study showed already 
the accuracy of the percent depth-dose curves measured with both the Markus and Roos type 
chambers.(20) This indicates that the beam hardening effect causes only small changes in the 
energy response of the investigated detectors.

Both investigated dosimetry diodes PTW 60008 and PTW 60012 showed stronger energy 
dependence in free air as well as in water than the air cavity based detectors. This may be due 
to the optimization of the construction for high MeV beams, like the introduction of additional 
guarding electrodes.(34) Since the rotational symmetry of both MV diodes is a desirable property, 
their energy dependence limits their use to well-known radiation fields in which the energy 
spectrum is known or does not vary significantly.

C.  Small volume ionization chambers
Comparison between the small volume ionization chambers IBA CC01, CC04, PTW 31006, 
31014, 31015, and 31016 with the larger thimble chambers shows in general a larger RDR 
variation for the smaller chambers. This is caused by the increasing ratio of high-Z materials 
like Al or C in the electrodes compared to the small air cavity and, thus, more energy deposi-
tion through photoelectric effect. Additionally, the overall design of the chamber has a large 
impact on the results due to the limited size of the chamber, and may lead to an opposite effect.

The largest energy dependency in this group of detectors was found for the pinpoint chambers 
PTW 31006 (18.9% variation in free air, 20.8% in water) and IBA CC01 (15.4% in free air, 
18.4% in water). This is attributed to the steel central electrode in these chambers, perturbing 
the radiation field due to the increased photoelectric cross section. The pinpoint chambers PTW 
31014, PTW 31016 and especially the PTW 31015 and IBA CC04, which have larger sensitive 
volumes and are equipped with Al central electrodes, do not contain as much high-Z material. 
Therefore, a lower overresponse for low-energy beams compared to the steel electrode pinpoint 
chambers IBA CC01 and PTW 310006 is expected and was found in free air (Fig. 6), as well 
as in water (Fig. 7). 

The PTW 31016 showed the greatest variation of relative detector response. Based on the 
manufacturer’s data, this chamber is optimized for a 3D response in small MV beams. In the 
intended application fields described in this work, this seems not to be advantageous.(25) These 
effects regarding the photon energy spectra, especially for different water depths, are subject 
of further investigation.

D.  2D-Array
The PTW 2D-Array seven29 showed a larger RDR variation than the single ionization cham-
bers with comparable volume (PTW 31010, IBA CC13, IBA CC13S). This may be due to 
the copper-based electrode matrix, which is used as electrode in this detector. However, the 
RDR of the 2D-Array with 15% variation is comparable to 8%–12% variations for the single 
chambers in the whole investigated energy region. The disadvantage of the PTW 2D-Array is 
its nonrotational symmetric design of the single chambers. Nevertheless, the 2D-Array can be 
very useful in nonrotating radiation fields, such as the overview scan before a CT examination 
or for measurements in service mode with a fixed X-ray tube. It enables the acquisition of the 
whole two-dimensional beam profiles in a single measurement, similar to radiographic films.

 
IV. CONCLUSIONS

It has been demonstrated that the thimble ionization chambers PTW 31010 and PTW 31013, as 
well as the IBA Compact Chambers of comparable sensitive volume IBA CC13 and IBA CC13S, 
with a maximum variation in RDR in free air of 5% are well suited for dosimetry in X-ray fields 
of computed tomography and CBCT units, such as those integrated to linear accelerators for 
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image-guided radiation therapy. If higher spatial resolution is needed, Compact Chamber IBA 
CC04 or PTW 31015 or PTW 31016 PinPoint chambers with Al central electrodes can also 
be used. Energy response of these detectors has been analyzed by the method proposed by Li 
et al.(21) and Hill et al.(20) Besides the general characterization of the detectors spectral sensitiv-
ity, the RDR can be used as a correction factor for kV dosimetry in radiation fields of similar 
HVL. The rotational symmetry of these detectors is of major advantage for CT dosimetry and, 
in conclusion, absorbed dose profile measurements as well as point dose measurements in a 
suitable phantom for estimation of organ doses are enabled.

Dosimetry diodes PTW 60008 and PTW 60012 are of limited use in this low-energy range 
due to their optimization in designs for high MV beams.

Parallel plate chambers PTW 23343 and PTW 34001 showed a similar RDR to previous stud-
ies. In addition to these chambers, the PTW 10024 2D-Array was investigated and a comparable 
variation in detector response in this energy range was found. Therefore, it is worthwhile to 
investigate the application potential of such 2D-Arrays for nonrotating irradiations.
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