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Abstract

Proteins are considered to be the key players in structure, function, and metabolic regulation of our 

bodies. The mechanisms used in conventional therapies often rely on inhibition of proteins with 

small molecules, but another promising method to treat disease is by targeting the corresponding 

mRNAs. In 1998, Craig Mellow and Andrew Fire discovered dsRNA-mediated gene silencing via 
RNA interference or RNAi. This discovery introduced almost unlimited possibilities for new gene 

silencing methods, thus opening new doors to clinical medicine. RNAi is a biological process that 

inhibits gene expression by targeting the mRNA. RNAi-based therapeutics have several potential 

advantages (i) a priori ability to target any gene, (ii) relatively simple design process, (iii) site-

specificity, (iv) potency, and (v) a potentially safe and selective knockdown of the targeted cells. 

However, the problem lies within the formulation and delivery of RNAi therapeutics including 
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rapid excretion, instability in the bloodstream, poor cellular uptake, and inefficient intracellular 

release. In an attempt to solve these issues, different types of RNAi therapeutic delivery strategies 

including multifunctional RNA nanoparticles are being developed. In this mini-review, we will 

briefly describe some of the current approaches.
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1 Introduction

According to the Social Security Administration, average Americans that reach age 65 today 

most likely will live to be 84 years old [1]. However, with older age, the chances of 

contracting deadly diseases, such as cancer, increases dramatically. Some cancers (e.g. 

breast cancer) can be removed surgically but this does not guarantee that the disease will not 

return within a patient’s lifetime. For other types of cancer (e.g. chronic lymphocytic 

leukemia), surgery may have very little effect (http://www.cancer.org). Other available 

treatments are chemo- and immunotherapies. However, these alternatives lack target 

specificity and cause severe toxic side effects affecting the growth of hair, nails, loss of 

appetite and blood cell count, just to name a few (http://www.cancer.org). Therefore, the 

advancements in biomedical technologies that provide safe and effective cancer treatment 

are in demand. Among the novel approaches is the recognition and use of specific 

intracellular RNA signatures (e.g. an overexpression of certain genes) that are especially 

important in detection and personalized treatments of cancers as well as viral infections, and 

autoimmune diseases [2–4]. The wide use of novel therapeutics based on target specific 

RNA-mediated gene silencing, called RNA interference or RNAi, will likely become the 

next breakthrough in cancer therapy. The first successful therapeutic knockdown of the 

endogenous gene, apolipoprotein B (ApoB), occurred in a 2004 study [5], only a few years 

after the original discovery of RNAi [6]. In 2010, the first delivery of RNAi inducers and 

RNAi activation in humans was reported [7] and today, there are more than 30 RNAi-based 

therapeutic companies world-wide [8].

2 RNAi activators

There are several types of RNAi activators suitable for therapeutic applications. The first 

natural trigger is the micro (mi)RNA [9]. There are several main steps that lead to the down-

regulation of gene expression via sequence specific recognition of corresponding messenger 

RNAs. Normally, a nuclear Pol II-driven transcription produces primary (pri)-miRNAs -- 

long self-folded strands with miRNA sequences embedded into repetitive hairpin-like 

structures [10]. The nuclear enzyme Drosha then processes these transcripts into short 

hairpins called precursor or (pre)-miRNA with two nucleotide 3’-side overhangs [11]. The 

pre-miRNAs are further released into the cytoplasm by Exportin-5 [12] and refined into 

mature miRNAs by RNaseIII-like endonuclease, called Dicer [13–15]. The resulting mature 

miRNAs are loaded into the RNA-induced silencing complex or RISC based on their 
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thermodynamic asymmetry [16,17]. This asymmetric nature of the miRNAs affects the 

choice of the strand (the guide or anti-sense strand) [17] that is further utilized by the RISC 

for sequence specific recognition of the complementary part of mRNA [18] and inhibition of 

its translation [19].

This naturally occurring cellular process can be mimicked for therapeutic purposes and 

RNAi can be induced exogenously by several routes as depicted in Figure 1. The small 

hairpin RNAs or shRNAs (Figure 1, case 1), use the miRNA pathway and can be introduced 

into the cell with plasmids or viral vectors [20]. An issue with many drugs is that over time, 

the therapeutic effects start to decrease due to cell division and the clearance process that 

dilutes the drugs (or loaded RISC in the case of RNAi-based therapeutics). Therefore, an 

increase in the initial dosage or repetitive administration of the drug is required. The main 

advantage of the shRNA-based approach is that the extent of specific gene silencing is not 

decreased by cell division over time [21,22]. However, there are some safety concerns 

regarding the shRNAs due to the route of their cellular production that requires an 

expression vector that may lead to genomic integration [23,24].

The small interfering RNAs or siRNAs [25–27] (Figure 1, case 2), are relatively short RNA 

duplexes of approximately 20-25 base pairs [21,28]. These duplexes resemble the mature 

miRNAs and do not require any further enzymatic processing. Also, with the synthetic 

siRNAs using perfect sequence complementary, complete destruction of the endogenous 

gene function within the cell can be achieved [29]. Once in the cytoplasm, siRNAs are 

integrated directly into the RISC, releasing the sense strand from the antisense loaded RISC.

If the dsRNAs are longer than conventional siRNAs or miRNAs, then upon the exogenous 

introduction into the cytoplasm these duplexes need first to be diced prior to RISC loading 

(Figure 1, case 3). The dicable RNAs are also called Dicer Substrate (DS) RNAs and are an 

important class of RNAi activators as they promote RISC loading [30,31]. DS RNAs are also 

used for intracellular Dicer-assisted release of siRNAs from various artificially designed 

nanoconstructs (Figure 1.4) [32–34].

3 Multifunctional RNA and DNA nanoparticles

The simultaneous introduction of multiple RNAi inducers targeting different genes in 

conjunction with other functional moieties (therapeutic aptamers, ribozymes, fluorescent 

dyes, peptides or small molecules) may maximize the synergistic therapeutic effect [35–40]. 

Precise control over the composition and stoichiometry of these combinatorial drugs is 

essential to guarantee the consistency in batch-to-batch formulations [32]. If therapeutic 

domains are chosen to be RNA-based (miRNAs, siRNAs, etc), the optimal route of 

controllable formulation would be through the introduction of nucleic acid-based 

nanoscaffolds [41]. The uses of various computationally designed [42–44] RNA, DNA or 

RNA-DNA based nanoscaffolds have multiple advantages not only in delivery of 

therapeutics to the diseased cells, but also in molecular imaging and biosensing [45,46]. 

Significant progress in RNA nanotechnology can be illustrated by various alternative 

strategies developed for the production of three-dimensional nucleic acid-based 

nanoscaffolds that are further utilized in different nanotechnological applications. One of the 
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strategies, called RNA architectonics, uses tecto-RNAs [47–50] that combine different RNA 

three-dimentional building blocks (called motifs) allowing remarkable structural control in 

bottom-up assembly [51–71]. In particular, computationally designed [72] and 

experimentally tested [32,35,73,74] nanorings take advantage of the so-called RNA kissing 

loop ineracting motifs (Figure 1, case 4). Other examples use the structural motifs extracted 

from the phage phi29 pRNAs [75] that were widely used in the engineering of multiple 

stable and functional RNA nanoscaffolds [7687]. An alternative to the tecto-RNA designing 

strategy is exemplified by the nanocubes (Figure 2) [88,89]. Nanostructures built with this 

approach do not require any RNA tertiary motifs and solely rely on canonical Watson-Crick 

interactions. Therefore, their assemblies do not always require RNAs and can be used to 

introduce multiple DNA strands into the each scaffold. These RNA/DNA hybrid structures 

can significantly lower the immune response (Figure 2) [90].

Nanoscaffolds designed with both strategies allow their further functionalization with 

various siRNAs, aptamers, fluorescent dyes, proteins for further simultaneous delivery. 

Importantly, the intracellular release of functional siRNAs is achieved through the 

introduction of DS RNAs (Figure 1, case 4) as mentioned above. For example, recently we 

shown that different types of nanoparticles can be efficiently used in silencing HIV-1 

production. We tested two RNAi combinatorial approaches in which the nanocubes and 

nanorings were functionalized with six different DS RNAs targeting different parts of the 

HIV-1 genome [35,90]. This strategy was used to minimize the negative effect on RNAi 

treatment caused by HIV-1 genomic diversity and appearance of drug-resistant mutants 

[91,92]. We were able to select several HIV-1 targets to design our nanoparticles based on 

extensive studies performed by Berkhout and collaborators during the last few years [37,93–

95]. Briefly, we simultaneously targeted HIV-1 mRNAs that code for Capsid (p24), PBS-p17 

(primer binding site junction with Matrix), Protease, Reverse Transcriptase, Nef, Envelope, 

Rev and Tat. The advantages of some targets were that the same siRNAs could target two 

different mRNAs at once (since HIV-1 utilizes three open reading frames). For example, 

siRNA targeting of the HIV-1 envelope glycoproteins would also target the un-spliced 

mRNA that codes the Gag and Pol proteins.

However, all formulations employing RNA nanoscaffolds functionalized with DS RNAs are 

dependent on the presence of Dicer and can be activated virtually in all cells including the 

healthy ones, thus, increasing possible side effects. To introduce additional control over 

deliverable functionalities and to enchance their chemical stability, the properties of DNA 

and RNA were merged in the development of nanoparticles that were constructed from 

RNA/DNA hybrids [90,96–98]. Combining the properties of these molecules (Figure 1, case 

5 and Figure 2, right panel) allows for the splitting of the components of the functional 

elements (inactivating them) and permits their later activation under the control of 

complementary hybrids with ssDNA toeholds. The kinetics and thermodynamics of the 

toehold interaction can be easily fine-tuned. Besides tight control over functional activation, 

this novel approach provides a higher stability for constructs in blood serum, and permits the 

attachments of additional functionalities to DNAs (e.g. fluorescent markers for tracking) 

without interfering with RNA function. Moreover, this approach can be potentially utilized 

by the DNA nanotechnologists and other DNA nanoconstructs can be used for these 

applications [99].
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4 Delivery of multifunctional RNA and DNA nanoparticles

In order to fully take advantage of the power of therapeutic RNA nanotechnology all 

nanoparticles have to be delivered intact to their desired site of action and within the 

cytoplasm of the diseased cells. The road from the test tube to this objective contains many 

obstacles that need to be overcome in a successful delivery strategy. Since major obstacles 

exist in reaching the tissues of interest, an intense effort is underway to establish local 

delivery solutions directly to the region of interest (Figure 3).

Mucosal delivery is noninvasive and gives direct access to the main areas of entry for 

engaging a variety of pathogens, inflammatory elements, and cancer. The delivery method is 

local administration to the mucosal surface linings of the respiratory tract, gastrointestinal 

(GI) tract, and genitourinary tract. The mucus thickness differs for each patient depending 

on the state of the diseases. This can cause problems such as decreasing the effectiveness of 

the drug due to an unusual thick mucus surface. The pH of different areas and the net charge 

of mucin may also interfere with the level of accessibility [100].

Pulmonary delivery of RNAi therapeutics would be preferred for lung-related diseases such 

as influenza. There are a couple of intake methods available, such as pressurised metered 

dose inhalers or dry powder inhalers [101]. This type of delivery still has quite a few flaws 

as the makeup and structure of the lung refuses any nano-particle-based or naked siRNA 

from entering. The functions of the upper respiratory tract prevents materials from being 

absorbed into the lungs. The lungs, having too many passageways further complicates target 

specificity. Also, enzymatic degradation will most likely occur during exhalation.

Systemic delivery occurs via intravenous, intraperitoneal, or oral administration [102–104]. 

Of those, the intravenous route is the most explored since this is a natural avenue of delivery 

for cell-required nutrients. However, blood circulation is highly regulated and naked RNA 

nanoparticles have very short half-lives in serum. This emanates from two major pathways. 

First, the size of the particles is critical as particles smaller than about eight nanometers will 

be subjected to renal clearance [105]. On the other hand, particles larger than about 200 

nanometers will be cleared through the spleen and larger ones accumulating in the lung 

[106]. Second, interaction with blood components is critical to the fate of RNA 

nanoparticles. The blood harbors many entities aimed at preventing foreign invasions. Serum 

nucleases are prevalent and will insure a fast degradation of naked non-modified RNA 

[74,98]. Chemical modifications altering the sensitivity of the RNAs to nucleases have 

therefore been used to alleviate this issue [36,74,107]. These modifications can be 

engineered at the level of the ribose sugar or within the backbone and can dramatically 

enhance the half-lives of RNA nanoparticles. These modifications need to be performed 

carefully so as not to compromise the thermodynamic asymmetry and the overall 

functionality of the RNA. The blood also contains proteins that can bind to the particles and 

initiate complement activation and inflammation [108]. This can also result in opsonization 

leading to the phagocytic uptake of the particles for degradation [109]. A way to circumvent 

this is through the introduction of polymers such as polyethylene glycol that will prevent the 

binding of the serum proteins and thereby increase the half live of the particles [110,111]. 

Nanoparticles, of the right size range, and properly stabilized against deleterious interactions 
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with blood components will thereby circulate longer but will need to get enriched at their 

intended destination. This targeting can be modulated in different ways. While the blood 

vessels are lined with a tight epithelium that prevents extravasation of the circulating 

particles, the unregulated growth of cancers leads to the presence of openings through which 

particles can get out of the blood circulation into the cancer environment [112]. Those 

defects also come with a defective lymphatic drainage and all this results in passive targeting 

of the nanoparticles to the tumors through the enhanced permeation and retention (EPR) 

effect [113,114]. The targeting can also be modulated through the addition of ligands (e.g. 

folic acid [115] or aptamers [116,117]) that will confer specific binding to a target whose 

presence is specific to the diseased environment and will enhance to retention of the 

nanoparticles at that location [118,119].

Provided the nanoparticles have avoided all the previous hurtles and are present, intact, in 

the diseased environment, a major obstacle still needs to be overcome, penetration into the 

cytoplasm of the cells. Cellular life has evolved through a compartmentalization from the 

extracellular milieu delineated by a cellular membrane. This membrane, composed of lipid 

and proteins ensures tightly regulated processes for the uptake of any component needed for 

the cell to survive and prevent invasion. Viruses have naturally evolved to overcome this 

barrier and viral vectors have thereby been used to deliver RNA. However, the use of viral 

vectors raise some safety concerns due to immune response [120]. Synthetic mimics that 

allow for the protection of the RNA in the extracellular environment but facilitate it’s 

delivery within the cellular cytoplasm are therefore widely investigated. Synthetic vectors 

used for in vivo delivery of RNAs can include various polymers (PEI, PEG) [121], lipid 

vesicles [122] and lipid-like structures (bolaamphiphiles [123]), anionic carriers [124], 

sugars [125], dendrimers [126], as well as gold [127] or silicon nanoparticles [128]. Gold 

nanoparticles can be used for vaccinations purposes [129]. Anionic polymers can be used as 

a carrier to replace the usual approach of using only a cationic lipid-based vector. This 

method is biodegradable and already FDA-approved [124]. RNAs are negatively charged 

and so is the cellular membrane. Many studies have therefore focused on positively charged 

vectors to facilitate the initial interaction of the particles with the cells. While modifications 

of the nanoparticles or the vectors with cell penetrating peptides (CPPs) could facilitate the 

direct crossing at the level of the plasma membrane, most of the nanoparticles get taken up 

through endocytosis [130]. This uptake can be further enhanced through the use of 

appropriate targeting moieties. The main task remains to escape from the endosomes. The 

various carriers used aim to destabilize the endosomes in various ways. PEIs or polycations 

containing amino groups are thought to trigger a “proton sponge” effect in the acidic 

environment of the endosome and osmotically destabilize them. Ionizable lipids establish a 

positive charge in an acidic environment and can undergo interactions with anionic 

endosomal lipids [131]. Lipids that have the propensity to form alternate hexagonal 

structures can also be used to destabilize the lamellar environment of the endosomal 

membrane [132]. Peptides and polymers that have the ability to partition within the 

endosomes are also being explored [133].

While being important for the final step corresponding to cytoplasmic delivery, synthetic 

carriers can confer multiple advantages during the earlier stages of delivery. Lipid carriers 

are particularly interesting since they are often biocompatible. Bolamphiphiles are different 
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from conventional lipids in that they have two head-groups separated by a long hydrophobic 

chain [134]. This confers inherent stability to the structures they form. They also come with 

a wide variety of head-groups which can modulate their interaction with the RNAs. Careful 

studies deciphering the forces involved in the tight binding of RNA conferring protection yet 

allowing for proper release will be important for the development of optimal delivery 

systems. We have undertaken to characterize selected RNA carriers both computationally 

and experimentally. Of special interest to us was a class of lipids called bolaamphiphiles, or 

bolas, that have been shown to complex with peptides, proteins and plasmid DNAs [135–

137]. They were also shown to cross cell membranes and are capable of moving across the 

blood-brain barrier [138]. Bolas have a central hydrophobic alkyl chain of varying length 

and covalently linked, hydrophilic, positively charged head groups at both ends (see Figure 

4).

The key advantage of bolas in comparison with phospholipids is the fine balance between 

the attractive forces of the hydrophobic domains and the repulsive forces of the hydrophilic 

head groups allowing for rapid structural changes and release of the cargo upon minor 

disruptions of that balance. In our recently published study of bolas GLH-19 and 20 [123], 

the two variants had two acetylcholine head groups (AChHG). The GLH-20 head groups 

differed from the GLH-19’s in that they can be hydrolyzed by acetylcholine esterase 

permitting release of cargo in the brain. 3D modeling and molecular dynamics (MD) 

simulations that were performed in that study showed that the bola-siRNA complexation 

relies mostly on the electrostatic interactions, with help from some hydrogen bonds and 

hydrophobic interactions. MD simulations [123] indicated different surface properties that 

should result in higher binding affinity with the siRNA for the GLH-19 variant, thus 

providing better protection against degradation. The experiments using bolas complexed 

with siRNA and RNA/DNA hybrid constructs confirmed these theoretical predictions, 

showing a slightly better uptake of the GLH-19/siRNA complex into cells and almost no 

degradation by nucleases. In vitro experiments on human breast cancer cells expressing the 

green fluorescent protein (MDA-MB-231/GFP) showed comparable gene silencing for the 

siRNAs complexed with GLH-19 and 20. The better release of the siRNA inside the cell 

(due to lower binding affinity) compensated for the lower delivered siRNA numbers. In vivo 
biodistribution experiments in MDA-MB-231 xenograft tumor bearing athymic nude mice 

demonstrated high uptake of the siRNA into the tumor relative to the other major organs. In 

a separate study, siRNA-functionalized nanorings associated with the same bolas were 

successfully used to silence the GFP expression by intratumoral injections [35]. Taken 

altogether, these results demonstrated a good potential of the bola family as nucleic acid 

carriers for therapeutic purposes. Other selected members of the bola family with AchHGs, 

the GLH-58 and 60 (see Figure 4), one with four head groups, are now being characterized 

as potential delivery agents.

5 Conclusion

To summarize, although there has been significant advancements in research related to 

therapeutic RNA nanotechnology within the past ten years, the efficient delivery of RNAi-

inducing multifunctional RNA nanoparticles remains challenging, and more studies need to 

be conducted to determine the best methods for delivery. Most likely there will not be one 
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panacea that will solve the problem. Cells and tumors differ in their accessibility based on 

their surrounding vasculature, as well as membrane structures. The mode of cell entry also 

differ (endocytosis, pores, etc). In some cases specific molecules will bind to targeted cell 

surface proteins, but will remain on the surface and not be endocytosed. Beyond this there 

are issues related to endosomal release of the active agents before they are degraded. The 

future for delivery will then require the development of carriers that will associate with the 

RNAi-based particle, protecting it from its environment, such as nucleases and immune 

agents, but yet allow proper association with cells and release of cargo into the cytosol or the 

nucleus, as required. The accomplishment of such goals will require the design of carriers 

that incorporate and react to each of the specified issues, which in turn may vary with cell 

and tumor type. Thus, it may be necessary to design different carriers for different 

environments and to administer these carriers through various pathways besides, for 

example, intravenous delivery. Progress is being made to circumvent each of these barriers 

as more knowledge is gained on the mechanisms that are involved in each of the steps along 

the delivery pathway. Appropriate characteristics are being built into the particles to 

minimize the difficulties and to maximize the needed attributes. This might include 

balancing the effects of electrostatics with hydrophobicity and the use of proper shape and 

size of the nanoparticles to facilitate their correct assembly and cell entry, as well as features 

that are sensitive to pH change to facilitate endosomal release. The future looks quite bright 

for solving several of the aforementioned issues but, as indicated, may require the use of 

multiple types of “magic bullets.”
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Figure 1. 
Schematic representation of various exogenous RNAi activation pathways.
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Figure 2. 
Interferon (IFN)-activity experiments with THP-1 IFN reporter cells for functionalized RNA 

(1) and DNA (2) cubes described in Afonin et al. [90]. For IFN-activity experiments, THP-1 

IFN reporter cells were depleted of cGAS (a DNA-binding receptor in the type I IFN 

signaling pathway) or MAVS (an RNA-induced stimulation of IFN activity) by specific 

siRNAs. Cells were transfected with nanocubes and secreted alkaline phosphatase activity 

was measured in culture supernatants 24 hours post-transfection.
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Figure 3. 
Various possible routes and some examples of carriers used for delivery of therapeutic RNAi 

inducers.
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Figure 4. 
Chemical structure of selected bolaamphiles GLH-19, 20, 58 and 60. Note the differences in 

the head groups and their placement relative to the ends of the central hydrophobic chain.
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