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An atlas of evidence-based 
phenotypic associations across the 
mouse phenome
Nobuhiko Tanaka   * & Hiroshi Masuya

To date, reliable relationships between mammalian phenotypes, based on diagnostic test 
measurements, have not been reported on a large scale. The purpose of this study was to present a 
large mouse phenotype-phenotype relationships dataset as a reference resource, alongside detailed 
evaluation of the resource. We used bias-minimized comprehensive mouse phenotype data and applied 
association rule mining to a dataset consisting of only binary (normal and abnormal phenotypes) 
data to determine relationships among phenotypes. We present 3,686 evidence-based significant 
associations, comprising 345 phenotypes covering 60 biological systems (functions), and evaluate 
their characteristics in detail. To evaluate the relationships, we defined a set of phenotype-phenotype 
association pairs (PPAPs) as a module of phenotypic expression for each of the 345 phenotypes. By 
analyzing each PPAP, we identified phenotype sub-networks consisting of the largest numbers of 
phenotypes and distinct biological systems. Furthermore, using hierarchical clustering based on 
phenotype similarities among the 345 PPAPs, we identified seven community types within a putative 
phenome-wide association network. Moreover, to promote leverage of these data, we developed 
and published web-application tools. These mouse phenome-wide phenotype-phenotype association 
data reveal general principles of relationships among mammalian phenotypes and provide a reference 
resource for biomedical analyses.

Data analyses that model relationships among omics hierarchies, including genomes, epigenomes, transcrip-
tomes, proteomes, metabolomes, and phenomes, are imperative for holistic understanding of life1,2. Elucidation 
of principles underlying the complex relationships among mouse phenotypes3–5 would provide a useful data 
resource for multi-omics studies in mammalian species and assist in elucidating biological mechanisms under-
lying pleiotropic gene expression6 and multimorbidity7,8 (which are understood as secondary phenotype expres-
sion9–11), as well as human disease etiology. In human, relationships between phenotypes have generally been 
based on correlations between gene variants and phenotypes, derived from the analyses of genome-wide asso-
ciation studies (GWAS)12,13 and phenome-wide association studies (PheWAS)14–17. A small number of previous 
studies have reported phenotype-phenotype relationships by investigating the human phenotype relationships of 
2418, 4219, and 12720 traits/diseases, using GWAS/PheWAS summary statistics (LD scores, effect size estimates, 
and polygenic scores, respectively). Ideally, to derive more reliable data on relationships among phenotypes at 
the phenome-wide level, study designs including comprehensive phenotype measures and controlling for genetic 
background and environmental factors, which enable detection of co-expression of abnormal phenotypes in the 
same individuals, are required; however, in human, it is difficult to meet these conditions due to ethical and 
experimental constraints. By contrast, comprehensive phenotype analyses of knock-out mouse mutant strains 
have been performed by the International Mouse Phenotyping Consortium (IMPC)21, using standardized genetic 
backgrounds22,23, experimental methods24–26, analysis workflows, and control strategies27. Enormous amounts of 
phenotype data, with minimization of the influences of various biases on phenotypic calls (normal/abnormal), 
are publicly available28. The availability of bias-minimized IMPC data to study relationships among phenotypes 
provides an opportunity to generate a comprehensive and reliable mammalian reference data resource.

The purpose of this study was to provide reliable, weighted phenotype-phenotype relationship data at the 
mouse phenome-wide level by developing methodologies to identify and evaluate significant phenotype relation-
ships. Using the IMPC data, we first applied association rule mining to derive significant relationships (associa-
tion rules) among mouse phenotypes. Then, we used a complete set of binaries (normal and abnormal) phenotype 
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data, which included only cases examined for at least two phenotypes, to extract relevant relationships. In addi-
tion, we developed an optimal rule selection strategy to extract the maximum amount of reliable relationship 
data possible. Finally, we obtained 3,686 evidence-based significant association rules, comprising 345 phenotypes 
involved in 60 biological systems (functions). To clarify the characteristics of these rules, we performed various 
analyses. For example, to facilitate structural and functional understanding of this resource, we created the con-
cept of a phenotype expression module, referred to as ‘a set of phenotype-phenotype association pairs (PPAPs)’, 
which includes all phenotypes related to a phenotype of interest. Further, we generated a putative phenome-wide 
association network, classified into seven sub-networks by hierarchical clustering, based on similarities among 
phenotypes in each PPAP. We also developed a method to convert PPAPs into pathway-like configurations and, 
using 283 converted sub-pathways, constructed a putative phenome-wide association pathway. Further, we devel-
oped and published web-application tools to promote leverage of these data. This evidence-based mammalian 
phenome-wide data resource will be useful for elucidation of mechanisms underlying phenotypes and deepening 
understanding of both pleiotropic gene expression and human disease pathology.

Results
Generating high-quality association rules.  Using IMPC data (Release 4.3; Methods), after processing 
(Supplementary Data 1–11; Supplementary Methods), a dataset was prepared for analysis of phenotype rela-
tionships (Supplementary Data 12; Supplementary Methods) from comprehensive phenotyping of 3,100 null 
mutant strains, using 113 standard operating procedures (SOPs), 2,050 measured parameters, and approximately 
18,000,000 data points (phenotype measurements); for example, when blood glucose level was measured as 
200 mg/dl using a biological chemistry test in an individual mouse, the procedure, the measured parameter, and 
the data point corresponded to the biological chemistry test, the blood glucose level, and the value ‘200 mg/dl’, 
respectively. To reduce semantic overlap of phenotypes, we annotated the 2,050 parameters using Mammalian 
Phenotype (MP)29, Mouse Anatomy (MA)30, and Edinburgh Mouse Atlas Project (EMAP)31 ontologies, by pro-
cessing the downloaded data containing parameter-ontology relationships. For example, phenotype examina-
tions for the two measured parameters, ‘Fat mass’ and ‘Fat/Body weight’, in the bone density test (DEXA) were 
summarized as a single phenotype, annotated with the MP ontology term ‘abnormal adipose tissue amount’ 
(Supplementary Methods). A new criterion, ‘stage_type:ontology_name’, including the stage/type and an ontol-
ogy term (e.g., ‘adult_trait:abnormal adipose tissue amount’) was defined to distinguish ontology-annotated 
phenotypes by expression stage (adult/embryo) and type (trait/gene). Mice before and after birth were defined 
as embryos and adults, respectively, except for mice in which the phenotype ‘embryo_trait:abnormal viability 
by preweaning’ was analyzed. Using this criterion, we summarized measured parameter level phenotypes into 
532 distinct ontology-annotated phenotypes (Supplementary Table 1; Supplementary Methods). For functional 
(enrichment) analysis of the phenotype dataset, each ontology-annotated phenotype was annotated by its top 
level term(s), biological system(s) (function); for example, the phenotype ‘adult_trait:abnormal circulating glu-
cose level’ belongs to the biological system ‘homeostasis/metabolism phenotype’.

To extract significant associations among phenotypes, we applied an association rule mining approach32,33, 
where each association of all possible combinations between phenotypes was evaluated strictly by calculating the 
statistical significance of a confidence value (Methods) for the association rule of ‘Phenotype X => Phenotype 
Y’ (namely, when Phenotype X is abnormal, the probability that Phenotype Y is abnormal). Based on a normal/
abnormal call table, comprising 532 phenotypes × 3,100 mutant genes (mouse strains), we generated a complete 
set of binary (normal and abnormal) data, which included only cases examined for at least two phenotypes, for 
each of all possible combinations between phenotypes (532 × 532 = 283,024 patterns), and calculated values for 
various measures to evaluate those relationships (Fig. 1a; Methods). Analysis of such complete datasets was key 
for extraction of reliable association rules. For rule selection, we extracted rules fulfilling the following condi-
tions: number of co-expressions between abnormal phenotypes ≥2; lift (probability of rule) > 2; Q value (false 
discovery rate; FDR) for rule significance <0.1 (Fig. 1a). Next, to obtain reliable associations among (abnormal) 
phenotypes, we adopted an optimal rule selection strategy, which selected the maximum number of association 
rules possible, under strict phenotypic call thresholds (Fig. 1b). Phenotypic call thresholds were set as effect size 
(ES) values, maximizing the number of rules selected under the condition ‘2 ≤|ES|≤ 3’, for each phenotype. This 
optimized condition was generated after determining that numbers of abnormal cases decreased dramatically, 
from 42,455 to 7,781, in the |ES| range 0.8 to 3.0 (the threshold for phenotypic calls) (Fig. 1b-i); in this |ES| range, 
the maximum number of total rules selected was at |ES| 1.9 (Fig. 1b-ii), and |ES| values generating the largest 
number of rules differed for each phenotype (Fig. 1b-iii). We extracted and accumulated rules under optimal 
conditions for each phenotype and removed duplicates. As all rules extracted were bidirectional, we only selected 
those with higher confidence values for the individual unidirectional rules, to enable relative comparisons of 
numbers of abnormal cases between phenotype pairs (Fig. 1a). Finally, we identified 3,686 association rules (1.4% 
of all 265,036 possible pairwise combinations) (Fig. 2a and Supplementary Table 2), comprising 345 phenotypes, 
covering 60 biological systems (functions) (Supplementary Table 3).

Characterization of the 3,686 significant association rules.  The 3,686 association rules were 
extracted using data obtained under the ideal experimental design (as far as possible) and by applying the optimal 
rule selection strategy. Before these rules could be promoted for use as a mammalian phenotype relationship 
reference resource, it was essential to clarify their characteristics; therefore, we analyzed the rule characteristics 
in detail.

Following rule selection, the 532 phenotypes examined decreased to 345 (35.2% reduction, Fig. 2b) and we 
examined the functional composition of these 345 phenotypes constituting the rules (Fig. 2b and Supplementary 
Table 4). The reduction rate of phenotypes classified as ‘stage/type’ ‘embryo/gene’ was remarkably high (95.2%, 
from 62 to 3; P = 3.9 × 10−9, two-tailed Fisher’s exact test), and differed significantly from that of the other three 
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categories (Bonferroni-corrected P = 1.0 × 10−10 vs. ‘adult/trait’, 1.6 × 10−9 vs. ‘adult/gene’, and 8.8 × 10−6 vs. 
‘embryo/trait’; two-tailed Fisher’s exact test, Fig. 2b). This specific reduction is because ‘embryo/gene’ phenotypes 
exhibited a very high proportion of abnormality (approximately 65% in the |ES| range 0.8–3.0), inevitably gen-
erating more rules not fulfilling the selection criteria. To examine features associated with decreased numbers of 
phenotypes in specific biological systems following rule selection, we compared the rates of decrease in pheno-
type number following rule selection for 82 biological systems covering the 532 phenotypes. No significant differ-
ences were observed, indicating no specificity in the rate of phenotype number decrease across the 82 biological 
systems following rule selection (Supplementary Table 4).

To understand the landscape of phenotype-phenotype relationships constituting the 3,686 association rules, 
we first classified phenotypes into four ‘stage/type’ categories, and examined the number of rules for each of 
the 16 possible pairwise category combinations (Fig. 2c). ‘Between-phenotypes’ rules, expressed at adult stages, 
accounted for 97.4% of the total (3,591/3,686). Furthermore, ‘between-phenotypes’ rules, expressed at the same 
stage (adult or embryo), accounted for 99.8% of the total (Fig. 2c). We performed enrichment analysis to eval-
uate the specificity of numbers of rules in each of the 16 categories (Supplementary Table 5). We found signifi-
cant positive enrichment for the three relationships between the same categories (‘adult_gene => adult_gene’, 

Figure 1.  Systematic identification of significant association rules. (a) An overview of the workflow for selecting 
significant phenotypic relationships by association rule mining. Measures highlighted in red font were used for 
selection. See Methods for detailed descriptions of each measure. (b) Optimization of rule selection. (i) Graph 
showing the number of abnormal cases (y-axis) against variation of the threshold for phenotypic calls with |effect 
size (ES)| (unbiased Hedge’s g) (x-axis). Red broken line, range of |ES| from 0.8 to 3.0. Note that these abnormal 
cases were obtained under the conditions where the ES was significant in the 95% confidence interval (P value for 
g < 0.05), and the exact probability obtained by the significance test was < 0.05. (ii) Graph showing the relationships 
between variation of |ES| in the same range as i (x-axis) and the total number of rules selected under those 
conditions (y-axis). The number of rules selected under the 23 thresholds of |ES| (bins of 0.1) is presented. Note 
that these rules were obtained under the conditions in step 2, shown in a, and they are all bidirectional. Red dashed 
line, |ES| (1.9) for the maximum number of rules. The analysis case for each of the 532 phenotypes is available 
in an interactive application (https://brc-riken.shinyapps.io/effect_size_vs_rules/). (iii) Bar graph showing the 
relationship between the value of |ES| (the threshold for phenotypic calls) and the number of phenotypes taking its 
value as optimal. The sum of the number of phenotypes in the y-axis becomes 345.
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Figure 2.  Characterization of 3,686 significant association rules, part 1. (a) Visualization. Nodes, abnormal 
phenotypes (n = 345), classified by ‘stage/type’ category; edges, association rules. (b) Phenotypes by ‘stage/
type’ category before and after rule selection. *1, *2, and *3, Bonferroni-corrected P = 8.8×10−6, 1.6×10−9, 
and 1.0×10−10, respectively (two-tailed Fisher’s exact test). (c) Significant rules by ‘stage/type’. Lhs (left-hand 
side), premises; Rhs (right-hand side), conclusions of phenotype association rules. (d) Enrichment analysis of 
between-‘biological systems’ rules. (i) Frequency of significantly enriched between-‘biological systems’ rules. 
Right table, number of significantly enriched between-‘biological systems’ rules by ‘stage/type’ category (two-
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P = 0; ‘adult_trait => adult_trait’, P = 1.5 × 10−40; ‘embryo_trait => embryo_trait’, P = 0.004; Holm’s-corrected 
P), demonstrating positive extraction of those three relationships by rule selection. The remaining 13 ‘stage/
type’ rule categories exhibited significant negative enrichment (Holm’s-corrected P, 1.0 × 10−126 to 3.7 × 10−17; 
Supplementary Table 5), indicating that they were negatively extracted by rule selection. Additionally, we exam-
ined the 3,686 rules by between-‘biological systems’ rule category, and identified 608 (8.7%) between-‘biological 
systems’ rules (among 6,973 possible distinct such rules; Fig. 2d-i and Supplementary Table 6). This number (608) 
was significantly less than the expected value (2,041) (bootstrap P value = 0), representing extreme selectivity of 
the 608 between-‘biological systems’ rules. Enrichment analysis for the 608 between-‘biological systems’ rules 
identified 189 positively enriched (31.1%) and 34 negatively enriched (5.6%) relationships (FDR < 0.01; Fig. 2d-i 
and Supplementary Table 6). We developed a tool to visualize these relationships, according to user-selected bio-
logical system (Supplementary Fig. 1), to facilitate understanding of the rules and their degree of enrichment, and 
promote use of the dataset (Fig. 2d-ii and Supplementary Table 6).

To understand the characteristics of the 3,686 selected association rules, we analyzed values of four repre-
sentative measures (support, confidence, rule polarity, rule significance) for each of the 3,686 association rules, 
in detail (Supplementary Data 13, Supplementary Fig. 2 and Supplementary Tables 7–13). For example, we con-
ducted enrichment analysis to determine which between-‘stage/type’ rules were concentrated among the upper/
lower values of these four measures, demonstrating that ‘adult_trait => adult_trait’ between-‘stage/type’ rules 
were significantly enriched among lower values of support and confidence, whereas ‘adult_gene => adult_gene’ 
rules were significantly enriched among higher values of all four measures (Supplementary Table 7 and Fig. 3a). 
We also conducted a similar enrichment analysis for between-‘biological systems’ rules; the resulting distinctive 
features are summarized in Fig. 3b. Twenty distinctive between-‘biological systems’ rules were identified among 
between-‘adult/trait’ rules (Fig. 3b, above), with 30 among between-‘adult/gene’ rules (Fig. 3b, below). Refer to 
Supplementary Data 13 for a detailed explanation of the results of analysis for these four measures.

Phenotype-phenotype association pair (PPAP) sets.  We defined all association rules between phe-
notypes of interest and their directly/indirectly related phenotypes as PPAP sets, and assigned this as an anal-
ysis unit, or a phenotypic expression module (Fig. 4a). As an example of PPAP analysis, we focused on PPAPs 
with query phenotypes relating to skeletal system parts. Comparative analysis of the PPAP-constituting phe-
notypes and biological systems (functions) demonstrated a general principle regarding the range of relation-
ships among skeletal parts (Fig. 4b). In addition, comparative analysis among PPAPs, focusing on five regions 
of the vertebral column, revealed that the numbers of PPAP-constituting phenotypes and their distinct biolog-
ical systems decreased in the following order: ‘Lumbar > Sacral > Thoracic > Cervical > Caudal’, and identi-
fied region-specific phenotypes and biological systems (Fig. 4c). We next conducted comparative analyses of 
PPAP-constituting phenotypes according to ‘stage/type’ and ‘biological system’ query phenotype categories, and 
summarized the results in Supplementary Data 14 and Supplementary Tables 14–17.

Detection of sub-networks consisting of the largest numbers of phenotypes and distinct bio-
logical systems.  The phenotypes constituting each PPAP were presumed to belong to the same phenotype 
expression association networks and be components of sub-networks in a putative phenome-wide association 
network. Therefore, larger numbers of phenotypes constituting a PPAP represent sub-networks, consisting of 
more abnormal phenotypes, and larger numbers of distinct biological systems among PPAP-constituting pheno-
types represent sub-networks covering wider ranges of biological systems. For each of the 345 PPAPs, we exam-
ined the number of constituting phenotypes, distinct biological systems, and phenotypes belonging to the same 
biological system as the query phenotype (Supplementary Tables 18–20, respectively).

Among all 345 PPAPs, the PPAP comprising the largest number of phenotypes had the query phenotype 
‘adult_trait:abnormal lean body mass’ (biological system, ‘adult_trait:growth/size/body region phenotype(MP)’) 
(Supplementary Table 18), and comprised 82 abnormal phenotypes, all of the ‘adult/trait’ category, correspond-
ing to 33.3% of all 246 ‘adult/trait’ phenotypes. This PPAP comprised phenotypes covering 17 distinct biologi-
cal systems; the largest number of distinct ‘adult/trait’ phenotype biological systems (Supplementary Table 14). 
Among PPAPs with ‘adult/gene’ query phenotypes, the PPAP with the query ‘adult_gene:aorta’ (biological system, 
‘adult_gene:cardiovascular system(MA)’) comprised the largest number of both phenotypes (65) and distinct bio-
logical systems (22) (Supplementary Tables 18 and 19, respectively). Of phenotypes within PPAPs from the same 
biological system as the query phenotype, a PPAP with the query ‘adult_trait:abnormal CD4-positive, alpha beta 
T cell number’ (biological systems: ‘adult_trait:hematopoietic system phenotype(MP)’ and ‘adult_trait:immune 
system phenotype(MP)’) contained the largest number (29) of abnormal phenotypes (Supplementary Table 20). 
Among all 345 PPAPs, that comprising the largest number of distinct biological systems was for the query ‘adult_
trait:abnormal mean corpuscular volume’ (biological system, ‘adult_trait:hematopoietic system phenotype(MP)’) 
(Supplementary Table 19), including 24 biological systems, comprising 77 abnormal phenotypes, and 11 ‘adult/
gene’ biological systems, corresponding to 29 abnormal phenotypes (Supplementary Table 14).

Identifying phenotypes with relatively more/less abnormal cases.  The numbers of incoming/out-
going phenotypes relative to the query phenotypes in each PPAP indicate phenotypes with fewer/more abnormal 
cases, compared with the number of abnormal query phenotype cases, respectively. Therefore, the degree of devi-
ation between the numbers of incoming and outgoing phenotypes was used to measure relative rank (position) 

tailed Fisher’s exact test, *FDR < 0.01). (ii) Heatmap of associations between biological systems. Darker red 
and blue, greater positive and negative enrichment, respectively. Gray squares, non-existing pairs. Labels 1–60, 
biological system IDs (see right table). See also Supplementary Table 6.
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for the number of abnormal query phenotype cases in each PPAP (Methods). Using this measure, we analyzed 
the relative frequency of abnormal cases for each query phenotype for all 345 PPAPs (Fig. 4d and Supplementary 
Table 3), and identified 60 and 49 less and more frequently occurring phenotypes (two-tailed Fisher’s exact test, 
FDR < 0.05; Supplementary Tables 21 and 22, respectively). Enrichment analysis for less and more frequently 
occurring phenotypes, according to the four ‘stage/type’ phenotype categories, demonstrated statistically sig-
nificant enrichment of ‘adult_gene’ phenotypes for both groups at α = 0.05 (Supplementary Table 23; one-tailed 

Figure 3.  Characterization of 3,686 significant association rules, part 2. Characteristics of significant association 
rules as values for support, confidence, rule polarity, and rule significance. (a) Enrichment for larger and 
smaller values of the four measures by between-‘stage/type’ rules. +, uncorrected P < 0.05; ++, +++, and 
++++, Bonferroni-corrected P <0.05, 0.01, and 0.001, respectively. (b) Between-‘biological systems’ rules with 
outstanding mean values for the four measures. Tables above and below, summary results for between-‘adult/
trait’ and between-‘adult/gene’ rules, respectively. Red (blue) in ‘Label’ indicates that between-‘biological systems’ 
rules were significantly positively (negatively) enriched among the selected 3,686 rules. Between-‘biological 
systems’ rules are arranged in descending order of enrichment degree. See also Supplementary Data 13.

https://doi.org/10.1038/s41598-020-60891-w
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Figure 4.  Analysis of PPAPs. (a) PPAP with query phenotype ‘adult_trait:abnormal eyelid morphology’ (center) 
and related phenotypes (nodes at the periphery) via edges (arrows; darker color, larger rule polarity value; wider 
line, larger confidence value). (b,c) Example of relationships among 345 PPAPs. Relatedness of anomalies in 
skeletal parts with other phenotypes was examined. (b) Whole skeleton. Two numbers at the end of the name of 
each part of the skeleton indicate ‘num. of PPAP-constituting phenotypes” (first number) and ‘num. of PPAP-
constituting distinct biological systems’ (second number). (c) Five vertebrae regions. (d) Characterization of 
PPAPs by ‘indegree/outdegree’ deviation (y-axis; -log10 (P value)) for ‘indegree/degree’ vs. ‘outdegree/degree’ 
(two-tailed Fisher’s exact test)) for each query phenotype. Negative if (outdegree) – (indegree)>0. Positive if 
(indegree) – (outdegree) ≥ 0. PPAPs (x-axis) are arranged in ascending order of signed log value. Of phenotypes 
showing significant deviation (FDR <0.05), 60 negatives (blue) were considered relatively rare, and 49 positives 
(red) were considered relatively common. (e) PPAP-driven gene-phenotype association for the PPAP with 
query phenotype ‘adult_trait:abnormal placement of pupils’. (f) Conversion from PPAP, shown in a, to pathway-
like configuration. Asterisk, query phenotype. See also Methods and Supplementary Fig. 3.

https://doi.org/10.1038/s41598-020-60891-w
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Fisher’s exact test). Also, on classification of phenotypes by biological systems, ‘adult_gene:nervous system’ 
phenotypes were significantly enriched among ‘more frequently occurring phenotypes’ (Bonferroni-corrected 
P = 0.0068; Supplementary Table 23).

Relationships among phenotypes in each PPAP.  In considering the collection of phenotypic abnor-
malities within each PPAP as the symptoms of a human disease, presentation of ‘the order (flow), according to 
the relative level of abnormal case numbers in each phenotype’ among phenotypes in the collection could facil-
itate understanding of principles underlying gene pleiotropy34, secondary phenotypes9–11, and comorbidity7,8. 
Therefore, we ranked PPAP-constituting phenotypes linearly, based on rule polarity values for each rule within 
each PPAP (logarithmic P value of the test for differences in the number of abnormal cases between the two phe-
notypes in each rule; the degree of deviation of the difference) (Fig. 4e; Methods; data available through the web 
application, Supplementary Fig. 3). Furthermore, to present possible routes from phenotypes with relatively few 
abnormal cases to those with relatively many abnormal cases, for ‘between-phenotypes’ rules constituting each 
PPAP, using data from the significant association rules between PPAP-constituting phenotypes, we converted 
PPAPs to pathway-like configurations, using a strategy that took the longest path from the selected phenotype 

Figure 5.  Landscape of a putative phenotype-phenotype association pathway across the mouse phenome. The 
overall picture is composed of 1,543 association rules and 335 nodes (phenotypes) (Supplementary Table 24) 
and distinguished by four ‘stage/type’ categories (a), three types of abnormal occurrence frequencies (b), and 
the seven sub-clusters (described in Fig. 6) (c). A darker edge color indicates a larger rule polarity value.
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to each related phenotype (Fig. 4f; Methods). For 283 convertible PPAPs, among the total of 345 (Methods), we 
both visualized converted pathway-like configurations and added data regarding these relationships to the web 
application (Supplementary Fig. 3).

Construction and functional mapping of a putative phenome-wide phenotype-phenotype asso-
ciation pathway.  To comprehensively model the relationships among abnormal phenotypes, we constructed 
a putative phenome-wide phenotype-phenotype association pathway, comprising 335 nodes (phenotypes) and 

Figure 6.  Overall picture of the relationships among the 345 PPAPs. (a) Clustered heatmap of components 
(phenotypes) constituting each of the 345 PPAPs. The longitudinal and horizontal axes represent the 345 PPAPs 
and their 345 query phenotypes, respectively. The order of the query phenotypes is shown in Supplementary 
Table 2. Red, positive for phenotypic abnormality; black, negative for phenotypic abnormality; Gray, no test was 
performed in the corresponding pairs of phenotypes. Hierarchical clustering was conducted using Simpson 
distance and Ward linkage. Note that this heatmap is symmetrical. (b) The characteristics of the seven sub-
clusters generated by hierarchical clustering (see Supplementary Data 15 for details).
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1,543 edges (association rules), by accumulating all association rules constituting the 283 converted pathways and 
eliminating duplicates (Fig. 5 and Supplementary Table 24). Routes could occur that have not been confirmed 
experimentally for the whole expression pathway; however, all rules between two adjacent phenotypes constitut-
ing the pathway were experimentally confirmed and statistically significant. These predictive routes through the 
whole pathway represent a resource for identification of predicted relationships between phenotypes not included 
in a PPAP. We also mapped phenotypes according to ‘stage/type’ categories (Fig. 5a), less frequently/more fre-
quently occurring categories, shown in Fig. 4d (Fig. 5b), and the seven subgroups, shown in Fig. 6 (Fig. 5c), onto 
the pathway.

Detecting communities in the putative phenome-wide phenotype-phenotype association 
network.  More shared phenotypes between PPAPs indicate higher path sharing between them in the puta-
tive phenome-wide phenotype-phenotype association network. To detect communities within the putative 
phenome-wide network, we performed hierarchical clustering, based on similarities between phenotypes in each 
of the 345 PPAPs (Fig. 6), which revealed that the putative association network could be classified into seven 
sub-clusters (Fig. 6a and Supplementary Table 3). The functional features of each cluster were examined in detail 
(Supplementary Data 15) and are summarized in Fig. 6b.

Briefly, in cluster 1, 61 of 63 phenotypes (97%) belonged to the ‘stage/type’ ‘adult/gene’, and ‘adult/gene’ phe-
notypes were significantly enriched in this cluster (two-tailed Fisher’s exact test, P = 6.6 × 10−14). Enrichment 
analysis of phenotypes in this cluster, according to their biological systems, revealed statistically significant 
enrichment of phenotypes belonging to the biological systems ‘adult_gene:nervous system (MA)’, ‘adult_gene:di-
gestive system (MA)’, ‘adult_gene:reproductive system (MA)’, and ‘adult_gene:respiratory system (MA)’. In cluster 
6, 30 of 35 phenotypes (86%) belonged to the ‘embryo/trait’ category, and ‘embryo/trait’ phenotypes were signif-
icantly enriched in this cluster (two-tailed Fisher’s exact test, P = 4.0 × 10−12). In addition, phenotypes belonging 
to the biological systems ‘embryo_trait:embryo phenotype (MP)’ and ‘embryo_trait:nervous system phenotype 
(MP)’ were significantly enriched in this cluster. Clusters 2–4 each comprised a single least common cluster, each 
with specific features, significantly enriched as follows: ‘adult_trait:homeostasis/metabolism phenotype(MP)’ 
and ‘adult_trait:behavior/neurological phenotype(MP)’ phenotypes in cluster 2; ‘adult_trait:skeleton pheno-
type(MP)’, ‘adult_trait:craniofacial phenotype(MP)’, ‘adult_trait:growth/size/body region phenotype(MP)’, and 
‘adult_trait:limbs/digits/tail phenotype(MP)’ phenotypes in cluster 3, related to external/internal morphology; 
and ‘adult_trait:vision/eye phenotype(MP)’ phenotypes in cluster 4. Both clusters 5 and 7 were enriched for bio-
logical system ‘adult_trait:immune system phenotype(MP)’ phenotypes. Phenotypes involving T cells, part of the 
acquired immune system, were enriched in cluster 5. In cluster 7, phenotypes involving B cells, which also contrib-
ute to the acquired immune system, and innate immune system phenotypes, such as abnormal monocyte, abnor-
mal dendritic, and abnormal neutrophil cell numbers, were enriched (Supplementary Data 15 and Supplementary 
Table 3). These results indicate that ‘adult_trait:immune system phenotype(MP)’ biological system phenotypes 
are classified into at least two sub-networks in the putative phenome-wide phenotype-phenotype network, based 
on differences in biological functions.

We generated an overview of the relationships among the 60 biological systems by hierarchical clustering, 
based on the similarity of distinct biological systems in each of the 345 PPAPs (Fig. 7, Supplementary Fig. 4, and 
Supplementary Table 25). The 60 biological systems were clearly classified into four clusters, corresponding to the 

Figure 7.  A dendrogram showing the overall relationships among 60 biological systems. The dendrogram was 
constructed by hierarchical clustering, based on the similarity of biological systems to phenotypes constituting 
each of the 345 PPAPs. Hierarchical clustering was conducted using Simpson distance and Ward linkage. Red 
values on the edges of the dendrogram are AU (Approximately Unbiased) P values (%). The AU P values were 
calculated by applying the cd.pvclust function of the R source pvclust-cd, with 1,000 bootstrap replications. 
Biological systems on the dendrogram are colored according to their ‘stage/type’ categorization for phenotypic 
expression. Refer to Supplementary Fig. 4 for details.
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four ‘stage/type’ phenotype categories (Fig. 7 and Supplementary Fig. 4), demonstrating selective connections 
between biological systems in the same ‘stage/type’ category (right table, Fig. 2d-i). Together with the data on 
pairwise relationships between biological systems (Fig. 2d-ii and Supplementary Fig. 1), this overview of the 
relationships among biological systems provides a reference resource to facilitate understanding of relationships 
among biological systems associated with phenotypic abnormality.

Deriving phenotype-driven modular pleiotropy.  The set of abnormal phenotypic expressions con-
stituting each PPAP is presumed to share common genetic factors with human diseases exhibiting symptoms 
comparable to those phenotypic abnormalities. To understand the genetic factors (background) of each PPAP, we 
made lists ranking the 3,100 gene-knockout strains available through the web application, where mutant strains 
with greater numbers of shared abnormal phenotypes, compared with each set of PPAP-constituting phenotypes, 
are listed in descending order of the number of shared phenotypes (Supplementary Fig. 3 and Fig. 4e; Methods). 
The resulting 345 datasets of phenotype-driven gene-phenotype relationships, available through the web applica-
tion, represent genuine modular pleiotropy6,35–38, based on empirical evidence.

Discussion
In this study, we present overviews of the relationships among 345 measured parameter-based phenotypes and 
connections between their 60 biological systems, based on comprehensive mouse phenotype data analyses, along-
side detailed functional and structural analyses of these two landscapes. The relationships between phenotypes in 
human GWAS/PheWAS are generally obtained indirectly, based on genetic correlations among gene-phenotype 
relationships18–20. By contrast, the mouse phenotype-phenotype relationships presented here are evidence-based 
phenotype relationships, which were obtained based on abnormal phenotype co-expression, determined by direct 
measurement of multiple phenotypes per individual. In addition, each relationship (association rule) was given 
a weight and direction by calculating the values of four measures (support, confidence, rule polarity, and rule 
significance), allowing deeper insights into each relationship. To our knowledge, this is the most comprehensive 
and reliable mammalian phenotype relationship data resource, based on empirical evidence, and can be leveraged 
as a reference resource for various biomedical analyses.

A PPAP represents the maximum possible number of phenotypic abnormalities that can potentially occur 
alongside a selected abnormal phenotype; therefore, for initial phenotypic analyses of gene mutant strains, 
screening of these relationships during experimental design could contribute to efficient detection of pheno-
typic abnormalities33,39. Additionally, our data represent a starting point for detailed analyses of the mechanisms 
underlying the individual identified phenotype associations by interested researchers. For example, we detected 
phenotypic associations with low abnormality co-occurrence frequencies (i.e., the support value for each associ-
ation rule was low) as statistically significant rules, providing an opportunity for detailed analyses of rare associ-
ations that cannot be detected by small-scale analysis, such as the relationship between eyes and teeth (Fig. 4e), 
which are both ectoderm-derived. Further, our data represent a potential mammalian phenotype-phenotype 
associations reference resource for ongoing multi-omics (trans-omics) studies. As the phenome is the bottom-
most layer of various omics hierarchies, corresponding to all symptoms of human disease, application of our 
data to trans-omics studies will facilitate understanding of human disease etiology. Our dataset of phenotypic 
associations, with numerous potential applications, is available online (phenotypes associations, https://brc-riken.
shinyapps.io/phenotypic_associations_across_the_mouse_phenome/; biological systems associations, https://
brc-riken.shinyapps.io/associations_between_biological_systems/).

Several points should be considered when using our dataset of mammalian phenotype-phenotype associations 
as a reference resource in future studies. First, each association rule presented here indicates the direction (flow) 
from the relatively smaller number of abnormal cases to the relatively larger number of abnormal cases, not the 
causality. In addition, the two phenotypes in each association rule are a mixture of those that are directly or indi-
rectly related to each other, and the existence of confounding factors cannot be excluded. Second, the phenotype 
data used in this study is derived from the 3,100 IMPC gene knock-out mouse lines, which covers approximately 
15.5% of the roughly 20,000 genes that constitute the mouse genome. In the future, by incorporating the updated 
IMPC phenotype dataset, we may be able to discern novel relationships not present among the association rules 
presented in this study. Third, the between-phenotype association rules obtained here were derived by consider-
ing all examined phenotypes simultaneously; therefore, there is a possibility that cases with positive relationships 
could be missed by the restrictions on the order of phenotyping tests. To solve this problem, it would be useful to 
acquire phenotype data in time series and handle phenotypes individually, although this approach would be very 
time-/cost-/labor-consuming. Fourth, the phenotypes used here were organized into 532 ontology-annotated 
phenotypes to facilitate normal/abnormal discrimination. For phenotypes derived from quantitative data, by 
annotating them with ontology terms that can discriminate the direction (positive or negative) of phenotype 
abnormalities, it is expected that the relationships between phenotypes can be obtained at higher resolution.

Besides relationships between phenotypes, we determined phenotype-driven gene-phenotype relation-
ships, representing associations among abnormal phenotypes constituting 345 PPAPs and their correspond-
ing potential risk genes (Fig. 4e), allowing successful presentation of modular pleiotropy at the phenome-wide 
level. Associating phenotypes constituting each PPAP with symptoms of specific human diseases (e.g., using the 
OWLSim algorithm; http://owlsim.org)32,33,40 for these gene-phenotype relationships enables identification of 
candidate risk genes for human diseases. This study also describes a novel methodology for analysis and integra-
tion of comprehensive phenotype data. This analysis workflow can be applied to derive significant associations 
from measured data derived from various biological layers.
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Methods
Dataset preparation for analysis of phenotypic associations.  A dataset (Release 4.3) from the FTP 
site (ftp://ftp.ebi.ac.uk/pub/databases/impc/) of the IMPC was acquired for analysis. All data processing and anal-
ysis in this study was carried out using R programming language41. Details of the dataset preparation for analysis 
of phenotypic associations are described in Supplementary Methods.

Setting phenotypic call thresholds.  In response to the report of Cumming (2014)42 and the guideline of 
the American Statistical Association (2016)43, we adopted ES (unbiased Hedges’ g) as the main measure of phe-
notypic calls, as it is a quantitative measure of the magnitude of the phenotypic difference between the mutation 
group and the control group, rather than the P value of the statistical significance test. When making phenotypic 
calls using ES, the prerequisites were as follows: the ES was significant in the 95% confidence interval (P value 
for g < 0.05), and the exact probability obtained by the significance test was <0.05. Cohen’s benchmark (1988)44 
of ‘large effect at 0.8’ is generally used as the threshold for ES for phenotypic calls; however, in this study, to take 
a more empirical approach, optimal thresholds were examined for each phenotype under the above-mentioned 
prerequisites, based on the maximum number of significant associations between phenotypes when changing the 
magnitude of the |ES| from 0.8 to 3.0, in bins of 0.1. Finally, 3,686 significant rules were extracted by filtering the 
accumulated rules acquired under different optimal conditions for each phenotype (see ‘Generating high-quality 
association rules’ in the main text for details).

Association rule mining for 532 phenotypes.  To identify significant associations between pheno-
types, we applied association rule mining, which is well-known as market basket analysis in the marketing field. 
Association rules between phenotypes were determined using the ‘if (lhs: left-hand side)-then (rhs: right-hand 
side)’ style, such as ‘phenotype X => phenotype Y’. Based on the normal/abnormal phenotypic call matrix of 532 
phenotypes × 3,100 gene symbols (mutant strains), values for a number of measures were calculated for all pair-
wise combinations between the 532 phenotypes, to allow evaluation of association rules from various perspec-
tives (refer to the next section). Note that, when calculating each of the measures described in the next section, 
a pairwise dataset, consisting of only normal and abnormal calls, was used. Hence, in many cases, to investigate 
associations between two phenotypes within a pairwise dataset, all cases with no test in at least one phenotype 
were removed for the calculation of values of these measures.

Measures indicating various features of association rules.  Details of representative measures calcu-
lated during association rule mining between phenotypes in this study are described below.

Num. of abnormal co-expressions.  In this study, values of ≥2 for this measure were adopted as requirements for 
significant rule selection. This threshold was set based on the consideration that we expected to select phenotypic 
associations, even for phenotypic abnormalities that rarely occur, and that the frequency of phenotypic abnormal-
ity was actually only approximately 4% at the ES threshold |2.0|; hence the probability of two cases of abnormal 
phenotype duplication under this condition is theoretically only 0.026%.

Support.  Co-expression frequency in two abnormal phenotypes. In this study, we did not adopt this measure 
for rule selection because, even if a rule shows low frequency by this measure, it can hopefully still be selected by 
statistical significance.

Confidence.  When phenotype X is abnormal, the proportion of phenotype Y that is abnormal (conditional 
abnormal probability). This measure is an indication of how often the rule ‘phenotype X => phenotype Y’ has 
been found to be true. That is, this measure represents rule accuracy. In this study, because we intended to extract 
statistically significant rules even if their confidence values were low, we adopted this measure only at the third 
step of rule selection (in the selection of a single rule with a higher value of this measure from bidirectional rules 
between two phenotypes).

Lift.  A measure indicating likelihood in confidence value. This measure indicates, when a rule of ‘phenotype 
X => phenotype Y’ is raised, how large a confidence value is compared with the proportion of abnormalities of 
phenotype Y alone. In this study, lift>2 was adopted as a rule selection criterion (lift = 1 represents independ-
ence). Note that the two values of this measure in a bidirectional rule take the same value.

Rule polarity.  A measure representing the magnitude of the difference between the two confidence values in a 
bidirectional rule (that is, -log10(P value) from two-tailed Fisher’s exact test). Considering the formula used to 
calculate the confidence value, the larger the value of this measure, the larger the difference between the number 
of abnormal cases in the premise and those in the conclusion of an association rule. Therefore, this measure 
indicates the relative degree of difference between the number of abnormal cases in the premise and those in the 
conclusion of an association rule. In this study, because an association rule that had a larger confidence value in 
a bidirectional rule was selected as one of the 3,686 significant rules, a larger value of this measure represents a 
relatively smaller number of abnormal cases in the premise.

Rule significance.  A measure to judge whether or not a rule is statistically significant. In practice, this measure 
indicates the statistical significance of the lift value (that is, −log10(P value) from two-tailed Fisher’s exact test). 
In this study, P values for this measure were calculated only in cases of ‘num. of abnormal co-expressions ≥ 2’. 
Using these P values, Q values for multiple testing correction were calculated. The threshold FDR (Q value) < 0.1 
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was adopted as a rule selection criterion. Note that the two values of this measure in a bidirectional rule take the 
same value, as for the lift.

Of the six measures described above, four (num. of abnormal co-expressions, confidence, lift, and rule sig-
nificance) were applied for rule selection (Fig. 1). For measuring statistical dependence between the four meas-
ures, Spearman’s correlation coefficients and their associated P values were calculated using the R package 
PerformanceAnalytics (Supplementary Fig. 2e).

Calculation of Q values for FDR control.  We calculated Q values for multiple comparison correction 
using a sliding linear model45 and the adjust.p function of the R package cp4p, with pi0.method = “slim” and 
alpha = 0.05. For Q value calculation, P values for the measure rule significance (Fig. 1a), P values calculated to 
examine the degree of enrichment for 608 associations between biological systems (right table, Fig. 2d-i), and P 
values calculated to identify less frequently/more frequently occurring phenotypes by analysis of the 345 associ-
ation rule sets (Fig. 4d) were applied. For multiple comparison correction of other analyses, Bonferroni or Holm 
correction of P values was applied.

Enrichment analysis.  Many enrichment analyses were conducted for the 3,685 significant rules, to extract 
features of selected subgroups. Where we only wished to detect significant positive enrichment, P values were cal-
culated only for fold-enrichment ≥1 (one-tailed Fisher’s exact test). Where we wished to detect both significant 
positive and negative enrichments, P values were calculated for all pairwise combinations (two-tailed Fisher’s 
exact test).

Multiple comparison analysis.  Multiple comparisons analyses were conducted for the four interest meas-
ures in the 3,686 significant rules by both stage/type and biological system rule classification (Supplementary 
Data 13 and Fig. 3), and for the numbers of both phenotypes and distinct biological systems in each PPAP by 
stage/type and biological system classifications of query phenotypes in 345 PPAPs (Supplementary Data 14). A 
conventional sequence of procedures in these analyses is described below. First, using the R package userfriend-
lyscience, one-way ANOVA was used to determine whether there was a significant difference among categories, 
where each category had a sample size of ≥7. If a significant difference was detected by ANOVA (P < 0.05), the 
homogeneity of the variances was tested by Levene’s test using the R package car. When equal variance was not 
assumed by the test (P < 0.05), P values for all pairwise combinations among the groups to be compared were 
calculated using a Games-Howell post-hoc test in the R package userfriendlyscience. The resulting P values were 
then transformed into logarithmic (base-10) scale, and the transformed values (−log10(P value)) were used for 
hierarchical clustering (Euclidean distance and Ward’s linkage) to discover outstanding features for comparisons 
between biological systems.

Converting a PPAP into a pathway-like configuration.  To understand continuous relationships 
among phenotypes in each of the 345 PPAPs, we developed a methodology to convert PPAPs to pathway-like 
configurations, using the 3,686 significant rules (Fig. 4f). The conversion procedure was as follows: (1) Focus on 
outgoing phenotypes of the query phenotype in a PPAP. Select one outgoing phenotype, search all possible paths 
from the query phenotype to the selected one, and extract the longest (i.e., the path with the most associations 
with other phenotypes). (2) By extracting the longest paths for the remaining outgoing phenotypes by a similar 
process to that described in (1), and by accumulating all extracted paths, obtain a dataset consisting of all possible 
paths from the query phenotype to the outgoing phenotypes. (3) For incoming phenotypes of the query pheno-
type, obtain a dataset consisting of all possible paths from the incoming phenotypes to the query phenotype, by 
a similar process to that described in (1) and (2). (4) By accumulating the two datasets obtained in processes (2) 
and (3), and by selecting unduplicated association rules from the accumulated dataset, the conversion of a PPAP 
to a pathway-like configuration is completed.

Each converted pathway can be visualized and its constitutive data can be obtained through the application 
(Supplementary Fig. 3). Note that this pathway represents routes from phenotypes with low numbers of cases of 
abnormality to phenotypes with many cases of abnormality.

Constructing a putative phenome-wide phenotype-phenotype association pathway.  A 
putative phenome-wide phenotype-phenotype association pathway was constructed by accumulating 283 
sub-pathways from the 345 PPAPs that could be converted to pathway-like configurations, and by removing 
duplicated association rules from the accumulated dataset. Note that, because 61 sets of PPAPs, where all query 
phenotypes belonged to the ‘stage/type’ ‘adult/gene’, and a set of PPAPs, where the query phenotype was ‘adult_
trait:abnormal_spleen weight (MP)’, had too many associations to convert to pathway-like configuration, 62 
PPAP sets were excluded for construction of the putative phenome-wide pathway.

Extracting communities from overviews of associations between phenotypes and between 
biological systems by hierarchical clustering.  To present an overview of the associations between the 
345 phenotypes and to extract communities from that picture, hierarchical clustering, based on the similarities 
between phenotypes comprising each of the 345 PPAPs, was applied (Fig. 6a). A similar analysis was also applied 
to the overall picture of associations between the 60 biological systems (Fig. 7). Dendrograms were constructed 
using both Simpson’s coefficient, with the R package proxy, and Ward’s linkage, with the hclust function in R or 
the R package pvclust46. To make a dendrogram with AU (Approximately Unbiased) P values (Fig. 7), which 
were computed by multiscale bootstrap resampling, both the pvclust46 and pvclust-cd packages were used. The set 
function in the R package dendextend was used to change the appearance, color, and size of dendrograms. The 
heatmap.2 function in the R package gplots was used to draw heatmaps.
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Presentation of gene sets corresponding to phenotypes in each of the 345 PPAPs.  First, all 
mutant strains (gene symbols), each of which expressed at least one phenotype the same as the PPAP query 
phenotype, were listed from among the 3,100 mutant strains included in this study. The degree (number and 
proportion) of overlap between the abnormal phenotypes expressed in each mutant strain (gene) and pheno-
types constituting the PPAP of interest was determined, and the listed genes were ranked in descending order of 
the number of overlapping genes. Datasets of the ranked genes, corresponding to phenotypes in each of the 345 
PPAPs (i.e., datasets of phenotype-driven gene-phenotype relationships), are available through the developed 
application (Supplementary Fig. 3).

Development of web applications.  To construct websites to facilitate understanding of the findings of 
this study and promote leverage of the obtained datasets as data resources, the package shiny, which facilitates the 
construction of web applications using R, was used to develop three interactive web applications represented in 
Fig. 1b-ii, Supplementary Figs. 1 and 3, respectively. These web applications use many R packages. For example, 
the VisNetwork package to visualize association rules and the arules package to calculate the degree of each node 
in the graph were used in the development. R Studio’s shinyapps.io hosting service was used to deploy all web 
applications developed in this study.

Data availability
Data used or generated in this study are available at the following URLs: IMPC dataset (Release 4.3) used for 
analysis, ftp://ftp.ebi.ac.uk/pub/databases/impc/release-4.3/; Supplementary Data 1–12, https://doi.org/10.6084/
m9.figshare.7995911/; website for reviewing optimal conditions for significant rule selection, https://brc-riken.
shinyapps.io/effect_size_vs_rules/; website for use and application of phenotypic functional associations obtained 
from this study, https://brc-riken.shinyapps.io/associations_between_biological_systems/; and website for use 
and application of phenotypic associations obtained from this study, https://brc-riken.shinyapps.io/phenotypic_
associations_across_the_mouse_phenome/. All other data supporting the findings of this study are available 
within the article and its Supplementary Information files. All source data and R codes for analysis are available 
from the corresponding author upon reasonable request.
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