GigaScience, 9, 2020, 1-8
n
(GlgA) 0 Technical Note
CIEN<.E

TECHNICAL NOTE

1,2 3 4

Miroslav Kratochvil @12 Oliver Hunewald ®3"' Laurent Heirendt ©*,
Vasco Verissimo 94, Jiti Vondrasek ©©?, Venkata P. Satagopam %>,
Reinhard Schneider ©%°, Christophe Trefois @*°> and Markus Ollert (93°

Hnstitute of Organic Chemistry and Biochemistry, Flemingovo namésti 542/2, 160 00 Prague, Czech Republic;
2Charles University, Department of Software Engineering, Malostranské namésti 25, 118 00 Prague, Czech
Republic; *Luxembourg Institute of Health, Department of Infection and Immunity, 29 rue Henri Koch, L-4354
Esch-sur-Alzette, Luxembourg; *University of Luxembourg, Luxembourg Centre for Systems Biomedicine, 6
avenue du Swing, Campus Belval, L-4367 Belvaux, Luxembourg; *ELIXIR Luxembourg, University of
Luxembourg, 6, avenue du Swing, Campus Belval, L-4367 Belvaux, Luxembourg and ®Odense Research Center
for Anaphylaxis, Department of Dermatology and Allergy Center, OdenseUniversity Hospital, University of
Southern Denmark, Klgverveenget 15, DK-5000 Odense C, Denmark

*Correspondence address. Markus Ollert, 29, rue Henri Koch L-4354, Esch-sur-Alzette, Luxembourg. Tel.: +352 26970-829. E-mail:
markus.ollert@lih.lu © http://orcid.org/0000-0001-7356-4075
fContributed equally.

Background: The amount of data generated in large clinical and phenotyping studies that use single-cell cytometry is
constantly growing. Recent technological advances allow the easy generation of data with hundreds of millions of
single-cell data points with >40 parameters, originating from thousands of individual samples. The analysis of that amount
of high-dimensional data becomes demanding in both hardware and software of high-performance computational
resources. Current software tools often do not scale to the datasets of such size; users are thus forced to downsample the
data to bearable sizes, in turn losing accuracy and ability to detect many underlying complex phenomena.

Results: We present GigaSOM.jl, a fast and scalable implementation of clustering and dimensionality reduction for flow and
mass cytometry data. The implementation of GigaSOM.jl in the high-level and high-performance programming language
Julia makes it accessible to the scientific community and allows for efficient handling and processing of datasets with
billions of data points using distributed computing infrastructures. We describe the design of GigaSOM.jl, measure its
performance and horizontal scaling capability, and showcase the functionality on a large dataset from a recent study.
Conclusions: GigaSOM.jl facilitates the use of commonly available high-performance computing resources to process the
largest available datasets within minutes, while producing results of the same quality as the current state-of-art software.
Measurements indicate that the performance scales to much larger datasets. The example use on the data from a massive
mouse phenotyping effort confirms the applicability of GigaSOM.jl to huge-scale studies.

Received: 3 August 2020; Revised: 28 September 2020; Accepted: 20 October 2020

© The Author(s) 2020. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.oxfordjournals.org
http://orcid.org/0000-0001-7356-4075
http://orcid.org/0000-0001-5402-5084
http://orcid.org/0000-0003-1861-0037
http://orcid.org/0000-0003-3884-9125
http://orcid.org/000-0002-6066-973X
http://orcid.org/0000-0002-6532-5880
http://orcid.org/0000-0002-8278-1618
http://orcid.org/0000-0002-8991-6810
http://orcid.org/0000-0002-8055-0103
mailto:markus.ollert@lih.lu
http://orcid.org/0000-0001-7356-4075
http://orcid.org/0000-0001-7356-4075
http://creativecommons.org/licenses/by/4.0/

Keywords: high-performance computing; single-cell cytometry; self-organizing maps; clustering; dimensionality reduction;

Julia

Advances in single-cell technologies, such as mass cytometry,
single-cell RNA sequencing, and spectral flow cytometry [1-
3], provide deep and comprehensive insights into the complex
mechanism of cellular systems, such as immune cells in blood,
tumor cells and their microenvironments, and various micro-
biomes, including single-celled marine life ecosystems. Mass cy-
tometry and spectral cytometry have enabled cells to be stained
with >40 different markers to discover cellular differences under
multiple conditions. The samples collected in recent studies of-
ten contain millions of measured cells (events), resulting in large
and high-dimensional datasets. Traditional analysis methods,
based on manual observation and selection of the clusters in 2D
scatter-plots, is becoming increasingly difficult to apply on data
of such complexity: for high-dimensional data, this procedure
is extremely laborious, and the results often carry researcher or
analysis bias [4].

Various dimensionality reduction, clustering, classification,
and data mining methods have been used to aid with the
semi-automated or fully automated processing, including neu-
ral networks [5], various rule-based and tree-based classifiers
in combination with clustering and visualization [6, 7], or
locality-sensitive and density-based statistical approaches [8].
However, computational performance of the algorithms, nec-
essary for scaling to larger datasets, is often neglected, and
the available analysis software often relies on various sim-
plifications (such as downsampling, which impairs the qual-
ity and precision of the result) required to process large
datasets in reasonable time without disproportionate hardware
requirements.

To improve the performance, van Gassen et al. [9] introduced
FlowSOM clustering, based on an algorithm that combines the
self-organizing maps (SOMs) by Kohonen [10] and metaclus-
tering [11], which allows efficient and accurate clustering of
millions of cells [12]. FlowSOM is currently available as an R
package that has become an essential part of many workflows,
analysis pipelines, and software suites, including FlowJo and
Cytobank®) [13]. Despite the advance, the amount of data gen-
erated in large research-oriented and clinical studies frequently
grows to hundreds of millions of cells, processing of which re-
quires not only the efficiency of the algorithm but also a practical
scalable implementation.

Here, we present GigaSOM.jl, an implementation of SOM-
based clustering and dimensionality reduction functionality us-
ing the Julia programming language [14]. Compared with Flow-
SOM, GigaSOM.jl provides 2 major improvements: first, it uses
computational and memory resources efficiently, enabling it to
process datasets of size >108 cells on commonly available hard-
ware. Second, the implementation provides horizontal scaling
support and can thus utilize large high-performance comput-
ing clusters (HPC) to gain improvements in speed and tangible
dataset size, allowing datasets with >10'° cells to be processed
in the distributed environment. Additionally, the implementa-
tion in Julia is sufficiently high-level to allow easy extensibility
and cooperation with other tools in the Julia ecosystem. Several
technical limitations imposed by the R-wrapped implementa-
tion in the C programming language of FlowSOM are also over-
come.

The Kohonen SOM algorithm [10] is a kind of simplified neural
network with a single layer equipped with a topology. The task
of the SOM training is to assign values to the neurons so that
the training dataset is covered by neighborhoods of the neurons,
and, at the same time, that the topology of the neurons is pre-
served in the trained network. A 2D grid is one of the most com-
monly used topologies because it simplifies interpretation of the
results as neuron values positioned in the 2D space, and related
visualization purposes (e.g., EmbedSOM [15]). At the same time,
the trained network can serve as a simple clustering of the input
dataset, classifying each data point to its nearest neuron.

The original SOM training algorithm was introduced by Koho-
nen [16]. The map is organized as a collection of randomly ini-
tialized vectors called “codebook,” with weights W(1). The train-
ing proceeds in iterations (indexed by time t), where in each it-
eration a randomly selected data point in the dataset is used to
produce an updated codebook as

Wi(t + 1) = Wi(t) + a(t)h(t) © [x — Wi(t)],

where « is the learning rate parameter, i is the neuron nearest
to the randomly selected data point x, and h is the vector of
topological distances of the codebook vectors to the best match-
ing unit. The learning has been shown to converge after a pre-
dictable number of iterations if « and topological neighborhood
size in h are gradually decreased [10].

A more scalable variant of the algorithm can be obtained by
running the single updates in batches where the values of x are
taken from the whole dataset at once, which can be expressed
in matrix form

W(t + 1) = H(t) - N (X, W(t)) - X,

where NV(X, W(t)) is a binary matrix that contains 1 at position i,
j if and only if Wj(t) is the closest codebook vector to X;, and H(t)
is a distance matrix of the codebook in 2D map topology with
rows scaled to sum 1. Notably, the algorithm converges in the
same cases as the online version [17] and may be viewed as a
generalized version of k-means clustering, which is obtained by
setting H(t) = I.

Implementations of the batch training may rely on several
assumptions that are not available with the online training:

® computation of V' can use a pre-built spatial indexing struc-
ture on W(t), which is constant for the whole batch;

¢ all computations involving X can be sliced and parallelized
(moreover, because the accesses to X are not randomized,
the implementation is more cache-efficient and more suit-
able for SIMD- and GPU-based acceleration);

* multiplication by H(t) can be associatively postponed to work
only with the small codebook matrix, saving >50% required
computation volume when compared with online training
with large neighborhoods.

Data distribution

Master node

sliceJ| worker
sliceJ| worker
||lslice]| worker

|
|
=
|

Input dataset
p
wv

suo3diidsap ad1[s

sliceJ| worker
slice]| worker

Shared filesystem (scratch space)

Computation

Master node

worker

visualization

Figure 1 Architecture of GigaSOM.jl. Top: Data distribution process divides the
available FCS files into balanced slices; individual workers retrieve their respec-
tive slice data using a shared storage. Bottom: The SOM learning and visualization
processes require only a minimal amount of data to be transferred between the
master and worker nodes, consisting of the relatively small codebook in the case
of SOM learning (blue arrows) and pre-rasterized graphics in the case of visual-
ization (green arrows).

The GigaSOM.jl package is a flexible, horizontally scalable, HPC-
aware version of the batch SOM training written in the Ju-
lia programming language. The language choice has allowed a
reasonably high-level description of the problem suitable for
easy customization, while still supporting the efficient low-level
operations necessary for fast data processing. GigaSOM.jl con-
tains a library of functions for loading the data from Flow Cytom-
etry Standard (FCS) files, distributing the data across a network
to remote computation nodes presentin the cluster, running the
parallelized computation, and exporting and visualizing the re-
sults. The overall design of the main implemented operations
is outlined in Fig. 1. Example Julia code that executes the dis-
tributed operations is provided in Supplementary Listing S1.

Data distribution procedure
The distributed computation process in GigaSOM is structured
such that each computation node (“worker”) keeps its own, per-
sistent slice of the whole dataset, and the partial results from
the nodes are aggregated by the master node. To establish this
structure, GigaSOM implements a separate procedure that ag-
gregates the input FCS files and creates a balanced set of slices
equally distributed among the workers.

The distribution procedure is implemented as illustrated
in Fig. 1 (top): First, the master node reads the headers and sizes

of individual FCS files, verifying their structure and determin-
ing the total number of stored data points. This is used to cre-
ate minimal descriptions of dataset slices of equal size (each
description consists only of 4 numbers of the first and last file
and the first and last data point index), which are transferred
to individual workers. Each worker interprets its assigned slice
description and extracts the part of the data from the relevant
FCS files saved on a shared storage. The resulting slices may be
easily exported to the storage and quickly imported again by in-
dividual workers, thus saving time if multiple analyses run on
the same data (e.g., in case of several clustering and embedding
runs with different parameters).

Importantly, a shared filesystem is usually one of the most
efficient ways to perform data transfers in HPC environments,
which makes the dataset loading process relatively fast. If a
shared filesystem is not available, GigaSOM.jl also includes op-
tional support for direct data distribution using the Distributed.jl
package.

Batch SOM implementation
After the nodes are equipped with the data slices, the batch SOM
training proceeds as illustrated in Fig. 1 (bottom):

1. The master node initializes the SOM codebook (usually by
random sampling from available data).

2. The codebook is broadcast to all worker nodes. Because the
size of the usual codebook is at most several tens of kilo-
bytes, data transfer speed does not represent a performance
bottleneck in this case.

3. The workers calculate a partial codebook update on their
data and send the results back to the master node.

4. Finally, the master node gathers the individual updates,
multiplies the collected result by H(t), and continues with
another iteration from step 2 if necessary.

The time required to perform 1 iteration of the SOM train-
ing is mainly derived from the speed of the codebook transfer
between nodes, and the amount of computation done by indi-
vidual nodes. The current GigaSOM.jl implementation transfers
all codebook versions directly between the master node and the
workers, giving time complexity O(b) + O(n/c) for b computation
nodes equipped with ¢ CPUs working on a dataset of size n. This
complexity can be improved to O(log, b) + O(n/c) by using effi-
cient algorithms for parallel data broadcast and reduction, but
we have not found a realistic dataset of size sufficient to gain
any benefit from such optimization.

Implementation methodology

The GigaSOM.jl implementation of the batch SOM algorithm
follows a similar structure as reported by other authors [18-
20]. All distributed computations are expressed as a series of
MapReduce-style operations [21], which are implemented as
high-order functions. This has allowed us to clearly separate the
low-level code required to support the parallel processing from
the actual implementation of algorithms, and thus improve the
code maintainability and vastly simplify further custom, user-
specifiable data manipulation in the distributed environment.
This abstraction additionally enables future transition to more
complex data-handling routines or different parallelization sys-
tems. GigaSOM.jl can be transparently modified to support dis-
tributed parallel broadcast and reduction that might be required
for handling huge SOMs on a very large number of workers (Col-
lange et al. [22] provide a comprehensive discussion on that
topic), or even run on a different distributed framework, such
as the industry-standard MPI [23].

Our choice of the Julia programming environment was
mainly motivated by making this abstraction as efficient as
possible—the relatively high-level Julia code is compiled into ef-
ficient low-level bytecode, which enables high algorithm exe-
cution performance without modifying the code to work with
any specialized performance-supporting primitives. This bene-
fitis rarely available in popular high-level programming environ-
ments: e.g., many approaches for distributed computation exist
in R (R Project for Statistical Computing, RRID:SCR-001905) [24],
such as GridR [25], DistributedR, ddR, and sparklyr (for Apache
Spark) (Apache Spark, RRID:SCR-016557) [26], but most of the
projects unfortunately did not achieve general adoption or have
been abandoned. Python libraries provide good support for op-
timized execution of specialized operations; parallel and dis-
tributed computing is supported, e.g., by the Dask project [27],
with similar mode of use as the distributed processing tools
in Julia. Despite that, producing efficient Python code requires
careful consideration and utilization of the low-level array pro-
cessing primitives (such as NumPy) (NumPy, RRID:SCR-00863
3) [28], often by representing the algorithms using only the avail-
able optimized matrix operations, which are elusive for non-
mathematicians.

Spatial indexing
Because the most computationally expensive step of the SOM
training is the search for nearest codebook vectors for each
dataset item (i.e., construction of the matrix A), we have evalu-
ated the use of spatial indexing structures for accelerating this
operation. GigaSOM.jl implementation can use the structures
available in the package NearestNeighbors.jl, which include kd-
trees and ball trees (also called vantage-point trees). [29, 30]
Although the efficiency of spatial indexing is vastly reduced
with increasing dataset dimensionality, the measurements in
section Results show that it can provide significant speedup with
very large SOMs, even on data with >20 dimensions.

Visualization support

To simplify visualization of the results, GigaSOM.jl includes a
parallel reimplementation of the EmbedSOM algorithm in Ju-
lia [15], which quickly provides interpretable visualizations of
the cell distribution within the datasets. EmbedSOM computes
an embedding of the cells to 2D space, similarly as the popu-
lar t-SNE or UMAP algorithms [31, 32]. Unlike the usual dimen-
sionality reduction algorithms, it uses the constructed SOM as a
guiding manifold for positioning the individual points into the
low-dimensional space, and achieves linear time complexity in
the size of the dataset. The parallel implementation of Embed-
SOM is built upon the same distributed data framework as the
batch SOMs—because EmbedSOM is designed to be trivially par-
allelizable, it can be run directly on the individual data slices and
gain the same speedup from parallel processing.

To aid the plotting of the EmbedSOM output, we have addi-
tionally implemented a custom scatterplot rasterizer in pack-
age GigaScatter.jl, which includes functions for quick plotting of
large amounts of low-« points. To enable plotting of exceedingly
large datasets, the rasterization can be executed in a distributed
manner within the MapReduce framework, as shown in Supple-
mentary Listing S1.

The main result achieved by GigaSOM is the ability to quickly
cluster and visualize datasets of previously unreachable size. In
particular, we show that construction of a SOM from 10° cells

with 40 parameters can be performed in minutes, even on rel-
atively small compute clusters with less than hundreds of CPU
cores. The SOM can be used to quickly dissect and analyze the
samples, as with FlowSOM [9]. This performance achievement
vastly simplifies the interactive work with large datasets be-
cause the scientists can, for instance, try more combinations of
hyperparameters and quickly get the feedback to improve the
analysis and clustering of the data.

In this section, we first compare the output of GigaSOM.jl to
that of FlowSOM, showing that the change in the SOM train-
ing algorithm has minimal impact on the quality of results. Fur-
thermore, we provide benchmark results that confirm that Giga-
SOM.jl scales horizontally, and details of the speedup achievable
by employing spatial indexing data structures for acceleration
of the nearest-neighbor queries. Finally, we demonstrate the re-
sults that can be achieved by processing a gigascale dataset from
a recent study by the International Mouse Phenotyping Consor-
tium (IMPC) [33].

The presented performance benchmarks were executed on
a Slurm-managed HPC cluster equipped with Intel®Xeon®ES5-
2650 CPUs, each node with 2 physical CPUs (total 24 cores) and
128 GB of RAM. All benchmarks were executed several times; the
times were measured as “real” (wall-clock) time using the stan-
dard Julia timer facility. Measurements of the first runs were dis-
carded to prevent the influence of caching and Julia just-in-time
compilation; remaining results were reduced to medians.

To compare the GigaSOM.jl output with that from Flow-
SOM (FlowSOM, RRID:SCR-016899) [9], we used a methodology
similar to the one used by Weber and Robinson [12]. The datasets
were first processed by the clustering algorithms to generate
clusters, which were then assigned to ground truth populations
so that the coverage of individual populations by clusters was
reasonably high. The mean F1 score was then computed be-
tween the aggregated clusters and ground truth. Unlike Weber
and Robinson [12], who use a complex method of cluster assign-
ment optimization to find the assignment that produces the best
possible mean F1 score, we used a simpler (and arguably more
realistic) greedy algorithm that assigns each generated cluster
to a population with the greatest part covered by that cluster.

The benchmark did not consider FlowSOM metaclustering [9]
because the comparison primarily aimed to detect the differ-
ences caused by the modifications in SOM training.

For the comparison, we reused the datasets Levinel3 and
Levine32 from the clustering benchmark [12]. In a typical out-
come, most populations were matched by GigaSOM.jl just as
well as by FlowSOM, as displayed in Fig. 2 (detailed view is
available in Supplementary Fig. S1). Both methods consistently
achieved mean F1 scores in the range of 0.65-0.70 on the
Levinel3 dataset and 0.81-0.84 on the Levine32 dataset for a
wide range of reasonable parameter settings. In the tests, nei-
ther algorithm showed a significantly better resulting mean F1
score.

The benchmark of implementation scalability was performed as
follows: a randomly generated dataset was distributed among
the available computation nodes (workers) so that all CPUs are
assigned an equal amount of data. For the benchmark, node
counts as powers of 2 up to 256 have been chosen while the
numbers of dataset parameters were chosen from multiples of

https://scicrunch.org/resolver/RRID:SCR_001905
https://scicrunch.org/resolver/SCR_016557
https://scicrunch.org/resolver/SCR_008633
https://scicrunch.org/resources/Tools/record/nlx_144509-1/SCR_016899/resolver

Clustering comparison
GigaSOM mean(F1)=0.8347

Pro B [|
Pre B [|
Plasma B 4 [|
pDCs 1 [|
Monocytes 1 []
Mature B 1 []
CD8 T B
CD4 T+ []
CD34+CD38lo HSCs 1 []
CD34+CD38+CD123+ HSPCs 1 [|
CD34+CD38+CD123- HSPCs | [|
CD16+ NK 1 []
cpie-NK{ [l
Basophils { [l

Assigned clusters

Figure 2 Comparison of GigaSOM.jl results with manual gating of the Levine32
dataset. The confusion matrix is normalized in rows, showing the ratio of cells
in each aggregate of GigaSOM-originating clusters that matches the cell types
from manual analysis. Darker color represents better match. The mean F1 score
is comparable to FlowSOM. A more comprehensive comparison is available in
Supplementary Fig. S1.

10 up to 50. The size of the dataset slice for a single node var-
ied between 100,000, 200,000, and 300,000 cells to verify the im-
pact of data density in cluster. The dataset was then processed
by the SOM training algorithm for SOM sizes 10 x 10, 20 x
20, and 40 x 40. The resulting SOMs were used for classifying
the dataset into clusters (each input data point was assigned
to a cluster defined by the nearest neighbor). An embedded
view of the data was produced with the Julia implementation of
EmbedSOM. All algorithms were also tested in variants where
the naive search for nearest neighbors (or k-neighborhoods
in the case of EmbedSOM) was replaced by utilization of a
spatial-indexing data structure, in particular by the kd-trees and
ball-trees.

The scalability results are summarized in Fig. 3: all 3 im-
plemented algorithms scale almost linearly with the dataset
size, the size of the SOM, and the dimension of the dataset.
They reach an almost linear speedup with added compute ca-
pacity. In the case of SOM training, the required communi-
cation among the nodes caused only a negligible overhead,;
the majority of the computation pauses was caused by the
random variance in execution time of computation steps on
the nodes. The parallelized classification and embedding al-
gorithms were not impaired by any communication overhead.
Detailed benchmark results that show precise energy require-
ments of the training per processed data point, useful for de-
ployment in large environments, are available in Supplementary
Fig. S2.

Influence of the spatial indexing on the speed of various
operations was collected as relative speedups (or slowdowns)
when compared to a naive search. The results are displayed
in Fig. 4. We have observed that both kd-trees and ball-trees were
able to accelerate some operations by a factor >2x, but the use
of spatial indexing was hindered by many trade-offs that often
caused decreased performance.

Most importantly, the cost of building the index often sur-
passed the total cost of neighborhood lookups by the naive
method, which is most easily observable on the measure-
ments of ball-tree performance with smaller SOM sizes. Both
trees struggled to provide sufficient speedup in the presence of
higher-dimensionality overhead (>30) and had only negligible

impact on the execution time of EmbedSOM computation, which
was dominated by other operations.

On the other hand, it was easily possible to gain speedups
~1.5x for SOM training in most tests with lower dimension and
large SOM, reaching 2.7x for a 20-dimensional dataset (typical
for current flow cytometry) processed with large 40 x 40 SOM.
From the results, it seems appropriate to use the spatial indexing
when the cost of other operations outweighs the cost of building
the index, and the dimensionality overhead does not impede the
efficiency of indexed lookup—in particular when training large
SOMs of dimensionality <~30, and when data occupancy per
node is sufficiently high. Detailed measurements for all SOM
sizes and dataset dimensions are available in Supplementary
Fig. S3.

To showcase the GigaSOM.jl functionality on a realistic dataset,
we have used a large dataset from the IMPC phenotyping ef-
fort [33] that contains measurements of mouse spleens by
a standardized T-cell targeting panel, with individual cohorts
containing genetically modified animals (typically a single-
gene knockout) and controls; total 2,905 samples contain
1,167,129,317 individual cells. (The dataset is available from
FlowRepository under the accession ID FR-FCM-ZYX9.)

The dataset was intentionally prepared by a very sim-
ple process—cell expressions were compensated, fluorescent
marker expressions were transformed by the common asinh
transformation with co-factor 500, and all dataset columns were
scaled to u = 0 and o = 1. The resulting data were used to train
a 32 x 32 SOM, which was in turn used to produce the embed-
ding of the dataset (with EmbedSOM parameter k = 16), which
was rasterized. The final result can be observed in Fig. 5. The
detailed workflow is shown in Supplementary Listing S1.

Notably, on a relatively small 256-core computer cluster (total
11 server nodes within a larger cluster managed by Slurm), the
whole operation, consisting of Julia initialization, data loading
(82.6 GB of FCS files), SOM training for 30 epochs, embedding,
and export of embedded data (17.4 GB), took slightly <25 min-
utes and consumed at most 3 GB of RAM per core. From that,
each epoch of the parallelized SOM training took ~25 seconds,
and the computation of EmbedSOM visualization took 3 min-
utes. Distributed plotting of the result was performed using the
GigaScatter.jl package; the parallel rasterization and combina-
tion of partial rasters took slightly >4 minutes.

In this article, we presented the functionality of GigaSOM.jl, a
new, highly scalable toolkit for analyzing cytometry data with
algorithms derived from SOMs. The results conclusively show
that GigaSOM.jl will support the growing demand for process-
ing of huge datasets, and bolster the utilization of the HPC hard-
ware resources that are becoming widely available for laborato-
ries and universities.

The ability to process a gigascale dataset to a comprehen-
sible embedding and precise, easily scrutinizable statistics in
mere minutes may play a crucial role in both design and analysis
methods of future cytometry experiments. We believe that the
accessible and flexible nature of the GigaSOM.jl implementation
in the Julia programming language will also drive a transforma-
tion of other tools in the ecosystem towards the support of big
data processing paradigms.

6 | GigaSOM.jl: Clustering and visualization of huge cytometry datasets

Distributed processing speed by SOM size (30 dimensions)

SOM size 10x10 SOM - 20x20 SOM - 40x40 SOM
SOM training SOM classification EmbedSOM

100 Mc/s 4
©
@ .
S 10 Mofs .
2]
o
% 1 Mc/s A
%]
@
o
O 100 kc/s
S
S
[B
3 10 ke/s 2

1 10 100 1 10 100 1 10 100
allocated CPUs
Distributed processing speed by data dimension (20x20 SOM)
10 dimensions — 20 dimensions - 30 dimensions - 40 dimensions - 50 dimensions
SOM training SOM classification EmbedSOM
°
@
&8 10 Mc/s 1
2]
o
c
‘@ 1 Mc/s A
[%]
®
3
S 100 ke/s A
ol
©
O 10kesq 3
1 10 100 1 10 100 1 10 100

allocated CPUs

Figure 3 Performance dependency of distributed algorithms in GigaSOM on data dimensionality, SOM size, and number of available workers. Data processing perfor-

mance is displayed as normalized to median speed in cells per second (c/s).

Speedups from spatial indexing structures
® SOMtraining ® SOM classification ® EmbedSOM

20 dimensions 40 dimensions

: (=)
o 0.7x 1 g =
T
‘® 0.5x 1
ke
£
E 3x{
o S
= i
°
3 . IS
3 <
n B
S
e %)
1x — e
0.5x ;

2I>< 0.:5x 0.I7x 1x
Speedup with kd-trees

0.7x 1x

Figure 4 Effect of data-indexing structures on GigaSOM performance. The plot-
ted points show relative speedup of the algorithms utilizing kd-trees (hori-
zontal axis) and ball-trees (vertical axis) compared with brute-force neighbor
search. Baseline (1x speedup) is highlighted by thick grid lines—a point plotted
in the upper right quadrant represents a benchmark measurement that showed
speedup for both kd-trees and ball-trees, upper left quadrant contains bench-
mark results where ball-trees provided speedup and kd-trees slowed the com-
putation down, etc.

Figure 5 Raw IMPC Spleen T-cell dataset, processed by GigaSOM.jl and embed-
ded by the Julia implementation of EmbedSOM. The figure shows an aggregate of
1,167,129,317 individual cells. Expression of 3 main markers is displayed in com-
bination as mixed colors: CD8 in red, CD4 in green, and CD161 in blue. A more
detailed, annotated version of the visualization is available in Supplementary
Fig. S4.

The resulting software is publicly available as a Julia package.
The interoperability with the Julia ecosystem allows GigaSOM.jl
to benefit from many other available scientific computing pack-
ages, which simplifies its deployment not only in cytometry but
also in other areas of research that use SOMs to extract informa-
tion from large datasets.

All software is available under https://doi.org/10.17881/lcsb.z5vy
-fa7s.

* Package name: GigaSOM.jl

* Package home page: https:/git.io/GigaSOM.jl

® Operating system(s): Portable to all Julia-supported platforms
® Programming language: Julia

* License: Apache License v2.0

* Julia package registry name: GigaSOM

* bio.tools ID: biotools:GigaSOM. j1

¢ RRID:SCR-019020

All supporting data and materials are available in the GigaScience
GigaDB database [34].

CPU: central processing unit; FCS: Flow Cytometry Standard,
GPU: graphics processing unit; HPC: high-performance comput-
ing; IMPC: International Mouse Phenotyping Consortium; MPI:
Message Passing Interface; RAM: random access memory; SIMD:
single instruction, multiple data; SOM: self-organizing map; t-
SNE: t-distributed stochastic neighbor embedding; UMAP: Uni-
form Manifold Approximation and Projection.

The authors declare that they have no competing interests.

M.K. and J.V. were supported by ELIXIR CZ LM2018131 (MEYS).

This work was supported by the Luxembourg National Re-
search Fund (FNR) through the FNR AFR-RIKEN bilateral program
(TregBar 2015/11228353) to M.O., and the FNR PRIDE Doctoral
Training Unit program (PRIDE/11012546/NEXTIMMUNE) to V.V.,
R.S., and M.O.

Funding for open access publication was provided by the In-
stitute of Organic Chemistry and Biochemistry of the CAS (RVO:
61388963).

The Responsible and Reproducible Research (R3) team of the
Luxembourg Centre for Systems Biomedicine is acknowledged
for supporting the project and promoting reproducible research.

The experiments presented in this article were carried out
using the HPC facilities of the University of Luxembourg [35] (see
https://hpc.uni.lu).

The project was supported by Staff Exchange programme of
ELIXIR, the European life-sciences infrastructure.

Conceptualization: O.H., L.H., C.T. Formal analysis, investiga-
tion, methodology: O.H., M.K., L.H. Software: O.H., M.K., L.H., V.V.

Funding acquisition, supervision: J.V.,, V.P.S, R.S,, C.T., M.O. Vali-
dation: O.H., M.K. Visualization: M.K. Writing: O.H., M.K. All au-
thors participated in reviewing, editing, and finalization of the
manuscript.

1. Bandura DR, Baranov VI, Ornatsky OI, et al. Mass cytometry:
technique for real time single cell multitarget immunoas-
say based on inductively coupled plasma time-of-flight mass
spectrometry. Anal Chem 2009;81(16):6813-22.

2. Jaitin DA, Kenigsberg E, Keren-Shaul H, et al. Massively par-
allel single-cell RNA-Seq for marker-free decomposition of
tissues into cell types. Science 2014;343(6172):776-79.

3. Schmutz S, Valente M, Cumano A, et al. Spectral cytom-
etry has unique properties allowing multicolor analysis
of cell suspensions isolated from solid tissues. PLoS One
2016;11(8):e0159961.

4. Mair F, Hartmann FJ, Mrdjen D, et al. The end of gating? An
introduction to automated analysis of high dimensional cy-
tometry data. Eur] Immunol 2016;46(1):34-43.

5. Arvaniti E, Claassen M. Sensitive detection of rare disease-
associated cell subsets via representation learning. Nat
Commun 2017;8(1):1-10.

6. Bruggner RV, Bodenmiller B, Dill DL, et al. Automated identi-
fication of stratifying signatures in cellular subpopulations.
Proc Natl Acad Sci U S A 2014;111(26):E2770-7.

7. Qiu P, Simonds EF, Bendall SC, et al. Extracting a Cellular Hi-
erarchy from High-dimensional Cytometry Data with SPADE.
Nat Biotechnol 2011;29(10):886-91.

8. Lun ATL, Richard AC, Marioni JC. Testing for differen-
tial abundance in mass cytometry data. Nat Methods
2017;14(7):707-9.

9. vanGassen S, Callebaut B, Helden MJV, et al. FlowSOM: Using
self-organizing maps for visualization and interpretation of
cytometry data. Cytometry Part A 2015;87(7):636-45.

10. Kohonen T. Essentials of the self-organizing map. Neural
Netw 2013;37:52-65.

11. Caruana R, Elhawary M, Nguyen N, et al. Meta Clustering.
In: Sixth International Conference on Data Mining (ICDM’06);
2006:107-18.

12. Weber LM, Robinson MD. Comparison of clustering methods
for high-dimensional single-cell flow and mass cytometry
data. Cytometry Part A 2016;89(12):1084-96. https://onlineli
brary.wiley.com/doi/abs/10.1002/cyto.a.23030.

13. Chen TJ, Kotecha N. Cytobank: Providing an analytics plat-
form for community cytometry data analysis and collabora-
tion, Fienberg HG, Nolan P . In: High-Dimensional Single Cell
Analysis. Berlin, Heidelberg: Springer; 2014:127-57.

14. Bezanson], Edelman A, Karpinski S, Shah VB, Julia: A
fresh approach to numerical computing, SIAM review
2017;59(1):65-98, SIAM.

15. Kratochvil M, Koladiya A, Vondrasek J. Generalized Embed-
SOM on quadtree-structured self-organizing maps. F1000Res
2019;8:2120.

16. Kohonen T. Self-organized formation of topologically correct
feature maps. Biological Cybernetics 1982;43(1):59-69. http:
//link.springer.com/10.1007/BF00337288.

17. Cheng Y. Convergence and Ordering of Kohonen’s Batch
Map. Neural Comput 1997;9(8):1667-76.

18. Sul §J, Tovchigrechko A. Parallelizing BLAST and SOM Al-
gorithms with MapReduce-MPI Library. In: 2011 IEEE Inter-
national Symposium on Parallel and Distributed Process-

https://doi.org/10.17881/lcsb.z5vy-fa75
https://git.io/GigaSOM.jl
https://scicrunch.org/scicrunch/Resources/record/nlx_144509-1/SCR_019020/resolver
http://doi.org/10.5524/100810
https://hpc.uni.lu
https://onlinelibrary.wiley.com/doi/abs/10.1002/cyto.a.23030
http://link.springer.com/10.1007/BF00337288

19.

20.

21.

22.

23.

24.

25.

26.

ing Workshops and Phd Forum Anchorage, AK, USA: IEEE;
2011:481-9. http://ieeexplore.ieee.org/document/6008868/.
Liu Y, Sun J, Yao Q, et al. A Scalable Heterogeneous Parallel
SOM Based on MPI/CUDA. In: Asian Conference on Machine
Learning; 2018. p. 264-279. http://proceedings.mlr.press/v95/
liu18b.html.

Sarazin T, Azzag H, Lebbah M. SOM Clustering Using Spark-
MapReduce. In: 2014 IEEE International Parallel and Dis-
tributed Processing Symposium Workshops Phoenix, AZ,
USA: IEEE; 2014. p. 1727-1734. http://ieeexplore.ieee.org/docu
ment/6969583/.

Dean J, Ghemawat S. MapReduce: simplified data processing
on large clusters. Commun ACM 2008;51(1):107-13.

Collange S, Defour D, Graillat S, et al. Numerical reproducibil-
ity for the parallel reduction on multi- and many-core archi-
tectures. Parallel Comput 2015;49:83-97.

Gropp W, Lusk E, Doss N, et al. A high-performance, portable
implementation of the MPI message passing interface stan-
dard. Parallel Comput 1996;22(6):789-828.

IThaka R, Gentleman R. R: A language for data anal-
ysis and graphics. J Comput Graph Stat 1996;5(3):
299-314.

Wegener D, Sengstag T, Sfakianakis S, et al. GridR:
An R-based tool for scientific data analysis in grid en-
vironments. Future Generation Comput Syst 2009;25(4):
481-8.

Zaharia M, Xin RS, Wendell P, et al. Apache Spark: a
unified engine for big data processing. Commun ACM
2016;59(11):56-65.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Rocklin M. Dask: Parallel Computation with Blocked al-
gorithms and Task Scheduling. Austin, Texas; 2015:126—
32. https://conference.scipy.org/proceedings/scipy2015/mat
thew_rocklin.html.

Harris CR, Millman KJ, van der Walt SJ, et al. Array program-
ming with NumPy. Nature 2020;585(7825):357-62.

Bentley JL. Multidimensional binary search trees used

for associative searching. Commun ACM 1975;18(9):
509-17.
Omohundro SM. Five Balltree Construction Algorithms. Int

Comput Sci Inst 1989; 22.

Maaten Lvd, Hinton G. Visualizing Data using t-SNE.] Mach
Learn Res 2008;9(Nov):2579-605.

Mclnnes L, Healy J, Saul N, Grossberger L, UMAP: Uniform
Manifold Approximation and Projection, Journal of Open
Source Software 2018;3(29):861.

Brown SDM, Moore MW. The International Mouse Phenotyp-
ing Consortium: past and future perspectives on mouse phe-
notyping. Mammalian Genome 2012;23(9-10):632-40. http:
//link.springer.com/10.1007/s00335-012-9427-x.

Kratochvil M, Hunewald O, Heirendt L, et al. Supporting data
for “GigaSOM.jl: High-performance clustering and visual-
ization of huge cytometry datasets”. GigaScience Database
2020. http://dx.doi.org/10.5524/100810.

Varrette S, Bouvry P, Cartiaux H, et al. Management of an
academic HPC cluster: The UL experience. In: 2014 Interna-
tional Conference on High Performance Computing and Sim-
ulation (HPCS) Bologna, Italy: IEEE; 2014. p. 959-967. http:
//ieeexplore.ieee.org/document/6903792/.

http://ieeexplore.ieee.org/document/6008868/
http://proceedings.mlr.press/v95/liu18b.html
http://ieeexplore.ieee.org/document/6969583/
https://conference.scipy.org/proceedings/scipy2015/matthew_rocklin.html
http://link.springer.com/10.1007/s00335-012-9427-x
http://dx.doi.org/10.5524/100810
http://ieeexplore.ieee.org/document/6903792/

