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Abstract: This paper provides an overview on steered fermentation processes to release 

phenolic compounds from plant-based matrices, as well as on their potential application to 

convert phenolic compounds into unique metabolites. The ability of fermentation to improve 

the yield and to change the profile of phenolic compounds is mainly due to the release of 

bound phenolic compounds, as a consequence of the degradation of the cell wall structure 

by microbial enzymes produced during fermentation. Moreover, the microbial metabolism 

of phenolic compounds results in a large array of new metabolites through different 

bioconversion pathways such as glycosylation, deglycosylation, ring cleavage, methylation, 

glucuronidation and sulfate conjugation, depending on the microbial strains and substrates 

used. A whole range of metabolites is produced, however metabolic pathways related to  

the formation and bioactivities, and often quantification of the metabolites are highly 

underinvestigated. This strategy could have potential to produce extracts with a high-added 

value from plant-based matrices.  
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1. Introduction 

Phenolic compounds are secondary metabolites produced in plants by the shikimic acid pathway. 

They consist of a variety of structures divided into a number of main groups including phenolic acids, 

flavonoids, lignans and stilbenes depending on the number of benzene rings as well as on their structure 

of the carbon skeleton [1]. Among these, flavonoids are the most widespread group of phenolic 

compounds and are further divided into different subclasses i.e., chalcones, flavonols, flavones, 

flavanones, flavanols, isoflavones and anthocyanins, based on various substitution patterns on rings A 

and B as well as variations in ring C. The second most popular group of phenolic compounds are phenolic 

acids, which can be divided into two categories: hydroxybenzoic acids and hydroxycinnamic acids. The 

most common hydroxybenzoic acids are gallic acid, salicylic acid, vanillic acid, protocatechuic acid and 

p-hydroxybenzoic acid, while p-coumaric acid, caffeic acid, sinapic acid and ferulic acid are the best 

known hydroxycinnamic acids [2,3]. 

There are several methods including physical, physicochemical and chemical techniques to extract 

phenolic compounds from plant and food products such as cold pressing, supercritical fluid extraction 

and organic solvent extraction [4], ultrasound-assisted extraction [5] and microwave-assisted extraction [6]. 

The disadvantage of these techniques is their low extraction yield of bound phenolic compounds, as 

these are mostly linked to plant cell wall material through a –OH group (O-glycosides) or carbon-carbon 

bonds (C-glycosides) [7]. As a consequence, the application of a hydrolysis step prior to conventional 

extraction could be used to maximize the extraction yield. Among these, enzymatic treatments and/or 

fermentation are preferred instead of the utilization of chemical pretreatments (acids or alkaline) as the 

latter results in hazards and toxicological effects due to the use of chemical products, in negative effects 

on the environment, and of unwanted transformations of the extracted compounds [8]. 

It has already been demonstrated that phenolic compounds have a wide range of bioactivities including 

antioxidative, anticarcinogenic, anti-inflammatory properties which are mostly related to the potential 

health-promoting benefits against human health risks such as hypertension, obesity, cardiovascular 

diseases, diabetes and cancer [9–11]. Recently, more and more evidence is available indicating that the 

different classes and structures of phenolic compounds result in considerable variations in their 

bioactivities, bioaccessibility, bioavailability as well as their metabolism in the human gastrointestinal 

system [1]. Heim et al. [12] reported that the phenolic aglycones have a higher antioxidative activity 

than their glycosides. Aglycones can be effectively absorbed through the small intestine, while the 

glycosidic forms, due to their complex structures and large molecular weights, reach the large  

intestine and are metabolized by human gut microbiota into different more simplified metabolites, which 

can be later absorbed [1,13,14]. Currently, phase I/II metabolites of phenolic compounds such as 

deglucosides [15–17], sulfoconjugates [18,19] and glucuronides [20], can be obtained by a fermentation 

process. It is therefore interesting to use bacterial or fungal fermentation processes, which not only 

enhance the release of bound phenolic compounds from the plant cell walls, but also convert phenolic 

compounds into different metabolites, which can exert other bioactivities. In this paper, release of 
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phenolic compounds indicates the phenolic compounds obtained in a soluble free form in the fermentation 

medium. This contributes to the production of extracts and food products with a high added value. 

Although several reviews are available dealing with different aspects of phenolic compounds [3,7,21–23], 

as far as we now there is no review focusing on microbial conversion of phenolic compounds into new 

metabolites by a steered fermentation process, i.e., by a controlled fermentation process adding a pure 

microbial strain. The aim of this paper is thus to provide an overview of the profile in phenolic 

compounds and their metabolites obtained by microbial fermentation from plant material with the final 

aim to obtain (purified) extracts rich in phenolic compounds. The microbial fermentation processes 

which occur during digestion fall outside the scope of this paper. The effect of microorganisms (bacteria, 

yeast and fungi) used in fermentation processes to release phenolic compounds from plant matrices in 

the fermentation media as well as the possible metabolic pathways of flavonoids (glycosylation, 

deglycosylation, ring cleavage, methylation, glucuronidation, and sulfate conjugation) to new conversion 

products are summarized and discussed. 

2. The Release of Phenolic Compounds from Plant Matrices by Fermentation Processes 

Phenolic compounds present in plants can be classified into free phenolic compounds found in the 

vacuoles of plant cells, and bound phenolic compounds linked to cell wall structure components 

(cellulose, hemicellulose, lignin, pectin and protein) through several covalent bounds [24–26]. Free 

phenolic compounds can be effectively extracted by conventional techniques, while several hydrolysis 

processes have been used to enhance the release of bound phenolics. Fermentation has been considered 

as one of the best processes to obtain extracts with a high quality and a high activity, using economically 

and environmental friendly techniques [3]. 

Several studies reported that fermentation influences the phenolic profile of extracts obtained from 

various plant sources or during the fermentation of plant sources. Table 1 summarizes the published papers 

between 2000 and 2014, available on the Web of Science, including the phenolic profile changes, only 

measured by chromatographic techniques, and obtained by a steered fermentation process (no spontaneous 

or natural fermentations). Vattem et al. [27,28] have found that solid-state fermentation of cranberry 

pomace using a food-grade fungus Lentinus edodes resulted in a maximum of a 49% increase in ellagic 

acid content after five days of incubation. Another study demonstrated that the phenolic acid profile in 

an ethanolic extract from oat fermented by three different filamentous fungi (Aspergillus oryzae var. 

effuses, Aspergillus oryzae and Aspergillus niger) at 25 °C for three days was remarkably improved in 

comparison with non-fermented oat [29]. Indeed, the study showed that fermentation of oat using 

Aspergillus oryzae var. effuses or Aspergillus oryzae increased the content of caffeic acid and ferulic 

acid in oat (Avena sativa L.) up to about 2.7- to three-fold and 5.5- to nine-fold, respectively, when 

compared to native oat. Fermentation with Aspergillus oryzae var. effuses also resulted in a more than 100% 

increase of chlorogenic and p-coumaric acids. In a recent study, Schmidt et al. [30] investigated the effect 

of solid-state fermentation by Rhizopus oryzae on the profile of phenolic acids derived from rice bran. 

The content of chlorogenic acid, p-hydroxybenzoic acid and vanillin significantly increased during 

fermentation. According to these authors, an incubation for 120 h at 30 °C with Rhizopus oryzae led to 

the most substantial increase in gallic acid and ferulic acid content, ranging from 3 and 33 mg/g dried 

weight in native bran to 155 and 765 mg/g dried weight in fermented bran, respectively. 
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Table 1. The effect of microbial fermentation on the increase in phenolic compounds from various plant-based foods.  

Microorganism Source Phenolic profile Reference 

Bacteria    

Bacillus pumilus Soybean Gallic acid, catechin, epicatechin [31] 
Bacillus subtilis Soybean Chlorogenic acid, naringin [32] 
Bacillus subtilis Cheonggukjang (soybean paste) Daidzein, genistein [33,34] 
Lactobacillus acidophilus Apple juice Gallic acid [35] 

Lactobacillus johnsonii, Lactobacillus reuteri, 
Lactobacillus acidophilus 

Whole grain barley, oat groat Sinapic acid, caffeic acid, p-coumaric acid, ferulic acid [36] 

Lactobacillus plantarum Cowpeas Quercetin [37] 

Lactobacillus plantarum,  
Lactobacillus delbrueckii supsp. lactis 

Soybean Daidzein, genistein [38] 

Yeast    

Saccharomyces cerevisiae Wheat bran Syringic acid, p-coumaric acid, ferulic acid [39] 

Fungi    

Aspergillus oryzae, Monascus purpureus Soybean Daidzein, genistein [40–42] 

Aspergillus oryzae var. effuses,  
Aspergillus oryzae, Aspergillus niger 

Oat (Avena sativa L.) 
Chlorogenic acid, ferulic acid, p-coumaric acid,  
caffeic acid 

[29] 

Aspergillus oryzae Green tea 
Gallic acid, gallocatechin, epigallocatechin, epicatechin, 
3-p-coumaroylquinic acid, kaempferol-rutinoside 

[43] 

Lentinus edodes Cranberry pomace (Vaccinium acrocarpon) Ellagic acid [27,28] 

Rhizopus oryzae Rice bran 
Gallic acid, ferulic acid, p-hydroxybenzoic acid,  
caffeic acid, chlorogenic acid, vanillin 

[30] 

Rhizopus oligosporus, Rhizopus oryzae Black soybean Daidzein, genistein [44] 
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In addition to phenolic acids, the enhancement of the flavonoid content has also been observed in 

recent studies. Soybeans incubated with Aspergillus oryzae at 30 °C for 48 h resulted in a 23-fold 

increase in genistein aglycones when compared to the content found in unfermented soybean flour [40]. 

The amount of these aglycones was also found to be higher in solid-state fermentations of soybean with 

Rhizopus sp. [44] and Monascus purpureus [41] compared to unfermented soybeans.  

Similar to filamentous fungus, different food-graded lactic acid bacteria (LAB) and Bacillus spp. have 

been evaluated for their potential to release phenolic acids as well as flavonoids from plant sources  

such as soybean [31,32], apple [35] and cereals [36]. The fermentation with Lactobacillus johnsonii, 

Lactobacillus reuteri and Lactobacillus acidophilus showed a 20-fold increase in the content of total 

free phenolic acids in both barley and oat flour, compared to the unfermented sample, with the largest 

increase observed for free ferulic acid up to 39–56 µg/g dried weight depending on the strains used, 

while the amount of this compound found in unfermented samples was around 1 µg/g dried weight [36]. 

This study also exhibited that fermentation with Lactobacillus johnsonii had a much higher effect on the 

release of free phenolic acids than the other strains. A similar effect on the release of bound phenolic 

compounds was observed. Fermentation of grain barley with three LAB strains resulted in a significant 

increase of ferulic acid and p-coumaric acid which contributed to an increase in total content of bound 

phenolic acids by around 23%, compared to native grain barley. Also, enhancing the release of phenolic 

acids and flavanols was reported in a recent study [31], showing 2.8-fold, 7.6-fold and 4.5-fold increases 

in gallic acid, catechin and epicatechin, respectively after 60 h of fermentation with Bacillus pumilus. 

Soybean seeds fermented with Bacillus subtilis for three days yielded an increase in chlorogenic acid 

and naringin [32].  

Not only fungi, LAB strains and Bacillus spp. have been used, but also yeast were screened for their 

improvement of the free phenolic profile. Moore et al. [39] reported that solid-state fermentation of 

wheat bran with Saccharomyces cerevisiae yielded a maximum increase of 48%, 51% and 333% in the 

content of soluble free p-coumaric, ferulic and syringic acid, respectively, compared to unfermented 

samples, while soluble vanillic acid decreased probably due to its conversion into other metabolites.  

However, a fermentation process does not exclusively increase all phenolic compounds. Also,  

a decrease in some components, e.g., deglycosylated, is observed, as they are metabolized into other 

forms having a lower toxicity towards microbial activity. Also type of microorganism, conditions of the 

fermentation process and fermentation time play a role herein [42,43,45]. 

The change in the profile of phenolic compounds by the fermentation process is due to the action  

of cellulolytic, ligninolytic and pectinolytic enzymes, mainly produced during the growth of the 

microorganisms, as described in Figure 1. An overview of possible enzymes involved in the release of 

phenolic compounds, by breaking down the cell wall matrix and produced by the fermentation 

microorganisms is given in Table 2. These enzymes are known to be capable of completely breaking 

down the chemical components of plant cell walls, resulting in the hydrolysis of the ester bonds, which 

link phenolic compounds to the cell wall matrix, and in the oxidative degradation of lignin.  

As a consequence, the free phenolic compounds as well as bound forms are released more efficiently 

from the plant matrix. Among these enzymes, β-glucosidase has been widely reported as an enzyme 

responsible for catalyzing the hydrolysis of glycosidic linkages in alkyl and aryl-β-D-glucosides to 

release phenolic aglycone moieties. Vattem et al. [27] demonstrated that the increased release of the 

aglycone form of ellagic acid from cranberry pomace could be attributed to crude β-glucosidase 
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produced, during solid-state fermentation by the food-grade fungi Lentinus edodes. Similarly, previous 

studies pointed out that esterases produced by filamentous fungi through solid-state fermentation of 

cereal sources, such as oat [29] and rice bran [30], caused an increase in the content of phenolic acids, 

such as ferulic acid, caffeic acid and p-coumaric acid. 

The changes in phenolic profile were observed as a result of microbial fermentation of plant-based 

matrices. This confirms that the fermentation of plant substrates, both edible parts as well as agricultural 

by-products and food waste, with different microorganisms, including filamentous fungi, lactic acid 

bacteria, yeast, could be considered as a potential process to increase the release of phenolic compounds 

contributing to the production of extracts and food products with an added value. 

Figure 1. A schematic diagram of the release and bioconversion of phenolic compounds.  

 

3. Microbial Metabolism of Flavonoids during Fermentation 

Various metabolic pathways of phenolic compounds by microbial fermentation are summarized in 

Figure 2. The studies dealing with the bioconversion of flavonoids into their metabolites by a controlled 

microbial fermentation are summarized in Table 3. However, it should be mentioned that not all of the 

studied microorganisms are food-graded ones. Besides, only wild-type microorganisms are included, 

possessing the characteristics to modify phenolic compounds. Although some recent studies are 

investigating genetically modified organisms to obtain higher conversion yields by expressing certain 

enzymes, these studies are not included in this paper. A more detailed discussion of the different 

processes is given below. 

 

Microorganism Source of phenolic compounds

Fermentation

Cell wall-degrading enzymes

Hydrolysis of glycosidic bond

Release of bound phenolics Production of aglycone form
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Table 2. Enzymes system produced by different microorganism strains to degrade the cell wall matrix. 

Microorganisms Species Enzymes References

Bacteria 

Lactobacillus lactis Esterase, decarboxylase [46] 
Lactobacillus plantarum β-Glucosidase, decarboxylase [46] 
Lactobacillus rhamnosus Cellulase, esterase, β-glucosidase [46,47] 

Bacillus cereus Cellulase, tannase [46] 
Bacillus subtilis Cellulase, β-glucanase [46] 

Bacillus thuringiensis Cellulase, tannase [46] 

Fungi 

Aspergillus awamori nakazawa Xylanase, α-L-arabinofuranosidase, feruloyl esterase [48,49] 
Aspergillus niger Cellulase, esterase, β-glucosidase, xylanase [46,48–50] 

Aspergillus oryzae  Cellulase, β-glucosidase, xylanase, pectinase [51] 
Lentinus edodes Cellulase, β-glucosidase, xylanase, manganese peroxidase, laccase [52,53] 

Penicillium brasilianum Feruoylesterase [54] 
Pleurotus ostreatus Laccase, α-/β-glucosidase [55,56] 

Rhizopus oligosporus β-glucosidase, β-glucuronidase, xylanase [57–59] 
Phanerochaete chrysosporium β-Glucosidase, lignin peroxidases, manganese peroxidase, laccase [60] 

Rhizopus oryzae β-glucosidase, tannase, pectinase [24] 

Yeast 

Crytococcus flavus β-glucosidase, β-glucanase, esterase, xylanase  [46] 
Rhodotorula glutimis β-Glucosidase [46] 

Sacharomyces cerevisiae β-Glucosidase, feruoylesterase [46,61] 
Wickerhamomyces anomalus β-Glucosidase, esterase [62] 
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Table 3. Microbial metabolism of flavonoids through fermentation process. 

Substrate Production Microorganism Reference 

Glycosylation    
Quercetin Isoquercetin (quercetin-3-glucoside) Bacillus cereus [63] 

Catechin 
Catechin 7-α-D-glucopyranoside Bacillus stearothermophilus [64] 
Catechin 5-α-D-glucopyranoside   

Luteolin 
Luteolin-3'-O-α-D-glucopyranoside Leuconostoc mesenteroides [65] 
Luteolin-4'-O-α-D-glucopyranoside   

Catechin Catechin-4'-β-D-fucopyranoside Aspergillus niger [64] 

Kaempferol 
Kaempferol 3-β-O-glucopyranoside Cunninghamella blakesleeana [66] 

Kaempferol 4'-O-α-L-rhamnopyranoside   
Kaempferol Kaempferol 3-β-O-glucopyranoside Cunninghamella echinulata [67] 

Flavonol Flavonol 3-β-O-glucopyranoside Cunninghamella echinulata [67] 
Quercetin Quercetin 3-O-β-D-glucopyranoside Cunninghamella elegans [68] 
Quercetin Quercetin glycoside Penicillium decumbens [69] 

Kaempferol Kaempferol glycoside Penicillium decumbens [69] 
Isorhamnetin Isorhamnetin glycoside Penicillium decumbens [69] 

Deglycosylation    
Daidzin Daidzein Bacillus pumilus [31] 
Daidzin Daidzein Bacillus subtilis [33] 

Kaempferol-3-O-glucoside Kaempferol Bifidobacterium pseudocatenulatum [70] 
Naringin Prunin Clostridium stercorarium [71] 

Quercetin-glucoside Quercetin Lactobacillus plantarum [72] 
Ploridzin Phloretin Lactobacillus plantarum [72] 

Kaempferol-3-rutinoside Kaempferol, kaempferol-3-glucoside Aspergillus awamori [17] 
Rutin Quercetin, quercetin-3-O-glucoside Aspergillus awamori [17] 
Rutin Quercetin, quercetin-3-O-glucoside Aspergillus niger [73] 

Daidzin, glycitin, genistin Daidzein, glycitein, genistein Aspergillus oryzae [15] 
Narigin Naringenin Curvularia lunata [74] 

Ring cleavage    
Quercetin 2-Protocatechuoylphloroglucinol carboxylic acid Aspergillus flavus [2] 
Flavanone 2'-Hydroxydibenzoylmethane Aspergillus niger [2] 
Quercetin 2-Protocatechuoylphloroglucinol carboxylic acid Asperillus niger [75] 
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Table 3. Cont. 

Substrate Production Microorganism Reference 

Ring cleavage    

Flavanone 
2'-Hydroxychalcone; 2',4-hydroxydihydrochalcone Gibberella fujikuroi [76] 

2,4-Dihydroxychalcone    

Flavanone 
2',3'',4''-Trihydroxydihydrochalcone Penicillium chrysogenum [2] 

2'-Hydroxydihydrochalcone   

Methylation    
Quercetin 3'-O-methylquercetin Beauveria sp. [77] 
Quercetin Methylquercetin Beauveria bassiana [78] 

Rutin Methylrutin Cunninghamella echinulata [78] 
Quercetin 3-O-β-D-glucopyranoside Isorhamnetin 3-O-β-D-glucopyranoside  Cunninghamella elegans [68] 

7-Hydroxyflavanone 7-Methoxyflavanone Penicillium chermesinum [79] 
 3',4'-Dihydroxy-7-methoxyflavanone   

Glucuronidation    
Quercetin Quercetin glucuronide Beauveria bassiana [78] 

Rutin Rutin glucuronide  Cunninghamella echinulata [78] 

Quercetin 

Quercetin-4'-O-β-D-glucuronide Streptomyces sp. [20] 
Quercetin-3'-O-β-D-glucuronide   
Quercetin-3-O-β-D-glucuronide   
Quercetin-7-O-β-D-glucuronide    

Rutin 
Quercetin-4'-O-β-D-glucuronide Streptomyces sp. [20] 
Quercetin-3-O-β-D-glucuronide   

Naringenin 
Quercetin-7-O-β-D-glucuronide   

Naringenin-7-O-β-D-glucuronide Streptomyces sp. [20] 
Naringenin-4'-O-β-D-glucuronide   

Sulfate conjugation    
Kaempferol Kaempferol-4'-sulfate Cunninghamella blakesleeana [66] 

Rutin Rutin sulfate Cunninghamella echinulata [78] 
Hesperitin Hesperetin-7-sulfate  Mucor ramannianus [80] 

5-Hydroxyflavone 5,4'-Dihydroxyflavone-4'-sulfate  Streptomyces fulvissimus [2] 
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Figure 2. A schematic diagram of microbial conversion of phenolic compounds.  

 

3.1. Glycosylation and Deglycosylation of Flavonoids 

3.1.1. Glycosylation of Flavonoids 

Glycosylation is the reaction in the biosynthesis of phenolic compounds whereby an activated 

glycosyl donor is attached to a phenolic aglycone through linkage to hydroxyl groups. This reaction 

could be performed by glycosyltransferases, resulting in a higher hydrophilic solubility of these, mainly 

lipophilic compounds. The glycosylation process could be applied to enhance the stabilization, 

detoxification and solubilization of the substrates [67]. Some microorganisms such as Bacillus cereus, 

Streptomyces rimosus, Cunninghamella elegans and Cunninghamella echinulata are known to be 

capable of glycosylating phenolic compounds [63,67,68,81]. Quercetin can be converted into 

isoquercetin (quercetin-3-glucoside) with a 20% bioconversion yield using a fermentation process with 

Bacillus cereus at 30 °C [63]. As reported by Zi et al. [68], incubation of quercetin with Cunninghamella 

elegans ATCC9245 yielded quercetin-3-O-β-D-glucopyranoside. Similar to quercetin, kaempferol was  

glycosylated by the filamentous fungus Cunninghamella echinulata [67]. According to Slana et al. [82],  

under conditions whereby flavonoids are toxic, e.g., when they are present in high concentrations, 

microorganisms such as fungi could produce glycosylating enzymes (glycosyltransferase) transforming 

the phenolic compounds into less toxic metabolites. Not only glycolysltransferases but also other  

enzymes can be involved in the glycosylation of phenolic compounds, as it was shown e.g., for  

glucansucrase of Leuconostoc mesenteroides acting on luteolin, quercetin and myricetin [65],  

cellulase of Penicillium decumbrens on quercetin [69], cellulase of Aspergillus niger on catechin [64], 

or α-amylase of Bacillus sp. on catechin [64]. 
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3.1.2. Deglycosylation of Flavonoids  

In contrast to glycosylation, many studies indicated that deglycosilation of phenolic compounds  

could be performed through microbial fermentation due to glycosyl hydrolase activities, such as  

β-glucosidase [28,52], naringinase [74], α-rhamnosidase and hesperidinase [17]. Park et al. [83] reported 

that glucose moieties attached to flavonoids at the C3 and C7 positions can be a substrate for  

β-glucosidase [EC 3.2.1.21]. This enzyme is well known for its deglycosylation capability by 

hydrolyzing the β-1,4 glycosidic bonds in aryl and alkyl β-D-glucosides as well as glycosides containing 

disaccharides and oligosaccharides [52,84]. Recently, several studies for increasing the concentration of 

isoflavone aglycones in soy products have been performed [15,31,70]. Cho et al. [31,33] reported that 

fermented soybeans with Bacillus pumilus HY1 or Bacillus subtilis CS90 for 48 h incubation resulted in 

the highest concentration of isoflavone aglycones (daidzein) and thus in a decrease in isoflavone 

glucosides. This finding was also reported by Lee et al. [15], who found that soybeans fermentation by 

Aspergillus oryzae KACC 40247 seemed to cause a significant increase in the amount of isoflavone 

aglycones including daidzein, glycitein and genistein. In general, the biotransformation of glycosidic 

flavonoids occurring in soybeans into their corresponding aglycones during fermentation was attributed 

to microbial β-glucosidase activity [15,31,33]. This enzyme could be considered as a possible reason  

for the deglycosylation of kaempferol-3-O-glucoside into kaempferol through fermentation with 

Bifidobacterium pseudocatenulatum B7003 [70] or Aspergillus awamori [17], quercetin-3-glucoside 

into quercetin by Aspergillus awamori [17].  

Another enzyme also produced by fungal fermentation is α-L-rhamnosidase [EC 3.2.1.40], which 

cleaves terminal α-L-rhamnose present in many natural glycosides such as naringin, rutin, quercitrin, 

hesperidin, diosgene, terpenyl glycosides [85]. For example, fermentation of rutin with food-grade 

Aspergillus niger for 4 h [73] or Aspergillus awamori for 4 days [17] resulted in transformation of rutin 

into (isoquercetin) quercetin-3-glucoside which could be attributed to α-L-rhamnosidase activity well 

known for its capability of removing one rhamnose moiety. Also some α-rhamnosidase activity was 

measured in different lactic acid bacteria, with the most positive strains belonging to Lactobacillus 

plantarum and able to release rhamnose units from hesperidin and rutin rhamnose metabolites [86]. 

3.2. Ring Cleavage of Flavonoids 

Many flavonoids undergo a ring-opening reaction in which their C-ring is split and chalcones  

along with hydroxylations at different C-positions are produced. As shown by Udupa et al. [76],  

a number of hydroxylated chalcone metabolites (2'-hydroxychalcone; 2',4-dihydroxydihydrochalcone; 

2',4-dihydroxychalcone) are produced when flavanone was incubated with the fungal strain,  

Gibberella fujikuroi. The ring fission of the heterocylic C-ring of flavanone is known to occur among 

several fungal species such as Aspergillus, Penicillium, Rhizopus, Monacus [2]. Incubation of unsubstituted 

flavanone with Aspergillus niger x172 yielded the chalcone products 2'-hydroxydibenzoylmethane and  

2',3'',4''-trihydroxydihydrochalcone [2]. Another strain, Penicillium chrysogenum cleaves the C-ring of 

flavanone into 2'-hydroxydihydrochalcone [2]. 

Similarly, biotransformation of quercetin to 2-protocatechuoylphloroglucinol carboxylic acid  

was observed by Das et al. [2], who indicated that the C-ring of quercetin was oxidized and  
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cleaved by the enzyme quercetinase produced by Aspergillus flavus. The cleavage of quercetin to  

2-protocatechuoylphloroglucinol carboxylic acid was also performed by flavonol 2,4-dioxygenase, an 

enzyme produce by Aspergillus niger DSM 821 [75].  

3.3. Methylation of Flavonoids 

O-Methylated flavonoids, known as xenobiotic transformation metabolites, is a common hepatic 

metabolite obtained by phase II reaction occurring in mammalians by O-methyl transferases [1]. 

However, some fungal species have been evaluated for their capability of methyl conjugation [68,77–79]. 

According to Eula Maria de et al. [77], some of Beauveria strains used in their study exhibited the  

ability to produce 3'-O-methylquercetin by incubation of quercetin at 29 °C for 72 h. Another flavonoid, 

rutin was also methylated into methylrutin by Cunninghamella echinulata [78]. The fermentation of  

7-hydroxyflavanone with Penicillum chermesinum 113 at 25 °C for six days resulted in two methylated 

products: 7-methoxyflavanone and 3',4'-dihydroxy-7-methoxyflavanone [79]. O-Methylation was also 

found in the transformation pathway of quercetin into isorhamnetin 3-O-β-D-glucopyranoside as 

reported by Zi et al. [68] using Cunninghamella elegans ATCC 9245 at 28 °C for 72 h. 

3.4. Glucuronidation of Flavonoids 

The use of metabolism of bioactive compounds with microorganisms to produce specific mammalian 

metabolites started a decade ago. A few microbial strains are known for their ability to produce flavonoid 

metabolites by glucuronidation such as Beauveria bassiana [78], Cunninghamella echinulata [78]  

and Streptomyces sp. [20]. Araújo et al. [78] reported that fermentation of quercetin and rutin with 

Beauveria bassiana and Cunninghamella echinulata respectively resulted in their corresponding 

glucuronide. Recently, a study has demonstrated that a fermentation process of several phenolic 

compounds (e.g., naringenin, rutin, quercetin) using a Streptomyces sp. can produce glucuronidated 

products [20]. According to these authors, quercetin incubated with a culture of Streptomyces M52104 

at 28 °C for 65 h resulted in several glucuronidated compounds including quercetin-4'-O-β-D-glucuronide, 

quercetin-3-O-β-D-glucuronide and quercetin-7-O-β-D-glucuronide. Similarly, both naringenin and 

naringenin-7-O-glucoside were also glucuronidated into naringenin-7-O-β-D-glucuronide and 

naringenin-4'-O-β-D-glucuronide by fermentation with Streptomyces M52104 at 28 °C for 65 h [20]. The 

microbial production of glucuronidates could be attributed to the detoxification pathways in which 

bioactive compounds are conjugated with glucuronic acid leading to an increased solubility and a higher 

molecular weight [20]. 

3.5. Sulfate Conjugation of Flavonoids 

Sulfate conjugation is a major pathway for the phase II metabolism of phenolic compounds in humans 

via the bile using arylsulphotransferase, originating from human colonic bacteria [1]. However, recent 

studies have shown that bioconversion of phenolic compounds into their sulfated conjugated form  

could also be performed by a few fungal strains including Cunninghamella echinulata [78],  

Cunninghamella blakesleeana [66], Streptomyces fulvissimus [2], and Mucor ramannianus [80].  

Rutin incubated with Cunninghamella echinulata induced rutin sulfate [78]. 5-Hydroxyflavone was 
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converted into 5,4'-dihydroxyflavone-4'-sulfate by Streptomyces fulvissimus [2]. Ibrahim et al. [66] 

reported that incubation of kaempferol with Cunninghamella blakesleeana (ATCC 8688A) led to the 

production of kaempferol-4'-sulfate. A similar result was observed by Herath et al. [80] indicating that 

Mucor ramannianus (ATCC 2628) was able to convert hesperitin into hesperetin-7-sulfate.  

4. Perspectives 

From the previous sections, it becomes clear that different microorganisms can produce a whole range 

of metabolites. To our view there will probably be many more conversion products formed in nature, 

than the ones we presented here, especially as we excluded natural fermentation processes in the 

discussion of this review. Natural fermentation processes contain an enormous diversity in microflora, 

often uncharacterized, but also the potential of these microorganisms towards the metabolism of 

secondary plant compounds are unknown. Even with controlled fermentation processes, using well-defined 

microorganisms, there is a lack of knowledge on the conversion potential of phenolic compounds. So, 

more studies in this area are needed to elucidate the microbial pathways of flavonoid conversion, 

identification of the metabolites, and bioactivity determinations. However research to answer these 

research gaps is often hampered by the lack of flavonoid standards in quantities large enough to carry out 

the fermentation experiments. Of course one could use well-defined plant extracts as sources of flavonoids 

in the fermentation processes, but it is known that additive, synergistic and antagonistic effects exist 

between phenolic compounds and thus would effect the conversions. A lot of studies have been done 

using plant extracts, however the extraction yield and profile of the phenolic compounds can differ 

between extraction batches due to the high variability of the phenolic compounds present in the raw  

plant material. Also a detailed identification and quantification of the phenolic compounds of these  

extracts are often lacking, although it is necessary information. Indeed analytical tools to identify and 

further quantify the metabolites becomes very specialized, but crucial to understanding the microbial 

metabolism of flavonoids. Furthermore, in depth insight in the reasons for the conversion of flavonoids 

by microorganisms is really needed. Some results point out that this conversion is a detoxification 

mechanism, but toxic levels and mechanisms of toxicity of the newly formed metabolites are unknown. 

This insight will allow us to go back to the microbial metabolic pathways, giving essential information 

needed for the development of genetically modified microorganisms overproducing specific metabolites. 

However, overproduction of metabolites is only relevant if these conversion products exert a (high and/or 

interesting) bioactivity. Several studies are done showing antioxidative and antimicrobial activity of the 

aglycone flavonoid form. Only few studies have dealt with their inhibitory effect on (digestive) enzymes, 

coloring effects, other health effects (e.g., antihypertensive, anticarcinogenic, anti-obesity), or their 

function as an herbicide or insecticide. However, studies evaluating the bioactivities of microbial 

flavonoid metabolites (e.g., sulfated compounds, hydroxylated compounds) are rare. Therefore, more 

studies dealing with this research gap can lead to the discovery of a huge potential of new bioactive 

natural compounds. 

5. Conclusions 

In summary, increased release of phenolic compounds in fermented plant-based foods is due to the 

action of cell wall-degrading enzymes produced through fermentation. In addition, microbial fermentation 
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can induce the bioconversion of flavonoids into their metabolites by different pathways including 

glycosylation, deglycosylation, ring cleavage, methylation, glucuronidation and sulfate conjugation 

according to microbial strains and substrates. Thus, microbial fermentation could be considered as a 

potential technology for releasing phenolic compounds from natural resources, as well as for producing 

new bioactive compounds. Although some fermentation processes are applied in the production of 

phenolic compounds, the yield of bioconversion is variable, depending on the fermentation parameters 

used (e.g., microorganisms, medium, temperature, pH) as well as due to differences in the plant matrix 

itself. Therefore, further research into optimal process is required. Also, there is still a lack of knowledge 

on the metabolic pathways as well as the relationship between specific metabolites and their 

corresponding bioactivity, bioaccessibility and bioavailability, which thus demands more research in  

this field. 
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