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A human stomach cancer cell line with acquired resistance to 5-fluorouracil (5-FU), NUGC-3/5FU/
L, has been found to possess reduced ability to convert 5-FU into active metabolites. We
attempted in vitro gene therapy for this 5-FU-resistant cell line. NUGC-3 and NUGC-3/5FU/L cells
were infected with recombinant adenovirus (Ad) containing Escherichia coli uracil phospho-
ribosyltransferase (UPRT) gene driven by CAG promoter (CA), AdCA-UPRT, and changes in
their 5-FU metabolism and sensitivity were investigated. Activities of orotate phosphoribosyltrans-
ferase increased from 10.2 and 1.56 (nmol/mg protein/30 min) in the uninfected cells of NUGC-3
and NUGC-3/5FU/L to 216 and 237, respectively, after the transfection of UPRT gene. The 5-FU
nucleotide level in the acid-insoluble fraction increased from 7.32 to 15.9 (pmol/mg protein) in
NUGC-3 cells on infection with AdCA-UPRT, and in NUGC-3/5FU/L cells it increased from 1.91
to 21.4. The 50% growth-inhibition concentration (IC50) was 12.7 µµµµmol/liter for NUGC-3 and
much higher than 100 µµµµmol/liter for NUGC-3/5FU/L, indicating over 8-fold resistance. NUGC-3/
5FU/L transfected with the UPRT gene showed very high sensitivity to 5-FU with an IC50 of 3.2
µµµµmol/liter. The high resistance in this metabolic activation-deficient cell line was thus completely
reversed by transduction of an exogenous gene coding for a 5-FU-anabolizing enzyme.
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It is widely known that 5-FU is effective against colo-
rectal, stomach, head and neck, breast and other cancers;
in particular it is the only drug useful for colorectal
cancer. However, its efficacy is often hampered by the
appearance of acquired resistance of tumor cells to 5-FU.
The biochemical mechanisms of 5-FU resistance in
human gastro-intestinal cancer cells which acquire resis-
tance during repeated in vitro exposure to this drug
include weaker inhibition of TS via decreased folyl-
polyglutamate synthetase expression,1, 2) TS gene amplifi-
cation,3, 4) and reduced activity of 5-FU-anabolizing
enzymes.5, 6) We also established 5-FU-resistant sublines

of three different human colon and stomach cancer cell
lines, and found that poor conversion of 5-FU into its
active metabolites due to reduced activity levels of
enzymes involved in pyrimidine nucleotide synthesis is a
major mechanism of resistance.7–9)

Reversal of drug resistance is an intriguing subject, and
several successful approaches, at least experimentally, have
been reported in the field of P-glycoprotein-associated mul-
tidrug resistance. However, few approaches to overcoming
resistance to 5-FU have been reported, probably due to dif-
ficulty in modulating 5-FU-activating enzyme activity.

In recent years, various approaches to gene therapy for
cancers have been reported.10) One major chemotherapeu-
tic approach is conversion of a nontoxic prodrug into a
toxic metabolite by the transfection of a so-called suicide
enzyme gene, and two combination modalities, herpes
simplex virus thymidine kinase with gancyclovir and E.
coli cytosine deaminase with 5-fluorocytosine, have been
widely tested. Studies on enhancing the sensitivity of
human tumor cells to ara-C by transfer of deoxycytidine
kinase gene have also been conducted.11, 12)

Very recently, we reported a novel approach for sensi-
tizing various human cancer cell lines to 5-FU by trans-
fection of the E. coli UPRT gene.13) This enzyme cor-
responds to OPRT in mammalian cells, and directly con-
verts 5-FU into FUMP in the presence of PRPP as a
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co-substrate. FUMP is further metabolized into two major
active metabolites, FdUMP and FUTP. In our previous
report, we demonstrated that adenovirus-mediated trans-
duction of the UPRT gene results in marked sensitization
of colon, gastric, liver, and pancreas cancer cells to low
concentrations of 5-FU.13) It remained to be determined
whether this gene therapy approach is also effective to
overcome the 5-FU resistance of cancer cells. In the
present study, we used a 5-FU-resistant subline of human
stomach cancer NUGC-3 cells, which are deficient in
metabolic activation of 5-FU due to relatively low activity
levels of uridine phosphorylase and kinase and OPRT
compared to the parent line,7) and infected these cells
with AdCA-UPRT in an attempt to reverse the 5-FU resis-
tance by introducing a transgene of a 5-FU-anabolizing
enzyme.

MATERIALS AND METHODS

Chemicals  [3H]5-FU (462.5 GBq/mmol) was purchased
from NEN Life Science Products (Wilmington, DE). MTT
was from Sigma Chemical Co. (St. Louis, MO). All other
chemicals were of analytical grade.
Cell lines  NUGC-3, a human stomach cancer cell line,
was obtained from Japanese Cancer Research Resources
Bank (Tokyo). Its 5-FU-resistant subline, NUGC-3/5-FU/
L, was established by repeated 5-day exposures of NUGC-
3 cells to stepwisely increasing concentrations of 5-FU, as
previously reported.7) Cells were cultured in RPMI 1640
(Nissui Pharmaceutical Co., Ltd., Tokyo) supplemented
with 10% fetal bovine serum (M. A. Bioproducts, Walkersville,
MD), 1% antibiotic antimycotic solution (Sigma) and 0.9
mg/ml amphotericin B (solubilized) (Sigma).
Adenovirus infection in vitro  The recombinant ade-
novirus containing the lacZ or UPRT gene driven by the
CAG promoter, AdCA-lacZ or AdCA-UPRT, was pre-
pared as described in our previous report.13) Infection was
performed by incubating cells with AdCA-lacZ or AdCA-
UPRT for 1 h and washing them with the complete cul-
ture medium.
Assays for ββββ-gal  Cells were plated in 96-well flat-bot-
tomed plates so as to make 5,000 cells/100 µl/well, incu-
bated with AdCA-lacZ at an MOI of 10–100 for 1 h, and
cultured for a further 48 h to allow adequate expression of
the transduced gene. Cells were washed with PBS and
fixed in PBS containing 0.5% glutaraldehyde for 10 min.
The cells were rinsed in PBS containing 1 mmol/liter
MgCl2 and incubated for 1 h in PBS containing 5 mmol/
liter K3Fe(CN)6, 5 mmol/liter K4Fe(CN)6, 1 mmol/liter
MgCl2 and 1 mg/ml 5-bromo-4-chloro-3-indolyl-β-D-
galactopyranoside (X-gal; Wako Pure Chemical Indus-
tries, Ltd., Tokyo).14, 15) The cells were washed with PBS,
and β-gal-positive cells per 100 cells were counted. Six
hundred cells were counted in total.

Assay of enzymatic conversion of 5-FU into its
nucleotides16, 17)  Twenty-four hours after plating, cells
were infected with AdCA-UPRT at an MOI of 100 for 1 h,
and cultured in fresh medium for a further 48 h. Cytosol
as an enzyme source was obtained from both uninfected
and adenovirus-infected cells by sonicating them in
homogenate buffer (50 mmol/liter Tris-HCl, 1 mmol/liter
EDTA and 5 mmol/liter MgCl2; pH 7.4) at maximum out-
put (Sonifier cell disrupter 350; Smith-Kline), and centri-
fuging the homogenate at 75,000g at 4°C for 20 min in a
Beckman ultracentrifuge (model TL-100; Fullerton, CA).
The reaction mixture for measuring direct conversion of
5-FU into FUMP by UPRT (including OPRT) consisted of
0.5 mmol/liter [3H]5-FU, 2 mmol/liter PRPP, 5 mmol/liter
MgCl2, 15 mmol/liter 2-glycerophosphate, 0.6 mmol/liter
α,β-methyleneadenosine diphosphate and 50 mmol/liter
Tris-HCl (pH 8.0). The reaction mixture for measuring the
two-step conversion by uridine phosphorylase and kinase
consisted of 0.5 mmol/liter [3H]5-FU, 5 mmol/liter ribose-
1-phosphate, 5 mmol/liter ATP, 5 mmol/liter MgCl2 and
15 mmol/liter 2-glycerophosphate. These mixtures were
incubated at 37°C with 40–50 µl of the cytosol in a total
volume of 100 µl for 30 min, and the reaction was
stopped by heating them at 90–100°C. After centrifuga-
tion at 14,000 rpm for 2 min in a Tomy model MR-150
centrifuge (Tokyo), 20 µl of the supernatant was charged
with cold carrier on a PEI-cellulose thin-layer chromatog-
raphy sheet (Merck, #1-05579, Frankfurt, Germany) and
developed with water. The spots of substrate and product
were distinguished under UV and excised. The radioactiv-
ity level in each was measured using a Beckman model
LS 7500 scintillation counter. The protein content was
measured using the BCA protein assay reagent (Pierce
Chemical Co., Rockford, IL).
Assay for intracellular 5-FU nucleotides  Twenty-four
hours after 2.5×105 cells had been plated in 60 mm
dishes, they were infected with either AdCA-lacZ or
AdCA-UPRT at an MOI of 100 for 1 h. After 48 h culture,
they were exposed to 1 µmol/liter [3H]5-FU for 30 min.
Cells were washed twice with PBS, and separated into
acid-insoluble and -soluble fractions by treatment with 5%
trichloracetic acid. The acid-soluble fraction (20 µl) was
charged on a PEI-cellulose thin-layer chromatography
sheet and developed with water. The spot of 5-FU nucle-
otides was distinguished under UV and excised. The acid-
insoluble fraction was solubilized in 99% formic acid.
According to our previous experience and also that of
other researchers,17) more than 90% of the 5-FU uptake in
the acid-insoluble fraction during the early period (30
min) is incorporated into RNA. The radioactivity levels
were measured using a scintillation counter. The protein
content of both fractions was also measured.
Drug sensitivity assays  Cells were plated at a density of
5×103/100 µl in 96-well plates. Twenty-four hours later,
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the cells were infected with AdCA-lacZ or AdCA-UPRT
at an MOI of 100 for 1 h and then cultured with various
concentrations of 5-FU for 120 h. Cell growth was mea-
sured by means of a partially modified MTT assay18);
cells were incubated in 100 µl of MTT solution (50 µg of
MTT, 0.1 mg of glucose, 0.08 µmol of MgSO4, 225 µg of
NaHCO3, 0.5 µmol of HEPES/100 µl of PBS(−)) for 1 h
at 37°C, and shaken for 10 min after addition of 100 µl of
ethanol to solubilize the formazan formed. The optimal
densities were read on an automated spectrophotometric
plate reader at a single wavelength of 540 nm.

RESULTS

The infection efficiency of recombinant adenovirus was
examined by treating cells with AdCA-lacZ at various
doses, followed by X-gal staining. As shown in Fig. 1,
almost all cells treated with AdCA-lacZ at an MOI of 100
expressed β-gal activity in both NUGC-3 and NUGC-3/
5FU/L lines. Based on this result, an MOI of 100 was
determined as optimal. By using cytosol prepared from
NUGC-3 and NUGC-3/5FU/L cells infected with mock or
AdCA-UPRT as an enzyme source, the activity of the
enzyme catalyzing the direct conversion of 5-FU into
FUMP with PRPP as a co-substrate was compared
between the control and AdCA-UPRT-infected cells.
AdCA-lacZ-infected cells could not be used as a control
because an extremely large amount of AdCA-lacZ would

have been needed for this experiment. As is clearly dem-
onstrated in Fig. 2A, high activity levels were observed
with the infected cells of both lines: the degrees of eleva-
tion were 21- and 152-fold in NUGC-3 and NUGC-3/
5FU/L cells, respectively. Activity of uridine phosphory-
lase plus uridine kinase was also measured using ribose-1-
phosphate and ATP as co-substrates (Fig. 2B). No differ-
ence was found between the control and AdCA-UPRT-
infected NUGC-3 cells, but the infected NUGC-3/5FU/L
cells showed 4.7-fold more activity than the control.

Cells infected with AdCA-lacZ as a control or AdCA-
UPRT were exposed to 1 µmol/liter 5-FU for 30 min and
intracellular levels of 5-FU nucleotides were compared. 5-
FU nucleotides in the acid-insoluble fraction, which seem

Fig. 1. In vitro gene transduction efficacy of recombinant ade-
novirus. NUGC-3 ( ) and NUGC-3/5FU/L ( ) cells were
infected with AdCA-lacZ at an MOI of 10–1,000. After X-gal
staining, the β-gal-positive cells were enumerated. Each point is
the mean of 6 determinations with the SD shown by a bar.

Fig. 2. Enzymatic conversion of 5-FU into its nucleotides by
cytosol from control and AdCA-UPRT-infected cells. The cyto-
sol and [3H]5-FU were incubated with PRPP (A) or ribose-1-
phosphate and ATP (B) as co-substrates for 30 min. The open
(NUGC-3) and solid black (NUGC-3/5FU/L) columns represent
the mean enzymatic activities of 3 determinations with the SD
values shown by bars.

Fig. 3. Intracellular formation of 5-FU nucleotides from 5-FU
in control and AdCA-UPRT-infected cells. AdCA-lacZ-infected
cells were used as the control. Cells were incubated with 1 µM
[3H]5-FU for 30 min, and fractionated into acid-insoluble (A)
and -soluble (B) fractions. The open (NUGC-3) and solid black
(NUGC-3/5FU/L) columns represent the mean 5-FU nucleotide
level of 3 determinations with the SD values shown by bars.
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to include FdUMP consisting of covalent ternary complex
of TS and FUTP incorporated into cellular RNA,
amounted to 7.32±1.26 and 1.91±0.20 (pmol/mg protein)
in the control NUGC-3 and NUGC-3/5FU/L cells, respec-
tively (Fig. 3A). The infection with AdCA-UPRT
increased the level of 5-FU nucleotides in the acid-insolu-
ble fraction by 2.2- and 5.4-fold in NUGC-3 and NUGC-
3/5FU/L cells, respectively. The level in NUGC-3/5FU/L
cells was rather high compared to the parent NUGC-3
cells.

5-FU nucleotides in the acid-soluble fraction were also
compared (Fig. 3B). Levels of acid-soluble 5-FU nucle-
otides, including free FdUMP and FUTP, in the AdCA-
UPRT-infected cells showed 38.5- and 66.9-fold elevation
compared with the control cells in NUGC-3 and NUGC-
3/5FU/L, respectively. The ratios of total 5-FU nucleotide
of the AdCA-UPRT-infected/control cells were 2.76 and
13.5 in NUGC-3 and NUGC-3/5FU/L, respectively.

Cells were infected with mock, AdCA-UPRT or AdCA-
lacZ at an MOI of 100 for 1 h and then cultured with vari-
ous concentrations of 5-FU for 120 h. As shown in Fig. 4,
the IC50 values for uninfected NUGC-3 and NUGC-3/
5FU/L cells were 12.7 µmol/liter and much higher than
100 µmol/liter, respectively; thus NUGC-3/5FU/L was at
least 8-fold more resistant to 5-FU. However, when
NUGC-3/5FU/L was treated with AdCA-UPRT, its IC50

shifted to 3.2 µmol/liter which was significantly lower
than that of uninfected NUGC-3 cells. It should be noted
that not only NUGC-3/5FU/L but also NUGC-3 cells

were significantly sensitized. They were scarcely affected
by infection with AdCA-lacZ.

DISCUSSION

Defective anabolism into active nucleotides seems to
play a major role in resistance to anticancer agents related
to purine and pyrimidine. Reduced activity of deoxycyti-
dine kinase has been reported to be a major mechanism of
resistance to ara-C19) and gemcitabine.20) In the case of
resistance to 5-FU, poor activity of several enzymes
involved in the anabolism of 5-FU has also been demon-
strated.5–9) Clinically, the relationship between response to
5-FU-based chemotherapy and content or activity of TS in
tumor tissue has been extensively investigated. Most
tumors with a relatively high content of TS are less
responsive to 5-FU, though tumors with low TS content
are not necessarily responsive.21, 22) This strongly suggests
that, in addition to TS content, capacity for metabolism of
5-FU into its nucleotides in individual tumors is pro-
foundly related to the clinical response to 5-FU.

Experimentally, only transfection of an exogenous gene
coding for the corresponding anabolic enzyme is thought
to be effective for reversing this type of resistance. In the
case of ara-C resistance, Stegmann et al.23) attempted the
transfection of deoxycytidine kinase gene into an ara-C-
resistant rat leukemic cell line and succeeded in com-
pletely reversing a more than 9,000-fold resistance to ara-
C. In the present study, we tried to transfect the E. coli
UPRT gene into 5-FU-resistant human stomach cancer
cells, which are deficient in 5-FU anabolism, with the aim
of reversing 5-FU resistance in vitro.

Cytosol prepared from both NUGC-3 and NUGC-3/
5FU/L cells infected with AdCA-UPRT showed surpris-
ingly high activity levels of UPRT (including a relatively
small amount of cellular intrinsic OPRT) as compared
with the control cells (Fig. 2A). Intracellular acid-insolu-
ble and -soluble 5-FU nucleotide levels were also
increased by infection with AdCA-UPRT in both cell
lines (Fig. 3), but the degree of elevation was not as large
as for the UPRT activity. This indicates that intracellular
formation of 5-FU nucleotides is limited by the intracellu-
lar PRPP level, even though an enormous amount of
UPRT protein is expressed after the transfection. It should
be noted that the lower 5-FU nucleotide levels in the acid-
insoluble and soluble fractions in NUGC-3/5FU/L cells
increased substantially relative to those in NUGC-3 cells
after the infection with AdCA-UPRT (Fig. 3).

Based on these biochemical results, we assessed the
sensitivity to 5-FU of uninfected and AdCA-UPRT-
infected cells in a 120-h drug exposure assay (Fig. 4).
NUGC-3/5FU/L cells were sensitized more than 31-fold
by infection with AdCA-UPRT, and as a result became 4-
fold more sensitive than the original NUGC-3 cells. This

Fig. 4. Sensitivity to 5-FU of mock-, AdCA-UPRT- or AdCA-
lacZ-infected cells. Cells were cultured with various concentra-
tions of 5-FU for 120 h. The relative cell number was measured
by MTT assay. Each point is the mean of 8 data with the SD
shown by a bar. Open symbols, NUGC-3; filled symbols,
NUGC-3/5FU/L.  mock-,  AdCA-UPRT-,  AdCA-lacZ-
infected cells.
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clearly indicates that transfection of the E. coli UPRT
gene completely reversed the high degree of 5-FU resis-
tance in NUGC-3/5FU/L cells by increasing the intracel-
lular level of active 5-FU nucleotides.

The parent NUGC-3 cells were also sensitized by infec-
tion with AdCA-UPRT, and the infected cells became 47-
fold more sensitive than the uninfected ones (Fig. 4). It
seems difficult to explain fully the marked sensitization
induced by an about 2-fold increase in acid-insoluble lev-
els of 5-FU nucleotide on infection with AdCA-UPRT
(Fig. 3A). The results in Fig. 3 were obtained after only
30 min incubation of cells with 1 µmol/liter 5-FU. Taking
this into consideration, we speculate that the 5-FU nucle-
otide, particularly FdUMP, level in the acid-soluble rather
than -insoluble fraction makes a major contribution to
the prolonged inhibition of TS, because DNA-directed
action seems predominant during long-term 5-FU
exposure.1, 5, 24, 25)

Another point to be discussed is that even after infec-
tion with AdCA-UPRT, NUGC-3/5FU/L was more resis-
tant than NUGC-3, although the degree of resistance in
the infected cell lines is lower than in the uninfected ones.
This could not be explained by the 5-FU nucleotide level

in either the acid-insoluble or -soluble fraction of the
AdCA-UPRT-infected NUGC-3 and NUGC-3/5FU/L
cells. Little is known about the molecular species in the
acid-soluble fraction. If the FdUMP level in the acid-solu-
ble fraction of NUGC-3 cells is significantly higher than
that of NUGC-3/5FU/L cells, this might explain the dif-
ference in sensitivity between the AdCA-UPRT-infected
NUGC-3 and NUGC-3/5FU/L cells. In this case, it is pos-
sible that ribonucleotide reductase is partially responsible
for the high degree of resistance in NUGC-3/5FU/L cells,
by diminishing the flow from FUMP to FdUMP.

In conclusion, the very high 5-FU-resistance in human
stomach cancer NUGC-3/5FU/L cells, which have poor
activities of uridine phosphorylase/kinase and OPRT, was
completely reversed by adenovirus-mediated transduction
of the E. coli UPRT gene. This methodology could be
applicable to treat various 5-FU-resistant cancers. Further,
the amount of 5-FU could be reduced to avoid undesirable
side effects if the combination of 5-FU and this gene ther-
apy were introduced for routine therapy.

(Received October 8, 1998/Revised November 19, 1998/
Accepted December 8, 1998)
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