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Abstract: Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus
and is characterized by degeneration of retinal neurons and neoangiogenesis, causing a severe threat
to vision. Nowadays, the principal treatment options for DR are laser photocoagulation, vitreoretinal
surgery, or intravitreal injection of drugs targeting vascular endothelial growth factor. However,
these treatments only act at advanced stages of DR, have short term efficacy, and cause side effects.
Treatment with nutraceuticals (foods providing medical or health benefits) at early stages of DR
may represent a reasonable alternative to act upstream of the disease, preventing its progression.
In particular, in vitro and in vivo studies have revealed that a variety of nutraceuticals have significant
antioxidant and anti-inflammatory properties that may inhibit the early diabetes-driven molecular
mechanisms that induce DR, reducing both the neural and vascular damage typical of DR. Although
most studies are limited to animal models and there is the problem of low bioavailability for many
nutraceuticals, the use of these compounds may represent a natural alternative method to standard
DR treatments.
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1. Introduction

Diabetic retinopathy (DR) is a retinal disease representing one of the main causes of vision loss in
developed countries. It has been classically considered a microvascular disease of the retina and is
characterized, in its later stages, by abnormal growth of retinal vessels, which causes hemorrhages
and tractional retinal detachment, leading to vision loss [1]. The understanding of DR has evolved
over time and has clarified the role of the neuronal component of the retina in the progression of the
disease. Indeed, growing experimental evidence suggests that suffering and death of retinal neurons
occur before overt vascular changes [2–4]. For this reason, nowadays DR can be described not only as
a microvascular but also as a neurodegenerative disease of the retina [5].

DR is a multifactorial disease but, to date, the exact pathophysiological mechanisms underlying
neuro-vascular damage are not thoroughly understood. Nevertheless, different pathways and molecular
mechanisms that may cause DR onset have been studied. For instance, the increase in advanced
glycation end-products (AGEs) acting at their receptors (RAGE), the formation and activation of protein
kinase C (PKC), or the increased flux in the polyol or hexosamine pathway have been examined [6,7].
All of these pathways, along with lower levels of glutathione (GSH), are associated with an increase in
oxidative stress. The latter in turn causes different alterations in the diabetic retina as a consequence of
severe lipid peroxidation, protein oxidation, oxidative DNA damage, induction of inflammation, and
upregulation of growth factors, such as vascular endothelial growth factor (VEGF) [8].
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VEGF is a proangiogenic factor that plays a key role in the late vasculopathy. For this reason,
current DR treatments consist of the intraocular delivery of anti-VEGF molecules whose action induces
restriction or inhibition of abnormal vessel growth. Nevertheless, the administration of anti-VEGF
drugs has limitations and may generate different side effects. In addition, the effects are not long-lasting
and frequent intravitreal injections are necessary [9–11].

Recent studies have highlighted the neuroprotective role of VEGF that can be noticed in the early
phases of DR [12,13]. According to these studies, retinal neurons stressed by diabetes are likely to trigger
the release of VEGF as a survival strategy. However, the persistence of the upstream stress conditions
determines the accumulation of VEGF, leading to disruption of the blood-retina barrier (BRB) and,
in the long term, to neoangiogenesis [14]. It would therefore be appropriate to plan new therapeutic
strategies acting upstream of the disease and to prevent its progression by reducing neuronal stress
and favoring neuroprotection. Moreover, considering the side effects caused by therapeutic agents
administered via intraocular injections, there is a need to develop compounds with antioxidant and/or
anti-inflammatory activity that can be administered through alternative delivery modalities. For this
reason, in the last few years, several studies have focused on the potential benefits of nutraceuticals.

The term “nutraceutical” was coined by Dr. Stephen De Felice in 1989 and indicates “a food (or part
of a food) that provides medical or health benefits, including the prevention and/or treatment of a
disease” [15]. Nutraceuticals are effective antioxidants. They may induce the expression of antioxidant
enzymes, act as scavengers of reactive oxygen species (ROS), or display singlet oxygen-quenching
activity, as in the case of carotenoids [16]. Nutraceuticals may also exert anti-inflammatory effects
by reducing the expression or nuclear translocation of nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB) [17]. Nutraceuticals can be used as natural dietary supplements and
therefore can be easily administered, are readily available, and are affordable. A further advantage of
nutraceuticals is that they are not likely to induce collateral side effects (if, of course, delivered at the
appropriate dosage) such as hypoglycemia, liver injury, or gastric complains, which are characteristic
of well-known and popular drugs [18,19].

In this review, we focus our attention on different classes of nutraceuticals, such as polyphenols,
carotenoids, saponins, and others (Figure 1), explaining how these substances might counteract DR
pathological changes. In particular, we highlight how nutraceuticals may reduce (i) oxidative stress;
(ii) inflammation; (iii) neurodegeneration; and (iv) vascular changes. Reviewed literature includes
in vitro studies, in vivo studies on animal models, and also clinical studies. Finally, we also consider
how the low bioavailability of several nutraceuticals may limit their use.

2. Nutraceuticals and Oxidative Stress

Oxidative stress is caused by an imbalance in the production of ROS and the activity of the biological
detoxifying systems. ROS are produced in normal metabolic conditions to support normal cellular
functions and modulate a variety of biological processes including cell proliferation, differentiation,
and migration, signal transduction, and programmed cell death [8]. However, because of ROS’ high
reactivity, their accumulation compromises the cell structure and functionality through alterations and
degradation of molecules such as DNA, lipids, and proteins [20]. Oxidative stress and ROS production
are contrasted by endogenous antioxidant defense enzymes including superoxide dismutase (SOD),
catalase (CAT), glutathione peroxidase (GSH-P), and glutathione reductase (GSH-R). In addition
to these endogenous enzymatic systems, endogenous non-enzymatic factors also exist and they
include GSH (which is regulated by GSH-P and GSH-R), vitamin C, and vitamin E [21]. Besides
endogenous antioxidant defenses, exogenous antioxidants of natural origin may be used to preserve
redox homeostasis. They may act directly as scavengers of free radicals, indirectly by interrupting free
radical chain reactions, or both. They may also decrease oxidative stress by inducing the expression of
endogenous antioxidant enzymes [22,23]. For these reasons, it has been recently proposed that therapies
based on natural, non-enzymatic antioxidants such as nutraceuticals could relieve the decrease in
endogenous antioxidant defenses [23,24].
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Figure 1. Summary of all the nutraceuticals cited in the present review. The compounds are listed
according to their chemical classes, including polyphenols (both flavonoids and non-flavonoids),
carotenoids, and saponins. Other compounds that do not belong to any of these classes or that are
mixtures of different chemicals are classified as “other”. AKBA: Acetyl-11-keto-β-boswellic acid.

The retina is highly susceptible to oxidative stress, which is due principally to the high content of
polyunsaturated fatty acids, high oxygen uptake, glucose oxidation, and prolonged exposure to light.
In particular, high glucose levels trigger a set of processes, such as AGE accumulation, PKC activation,
and increased flux in the polyol and hexosamine pathways, which provoke oxidative stress (see [25]
for detail). In turn, an increase in ROS is likely to cause DNA fragmentation resulting in poly-ADP
ribose polymerase activation and glyceraldehyde 3-phosphate dehydrogenase inhibition [26]. This
causes accumulation of glycolytic metabolites that may induce AGE formation and activation of
PKC and of the polyol as well as of the hexosamine pathways, which are known to contribute to DR
pathogenesis [6,7]. In summary, oxidative stress creates a propagating cycle, causing a continuous
increase in ROS and consequent activation of pathways closely related to the progression of DR [8]
(Figure 2).
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Figure 2. Schematic reconstruction of the events triggered in the retina by hyperglycemia and reinforced
by oxidative stress in a vicious cycle. Formation of advanced glycation end-products (AGE) as well
as the activation of protein kinase C (PKC), of the polyol pathway, and of the hexosamine pathway,
are the main diabetes-induced abnormalities related to diabetic retinopathy.

Different natural dietary compounds have been investigated as possible treatments or adjuvants to
counteract retinal oxidative stress typical of DR. They include polyphenols, carotenoids, and saponins,
as well as other compounds (Figure 1). They are common in different fruits, vegetables, herbs, and
beverages, and are very efficient in strengthening the endogenous antioxidant defenses through a
direct scavenger activity and/or through the stimulation of antioxidant enzyme expression. Several
classes of these compounds have been tested in vitro and in in vivo animal models. A summary of the
effects of nutraceuticals against oxidative stress in models of DR is given in Figure 3.

2.1. Non-Flavonoid Polyphenols

Curcumin, a yellowish polyphenolic substance constituting the major active compound of Curcuma
longa, is widely known for its antioxidant and anti-inflammatory properties [27–29]. The strong
antioxidant power of curcumin has been shown in different studies. In human retinal endothelial cells
(HRECs) exposed to high glucose and treated with 10 µM curcumin, intracellular ROS production
has been observed to be significantly reduced [30], and similar results have been obtained with the
retinal pigment epithelial cell line ARPE-19 [31,32]. The decrease in ROS levels is concomitant with
an increased expression of heme oxygenase-1 (HO-1) [31], a redox-sensitive inducible stress protein
that, once activated, protects the cell from different types of stress. This observation suggests that
curcumin not only generates direct antioxidant activity but it may also act indirectly by enhancing
the expression of antioxidant enzymes. This effect is likely to be induced through activation of the
transcription nuclear factor erythroid-2-related factor-2 (Nrf2). Once activated, Nrf2 translocates
into the nucleus and promotes the transcription of genes that encode antioxidant enzymes (known
as phase II antioxidant enzymes), including HO-1 [33,34]. Another recent investigation into high
glucose-stressed ARPE-19 cells showed that curcumin-induced inhibition of ROS formation prevents
alterations of DNA methyltransferase activity [35]. In in vivo studies with rats with streptozotocin
(STZ)-induced diabetes, curcumin has been observed to prevent the retinal increase of malondialdehyde
(a marker of oxidative stress) and the decrease in GSH [36]. In the same model, curcumin also inhibited
a decrease in total antioxidant capacity by increasing SOD, CAT, and GSH levels [37,38] and prevented
an increase in the levels of retinal nitrotyrosine, a marker of oxidative protein damage, and in
8-hydroxy-2′-deoxyguanosine, a marker of oxidative DNA damage [38].
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Among other non-flavonoid polyphenols, resveratrol, found in different plants such as grapes,
peanuts, and berries, has been described as being able to decrease oxidative stress in retinas
of diabetic rats by reducing lipid peroxidation, oxidized to reduced GSH ratio, and superoxide
dismutase activity [39]. Recent data also show that resveratrol may reduce the adverse effects of
hyperglycemia-induced oxidative stress on retinoic acid metabolism, which is involved in the recycling
of 11-cis-retinal in the visual cycle in the retinal pigment epithelium [40].

2.2. Flavonoid Polyphenols

Flavonoids, a class of polyphenols, constitute a variegated group of natural substances
characterized by strong antioxidant power. These natural products are present in fruits, vegetables,
grains, roots, tea, and wine [41]. In STZ diabetic rats, treatment with different flavonoids ameliorates
retinal redox status favoring an increase in GSH and a decrease in lipid peroxidation. It has also
been observed that flavonoids are able to increase the levels of antioxidant enzymes such as SOD and
CAT. In particular, these findings have been recorded in retinas of diabetic rats treated with quercetin,
a common flavonol found in vegetables and fruits [42], with hesperetin, a flavanone commonly present
in citrus fruits [43], or with green tea [44]. Green tea is a popular beverage rich in catechin, epicatechin,
epigallocatechin, epicatechin gallate, and epigallocatechin gallate. Among these, epigallocatechin
gallate is the most abundant catechin in green tea and is widely known for its antioxidant activity.
The antioxidant effect of epigallocatechin gallate seems to be associated with a decrease in aldose
reductase activity, which catalyzes the rate limiting step in the polyol pathway, and a decrease in AGE
accumulation [45].

Eriodictyol, a flavonoid extracted from yerba santa (Eriodictyon californicum), a plant native to
North America, has been found to reduce ROS production and increase the activity of SOD, GSH-P,
and CAT. In addition, it has been shown to enhance the nuclear translocation of Nrf2 and elevate the
expression of antioxidant enzyme HO-1 in RGC5 cells treated with high glucose [46].

Anthocyanins constitute another class of flavonoids which are responsible for the red or blue color
of plants, fruits, and flowers. In vitro studies with HRECs subjected to high glucose treatment have
shown that the blueberry anthocyanins malvidin and malvidin glycoside may produce an antioxidant
effect through reduction of ROS levels and an increase in both CAT and SOD activity [47]. In addition,
blueberry anthocyanins added to the food of and administered to diabetic rats for 12 weeks have
been described as being able to prevent retinal oxidative stress favoring an increase in antioxidant
capacity, as demonstrated by an increase in GSH and decrease in ROS levels. This antioxidant activity
of blueberry anthocyanins is mediated by activation of Nrf2 and a consequent increase in HO-1
expression [48].

2.3. Carotenoids

Lutein and zeaxantin are the principal constituents of oranges, yellow fruits, and dark green
leafy vegetables. Together with meso-zeaxanthin, they form the macular pigment of primate eyes [49]
and prevent oxidative damage to the retina [50,51]. Their potential role in protecting against visual
disorders has been recently reviewed [52–54]. Regarding the effects of carotenoids in experimental
models of DR, a decrease in lipid peroxidation, nitrotyrosine levels, and oxidatively modified DNA
was observed in the retinas of diabetic rats that had received supplementation with zeaxantin for two
months. These effects were accompanied by inhibition of the diabetes-induced decrease in retinal SOD
expression and activity, although no effects of zeaxantin were observed on GSH levels [55]. Similarly,
lutein administration to one-month-diabetic mice has been observed to prevent retinal oxidative stress
and restore retinal ROS levels to normal [56].

Crocetin and crocin are two additional compounds belonging to the class of carotenoids. They
can be considered as the active ingredients of saffron, a spice classically used in traditional medicine
for its beneficial qualities [57]. Crocetin and crocin, similar to lutein and zeaxantin, are known for their
antioxidant and protective actions against ROS. For instance, crocetin has been reported to protect cells
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of the RGC5 cell line from oxidative stress [58], while treatment with crocin has been shown to prevent
upregulation of ROS and nitric oxide in microglia cells cultured in high glucose [59].

2.4. Saponins

Panax notoginseng saponins (PNS), including ginsenoside Rg1, ginsenoside Rb1, and notoginsenoside
R1, may generate a protective effect against oxidative stress-induced damage, as observed in STZ diabetic
mice treated for two months with North American Ginseng (Panax quinquefolius) [60]. In addition,
a significant decrease in ROS levels has been recorded in rat retinal capillary endothelial cells exposed to
high glucose and treated with 100 µg/mL of PNS [61]. This decrease in ROS levels has been associated
with an increase in antioxidant enzymes, including SOD, CAT, and, consequently, GSH. In addition,
notoginsenoside R1 was also observed to induce a decrease in the activity of NADPH oxidase, the
major enzyme implicated in oxygen radical generation [62].

2.5. Other Compounds

Lisosan G is a fermented powder obtained from organic whole grains (Triticum aestivum). It is
enriched in bioactive substances such as phenolic components, flavonoids, alpha-lipoic acid, tocopherols,
and polyunsaturated fatty acids (see [63] for detail). In mouse retinal explants, Lisosan G has been
shown to inhibit an oxidative stress-induced increase in phase II antioxidant enzymes such as HO-1,
SOD, and glutamate-cysteine ligase catalytic subunit mRNA expression, while in STZ rats it was
observed to seem to inhibit the nuclear translocation of Nrf2, indicating that in these systems Lisosan
G is likely to exert antioxidant effects through direct radical scavenging and not through activation of
antioxidant enzyme expression [63].

3. Nutraceuticals and Inflammation

Inflammation is a nonspecific response to injury that includes a variety of functional mediators,
such as cytokines, chemokines, acute phase proteins, and other pro-inflammatory molecules. Many
of these mediators have been detected in the retina of diabetic animals or patients, suggesting that
inflammation has a role in the development of DR [64–66]. Reactive gliosis, characterized by increased
glial fibrillary acidic protein (GFAP) expression in both Müller cells and astrocytes [4,67], is typically
observed in DR [68,69], resulting in the release from these cells of inflammatory cytokines, such as
tumor necrosis factor alpha (TNFα), interleukin 1 beta (IL-1β), and others [70,71].

The transcription of inflammatory proteins is regulated by the activation of pro-inflammatory
transcription factors, among which NF-κB plays a prominent role. This factor, once activated,
translocates into the nucleus, binds to nuclear DNA, and acts as a master switch that promotes
the expression of pro-inflammatory cytokines such as IL-1β, interleukin 6, interleukin 8 (IL-8), and,
at least in part, TNFα [72]. There is ample evidence suggesting that NF-κB is involved in the
pathogenesis of the early phases of DR. In fact, the inhibition of proteins whose expression is regulated
by NF-κB decreases capillary degeneration, while direct NF-κB blockade inhibits DR development and
progression [64–66,73]. The potential efficacy of some nutraceuticals for the treatment of DR is that
they may inhibit NF-κB activation. A summary of the effects of nutraceuticals against inflammation in
models of DR is given in Figure 3.

3.1. Non-Flavonoid Polyphenols

Treatment with curcumin prevents TNFα release in HRECs cultured with high glucose [32].
Curcumin also reduces retinal diabetic damage in diabetic rats through inactivation of NF-κB and
a decrease in IL-1β levels [38]. There is some indication that curcumin may influence NF-κB by
preventing the diabetes-induced retinal activation of calcium/calmodulin-dependent protein kinase II
(CAMKII) [27,74–76], a ubiquitous multifunctional protein kinase implicated in the regulation of the
transcriptional activity of NF-κB [77]. Curcumin has also been observed to reverse the diabetes-induced
upregulation of retinal GFAP in Müller cells of STZ rats [36].
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Recent observations have shown that inflammatory markers are reduced in the retinas of STZ rats
after administrations of resveratrol via tail vein injections [78]. Similar to curcumin, resveratrol, or an
ethanol extract of the root of Polygonum cuspidatum, which is rich in resveratrol, attenuates inflammation
in the retinas of diabetic rats by reducing NF-κB activity [39,79]. In addition, resveratrol has been
described as being able to reduce NF-κB nuclear translocation in the retinas of mice with experimental
uveitis [80]. Resveratrol is likely to promote the inhibition of NF-κB through AMP-activated protein
kinase (AMPK) activation. Indeed, data obtained from the retinas of mice with STZ-induced diabetes
has shown that resveratrol-induced AMPK activation leads to significant suppression of NF-κB
phosphorylation and reverses diabetes-induced sirtuin-1 (SIRT1) deactivation [81]. This SIRT1
activation promoted by resveratrol is likely to mediate an inhibition of NF-κB stimulation of DNA
transcription, since SIRT1 deacetylates both NF-κB p65 and histone 3, with the effect of decreasing
DNA binding by NF-κB [82]. Similarly to curcumin, a mechanism by which resveratrol may negatively
modulate NF-κB is the inhibition of retinal CAMKII activation [83].

3.2. Flavonoid Polyphenols

Quercetin displays both antioxidant and anti-inflammatory properties in the retina. In particular,
it has been reported to reduce VEGF-induced inflammation by inactivating NF-κB through inhibition
of both mitogen-activated protein kinase and Akt in 661W cells [84]. In STZ diabetic rats, quercetin
inhibits an increase in retinal GFAP expression and induces a decrease in NF-κB protein expression
in specific retinal layers, namely the nerve fiber layer, the inner plexiform layer (IPL), and the inner
nuclear layer (INL). This effect of quercetin on NF-κB is also associated with decreased levels of TNFα
and IL-1β [42].

Hesperetin is another flavonoid that has been reported to exert antioxidant effects in diabetic
retinas, as reported above. This compound has also been observed to inhibit the diabetes-induced
over-expression of GFAP and of the pro-inflammatory cytokines TNFα and IL-1β in retinas of diabetic
rats [43]. Eriodictyol, a flavonoid of the same class of hesperetin, has been reported to also reduce
TNFα in STZ rat retinas [85] or both TNFα and IL-8 in high glucose-stressed RGC-5 cells [46].

Catechin has been observed to increase heat shock protein 27 levels and decrease the production
of associated inflammatory factors in retinas of STZ rats [86]. Diabetes induced glial activation in the
retina, characterized by increased GFAP expression in Müller cells, has also been found to be inhibited
by green tea or by epicatechin [87,88].

3.3. Carotenoids

Among the carotenoids, crocin has been observed not only as being able to protect from oxidative
stress, but also to block the pro-inflammatory response in microglial cells challenged with high glucose
and free fatty acids. In both the antioxidant and the anti-inflammatory action of crocin, activation of
the phosphoinositide 3-kinase (PI3K)/Akt signaling seems to play a significant role [59].

3.4. Other Compounds

The compounds 6-gingerol and the sesquiterpene zerumbone are abundantly present in rhizomes
of the plants of the ginger family Zingiber officinale and Zingiber zerumbet, respectively. They are able to
ameliorate retinal damage induced by hyperglycemia by inhibiting NF-κB expression/activation and
reducing the expression of pro-inflammatory cytokines [89,90]. In particular, the effect of zerumbone is
likely to be due to the blockading of the AGE/RAGE/NF-κB pathway [90].
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ICAM-1: Intercellular cell adhesion molecule 1; IL-1β: Interleukin 1 beta; MMP-9: Matrix 
metalloproteinase-9; NADPH: Nicotinamide adenine dinucleotide phosphate; Nf-kB: Nuclear factor 
kappa-light-chain-enhancer of activated B cells; O-GlcNAc: O-linked β-N-acetylglucosamine; NGF: 
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Figure 3. Summary of the effects induced by nutraceuticals as described in the studies reviewed herein.
Nutraceuticals exert positive effects in diabetic retinopathy, counteracting the diabetes-induced changes
by decreasing (yellow arrows) or increasing (green arrows) the expression/activation of specific factors
or the occurrence of some events. 8-OHdG: 8-hydroxy-2′-deoxyguanosine; AGE: Advanced glycation
end-products; AKT: Protein kinase B; Bax: Bcl-2-associated X protein; Bcl-2: B cell lymphoma 2; BDNF:
Brain-derived neurotrophic factor; BRB: Blood-retina barrier; CAT: Catalase; Erk 1/2: Extracellular
signal-regulated kinase 1/2; GFAP: Glial fibrillary acidic protein; GSH: Glutathione; HIF-1α: Hypoxia
inducible factor 1α; HO-1: Heme oxygenase-1; ICAM-1: Intercellular cell adhesion molecule 1; IL-1β:
Interleukin 1 beta; MMP-9: Matrix metalloproteinase-9; NADPH: Nicotinamide adenine dinucleotide
phosphate; Nf-kB: Nuclear factor kappa-light-chain-enhancer of activated B cells; O-GlcNAc: O-linked
β-N-acetylglucosamine; NGF: Nerve growth factor; NO: Nitric oxide; Nrf2: Transcription nuclear
factor erythroid-2-related factor-2; ROS: Reactive oxygen species; SOD: Superoxide dismutase; TNFα:
tumor necrosis factor alpha; Trk-B: Tyrosine receptor kinase B; TUNEL: Terminal deoxynucleotidyl
transferase-mediated dUTP nick end labelling; VEGF: Vascular endothelial growth factor; VEGFR2:
Vascular endothelial growth factor receptor 2; ZO-1: Zonula occludens 1.

Lisosan G has been reported to block increases in GFAP mRNA expression, indicating reactive
gliosis, induced by diabetes in the retinas of STZ rats [63]. In addition, Lisosan G has been shown to
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exert important anti-inflammatory effects that can be associated with a reduction in NF-κB nuclear
translocation, as observed in hepatocytes or in human endothelial progenitor cells [91,92] and has
recently been hypothesized in an in vivo rat model of DR, where a Lisosan G-induced reduction of
NF-κB phosphorylation was reported [63].

A post-translational modification (O-GlcNAcylation) of NF-κB has been observed in several
pathologies, including DR [93]. An extract of Aralia elata (a plant traditionally used to treat diabetes in
Eastern countries) containing phenolic compounds (3, 4-dihydroxybenzoic acid, chlorogenic acid, and
caffeic acid) has been recently shown to reduce glial activation, to suppress NF-κB expression, and to
decrease its O-GlcNAcylation in the retinas of STZ diabetic mice [94]. Finally, a fortified extract of
red berries, Ginkgo biloba, and white willow bark containing carnosine and α-lipoic acid have been
reported to attenuate the increase in TNFα levels in the retinas of STZ rats [95].

3.5. Relationships between Inflammation and Oxidative Stress

It is interesting to observe that most of the compounds cited above display both antioxidant
and anti-inflammatory properties, as has been reported in different in vitro and in vivo experimental
models. In fact, oxidative stress has been recognized as playing a pivotal role in the development
of inflammation [96,97]. Accordingly, ROS production is likely to promote activation of NF-κB,
an oxidant-sensitive factor and a crosslink between inflammation and oxidative stress [98–100]. Recent
evidence in ARPE-19 cells also suggests that high glucose-induced ROS may promote the secretion
of inflammatory cytokines through PI3K/Akt/mTOR, and curcumin has been found to inhibit this
signaling pathway [101]. In summary, in DR inflammation is likely to be secondary to increased
oxidative stress, and the use of appropriate antioxidant compounds may prevent the establishment of
an inflammatory state.

4. Nutraceuticals and Neurodegeneration

DR is characterized by an extended loss of neurons due to an increase in apoptosis likely
paralleled by a decrease in autophagic capabilities [102]. Neuronal cell vulnerability is evident very
early in DR, and it is detectable before any sign of vascular damage [2–4]. This early neuronal
impairment leads to retinal functional deficits that can be recorded with electroretinography (ERG)
and that are associated with different morphological changes, these mostly including a decrease in
thickness of retinal layers, with INL and IPL affected in particular. In retinas of diabetic rodents,
an increase in terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL)
positive cells can be recorded together with a decrease in anti-apoptotic markers (e.g., B cell lymphoma
2 (Bcl-2)) and an increase in pro-apoptotic markers (e.g., active caspase-3 and Bcl-2-associated X protein
(Bax)) [103–105]. Neurodegeneration in DR is likely caused by high glucose-induced oxidative stress
and inflammation, but there is evidence that dysregulation of neurotrophic factor expression may
also play a role. Neurotrophin nerve growth factor (NGF) and brain-derived neurotrophic factor
(BDNF) are expressed by retinal neurons and glia, and are principally involved in cell survival and
synaptic modulation [106,107]. A reduction in neurotrophin expression or an imbalance between
the mature neurotrophin and its precursor (as in the case of proNGF/NGF) may lead to neuronal
damage and neurodegeneration [107,108]. A further cause of neuronal death in DR is represented by
increased glutamate levels causing excitotoxicity. This condition is likely to be due to oxidative stress
in Müller cells resulting in decreased activity of glutamate-aspartate transporters and down-regulation
of glutamine synthetase (GS), which converts glutamate into non-toxic glutamine [109].

Several natural compounds are known for their neuroprotective properties and for their positive
effects within the central nervous system. In particular, nutraceuticals rich in flavonoids have been
proposed for the treatment and prevention of a variety of neurodegenerative diseases [110,111].
A summary of the effects of nutraceuticals against neurodegeneration in models of DR is given in
Figure 3.
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4.1. Non-Flavonoid Polyphenols

In diabetic rat retinas, curcumin has been reported to exert antiapoptotic effects by upregulating
the expression of Bcl-2 and downregulating the expression of Bax, with reduction of apoptosis of retinal
ganglion cells and of cells in the INL and preservation of normal retinal thickness [112]. In addition,
curcumin reverses diabetes-induced down-regulation of retinal GS, which may aid glutamate clearance
and reduce the risk of excitotoxicity [36]. Interestingly, curcumin may also contribute to inhibition
of apoptosis by promoting autophagic flux in retinal neurons. Indeed, curcumin has been reported
to stimulate autophagy and exert protective effects in different models of central nervous system
neurodegeneration [113].

Resveratrol has been shown to reduce retinal apoptotic levels and attenuate retinal thinning in rats
with STZ-induced diabetes [39,78]. The neuroprotective action of resveratrol is likely to be associated
with its anti-inflammatory action [83]. Similarly to curcumin, resveratrol may inhibit apoptosis by
stimulating autophagy. Indeed, it has been reported to induce autophagy and reduce cell death both in
the human retinal pigment epithelial ARPE-19 and in mouse photoreceptor 661W cells exposed to
cytotoxic stress [114].

4.2. Flavonoid Polyphenols

The beneficial effects of flavonoids on retinal neurodegeneration in DR have been the subject
of numerous studies. Treatment of STZ rats with quercetin protects from diabetes-induced retinal
ganglion cell loss, mitigates thinning of retinal layers, reduces caspase-3 expression/activation and
the levels of cytochrome c, while increasing Bcl-2 [42,115]. In addition, quercetin improves the
expression of neurotrophic factors, of their receptors, and of their downstream signaling molecules.
In particular, quercetin treatment favors an increase in Akt phosphorylation and in the expression of
BDNF, its receptor Trk-B, and in synaptophysin. These data suggest that the neuroprotective action
of quercetin is mediated by the BDNF-Trk-B/Akt-synaptophysin pathway [115]. The possibility that
quercetin may affect apoptosis through the promotion of autophagy is supported by observations
reporting potent simulation of autophagy by quercetin in Schwann cells with high glucose [116]
and quercetin protection from Aβ-induced neurotoxicity through the induction of autophagy in C.
elegans [117]. Similarly to quercetin, the flavonol kaempferol, which is found in tea, broccoli, apples,
strawberries, and beans [118], could also be a stimulator of autophagy, as demonstrated in the human
neuroblastoma SH-SY5Y cell line [119].

Another flavonoid that could represent a good choice with which to counteract neurodegeneration
in DR is rutin. It is the main glycoside form of quercetin and is abundant in foods such as onions,
apples, tea, and red wine [120]. Its neuroprotective effects have been tested in rat retinal ganglion
cells subjected to oxidative stress, where treatment with rutin was observed to increase cell survival
rate and reduce caspase-3 activation [121]. Rutin anti-apoptotic action has been confirmed in diabetic
rats, in which treatment with this compound was observed to cause a decrease in caspase-3 activity
and expression, with a concomitant increase in Bcl-2 and preservation of the levels of both BDNF and
NGF [122].

Chrysin, a natural flavonoid found in herbs and honeycomb, has been recently shown to
protect retinal photoreceptors by maintaining robust retinoid visual cycle-related components in
glucose-stimulated human retinal pigment epithelial cells or in the retinal pigment epithelium of
diabetic rats [123].

The strong antioxidant power of hesperetin correlates with the neuroprotective actions of this
flavonoid. In diabetic retinas, it inhibits neuronal death, reducing caspase-3 expression [43], and
prevents retinal thinning, favoring protection of ganglion cells and of cells in the INL [124]. Naringenin,
also found in citrus fruits together with hesperetin, exerts similar neuroprotective actions in diabetic
retinas, favoring an increase in BDNF and synaptophysin together with reduction in apoptotic
levels, as indicated by increases in Bcl-2 and decreases in both Bax and caspase-3 expression [125].
The naringenin-promoted decrease in pro-apoptotic molecules is likely to be due to activation of Akt
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and Erk 1/2, as shown in hippocampal cells subjected to excitotoxic stress and treated with different
concentrations of naringenin [126]. Anti-apoptotic effects of the flavanone eriodictyol have also been
reported in high glucose-stressed RGC-5 cells [46].

Other studies have shown that treatment with green tea may prevent neurodegeneration in
diabetic retinas. Indeed, the oral administration of green tea to diabetic rats generates a neuroprotective
action in the retina characterized by a reduction in neuronal death, restoration of glutamate uptake,
and improvement of retinal functionality as recorded with ERG [87]. The neuroprotective effect of
epicatechin in retinas of diabetic rats has been proposed to be related to the reduction of pro-NGF
production [88].

4.3. Carotenoids

Lutein is the carotenoid with the most recognized neuroprotective effects in the diabetic retina.
Its constant intake induces an evident functional improvement, as highlighted by an ERG analysis
of oscillatory potentials in the retinas of diabetic mice, which indicates prevention of inner retinal
damage [127]. Moreover, lutein treatment restores retinal layer thickness, reduces retinal apoptosis,
and preserves both BDNF and synaptophysin levels [128]. Lutein and zeaxantin are present in Lycium
barbarum, a shrub member of the family Solanaceae which is widely recognized for its beneficial
properties and is used in Chinese herbal medicine. Lycium barbarum administered to STZ diabetic rats
for eight weeks was observed to result in amelioration of retinal ERG [129], which was likely to be
related to the strong anti-apoptotic activity of this herb as reported in a retinal ischemia/reperfusion
model [130]. The anti-apoptotic action of lutein may be related to autophagy promoting effects of this
carotenoid, as reported for both human retinal pigment epithelial ARPE-19 and mouse photoreceptor
661W cells exposed to cytotoxic stress [114].

4.4. Other Compounds

Treatment with Lisosan G restores expression of caspase 3 to control levels in ex vivo mouse
retinal explants subjected to oxidative stress. In STZ diabetic rats, Lisosan G reduces neuronal death
and favors an improvement in retinal functionality, as evaluated by ERG. This result indicates that
treatment with Lisosan G is able to protect both the inner and outer retina from diabetes-induced
alterations [63]. Other compounds with documented neuroprotective effects in models of DR include
zerumbone, whose anti-apoptotic effects correlate with improvement of retinal histological alterations
and reduction of retinal thickness in diabetic rats [90], and Aralia elata, which protects mouse retinas
from diabetes-induced decreases in retinal thickness, increases in TUNEL labeled ganglion cells,
and increases in active caspase-3 [94]. Finally, an anti-apoptotic function, although not a direct
neuroprotective effect, has been be attributed to taurine, a non-essential free aminoacid found in Lycium
barbarum which has been reported to inhibit high glucose-promoted caspase-3 expression and activity
in ARPE-19 cells [131].

4.5. Relationships between Oxidative Stress, Inflammation, and Neurodegeneration

Most of the nutraceuticals cited above possess antioxidant, anti-inflammatory, and neuroprotective
properties at the same time. It is unlikely that these capacities are expressed independently from each
other. Rather, the evidence suggests that they are intimately correlated. Indeed, oxidative stress and
ROS toxicity may lead directly to DNA and protein damage, but, as mentioned above, oxidative stress
is also linked to inflammation. Both oxidative stress and inflammation, then, would be able to cause
neurodegeneration. Treatments with antioxidant compounds in early phases of DR may represent an
efficacious way to preserve the retina from further damage due to inflammation and from extensive
neurodegeneration. In this sense, nutraceutical antioxidants may represent a novel class of compounds
with interesting potential therapeutic value for DR [132].



Nutrients 2019, 11, 771 12 of 29

5. Nutraceuticals and Vascular Changes

On the basis of vascular changes, DR is classified as a non-proliferative diabetic retinopathy
(NPDR) or proliferative diabetic retinopathy (PDR). NPDR is characterized by microvascular damage
including BRB breakdown, pericyte loss, acellular capillaries, capillary occlusion, and thickening of the
basement membrane. In PDR, neoangiogenesis phenomena are observed and new blood vessels are
generated. These vessels create a deleterious action in the retina because of their mechanic traction,
which, in the end, causes retinal detachment and consequent blindness [133]. As outlined below, VEGF,
acting at its main receptor vascular endothelial growth factor receptor-2 (VEGFR2), plays prominent
roles in both phases of DR.

The BRB represents a filter allowing selective passage of substances from the bloodstream to
the retina, thereby regulating osmotic equilibrium, ionic concentrations, and transport of nutrients.
These functions are based on the presence of tight and adherens junctions between adjacent cells.
Tight junctions are composed of proteins like occludin, claudin, and zonula occludens 1 (ZO-1). These
proteins are the principal compounds implicated in BRB functionality, creating a strong bond between
endothelial cells and regulating the transport of solutes and molecules through prevention of the
unchecked diffusion of substances between the bloodstream and neuroretina [134]. In DR, oxidative
stress and inflammation result in complex changes causing upregulation of cytokines and growth
factors, among which VEGF is the most implicated in BRB dysfunctions [135,136]. Indeed, VEGF
upregulation is correlated with alterations of the tight junction structure caused by VEGF-induced
phosphorylation and downregulation of tight junction proteins (i.e., ZO-1 and occludin) [137,138].
In addition, overexpressed VEGF also induces phosphorylation of the adherens junction protein
VE-cadherin, further favoring increased BRB permeability [139]. VEGF upregulation in DR also
correlates with increased expression of intercellular cell adhesion molecule 1 (ICAM-1), which in
turn promotes leucocyte adhesion and capillary occlusion [13]. Other cytokines and chemokines are
implicated in BRB impairment. For instance, TNFα overexpression is associated with decreases in
occludin, claudin, and ZO-1 expression, while IL-1β induces barrier dysfunction through leukocyte
recruitment and release of the vasoactive amine histamine [140,141]. Matrix metalloproteinases (MMPs)
play important roles both in the early stages of DR, when MMP-2 and MMP-9 promote the apoptosis
of retinal capillary cells, and in the later phase, when they facilitate neovascularization by degrading
the extracellular matrix [142].

Other early vascular pathological changes in NPDR include loss of pericytes and thickening of the
basement membrane. Pericytes are contractile cells located at the surface of capillaries, implicated in
blood vessel stability, blood flow regulation, and formation of the BRB. In NPDR, pericyte loss occurs
even before endothelial injury and is directly correlated with accumulation of AGEs, impairment of
the BRB, and vascular leakage [143,144]. Apoptosis of pericytes in NPDR also leads to formation of
microaneurysms and acellular capillaries [145]. Thickening of the basement membrane, due to the
increase in vascular basal membrane compounds such as laminin and collagen IV [136], may contribute
to the disruption of the tight link between pericytes and endothelial cells, causing pericyte apoptosis,
whereas the endothelium, deprived of proliferation control, can give rise to new vessels [146].

PDR is characterized by neovascularization coupled with fibrotic responses at the vitreoretinal
interface, and subsequent blindness due to vitreous hemorrhage, retinal fibrosis, tractional retinal
detachment, and neovascular glaucoma [147–149]. Out of all the angiogenesis regulators, VEGF has
been most extensively studied and provides the basis for current anti-angiogenic therapy [150]. VEGF
plays a crucial role in PDR pathogenesis by promoting neovascularization through binding to VEGFR2
expressed on endothelial cells, inducing endothelial cell proliferation and sprouting angiogenesis [151].

The protective actions of nutraceuticals against microvascular changes typical of NPDR have been
investigated in a variety of DR models. However, these models do not reproduce the neoangiogenesis
characterizing PDR, and evidence of possible antiangiogenic properties of nutraceuticals has been
found in other experimental models favoring the growth of new retinal vessels, mainly rodents
with oxygen induced retinopathy (OIR) or experimental choroidal neovascularization (CNV). Other
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indications of the possible antiangiogenic effects of nutraceuticals have been derived from observations
of their efficacy in inhibiting endothelial cell proliferation, migration, and tube formation. A summary
of the effects of nutraceuticals against vascular changes in models of DR or of neoangiogenesis is given
in Figure 3.

5.1. Non-Flavonoid Polyphenols

The vasoprotective potential of curcumin has been tested in vitro and in vivo. Treatment with
curcumin prevents increases in glucose-induced VEGF expression as well as cellular proliferation
in HRECs [30]. In addition, pre-treatment with curcumin has been shown to prevent capillary
degeneration in rat retinas after ischemia reperfusion injury [152]. In diabetic rodents, curcumin
has also been observed to protect pericytes from structural degeneration and to reduce VEGF
expression, retinal vascular leakage, thickening of the basement membrane, vessel diameter, and vessel
tortuosity [27,29,112,153]. Finally, curcumin has been reported to suppress experimental CNV and
activation of hypoxia inducible factor 1α (HIF-1α, a transcription factor promoting VEGF expression
and release) in mice [154].

In hypoxic ARPE-19 cells, resveratrol has been found to significantly inhibit HIF-1α and
VEGF by blocking the PI3K/Akt/mTOR signaling pathway and by promoting proteasomal HIF-1α
degradation [155]. Resveratrol also reduces diabetes-induced VEGF and ICAM-1 expression, leukocyte
adhesion, pericytes loss, and prevents BRB breakdown as well as vascular leakage in the retinas
of diabetic mice and rats [78,80,156,157]. In addition, extracts of Polygonum cuspidatum, containing
resveratrol, have been shown to inhibit retinal vascular permeability and the loosening of the tight
junctions in diabetic rats [79]. In mice with CNV induced by laser photocoagulation, resveratrol
has been observed to significantly inhibit CNV growth [155,158] and reduce retinal neovascular
lesions in very low-density lipoprotein receptor mutant mice, which are characterized by retinal
neovascularization, by inhibiting VEGF expression as well as endothelial cell proliferation and
migration [159]. The potential antiangiogenic effects of resveratrol and its possible use in DR treatments
have been recently reviewed [160].

5.2. Flavonoid Polyphenols

Many of the microvascular changes and angiogenesis processes that occur in DR are inhibited
by treatment with different flavonoids. Quercetin has been reported to reduce VEGF and MMP-9
expression in the retinas of diabetic rats [161]. In experiments with the rhesus choroids-retina
endothelial cell line RF/6A, quercetin has also been reported to inhibit VEGF-induced endothelial cell
proliferation, migration, and tube formation, suggesting that it may efficiently inhibit choroidal or
retinal neovascularization [162,163].

Chrysin has been found to ameliorate diabetes-mediated microvascular and neovascular
abnormalities in studies with HRECs and with retinas of db/db mice. Indeed, it increases the stability
between endothelial cells by increasing ZO-1 and VE-cadherin expression and reduced vascular
permeability and vasoregression. Chrysin also restricts the phenomena of neovascularization and
prevents the onset of neovascular tufts. Its actions are likely to be mediated by inhibition of the
upregulated HIF-1α-VEGF-VEGFR2 axis [164]. In addition, intravitreally injected chrysin has been
found to exert an inhibitory effect on CNV in an experimental rat model [165].

Among the green tea catechins, epigallocatechin gallate treatment of ARPE-19 cells reduces VEGF,
VEGFR2, and MMP-9 mRNA expression and inhibits proliferation, vascular permeability, and tube
formation in VEGF-induced human retinal microvascular endothelial cells (HRMECs). In addition,
it also reduces BRB breakdown in VEGF-induced animal models [166]. Epicatechin has been reported
to reduce apoptosis and AGE accumulation in retinal vascular cells of intravenously AGE injected
rats [167]. Interestingly, green tea fractions have been reported to decrease neovascularization in the
OIR rat model; however, the active components of green tea displaying such effects do not seem to
contain catechins [168].
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Hesperetin in diabetic rats has been found to inhibit VEGF expression, decrease vascular
permeability and leakage, and restore the normal thickness of the basement membrane [169]. Another
flavanone compound, naringenin, has been reported to attenuate laser-induced CNV in rats [170],
an effect that is increased if naringenin is complexed with β-cyclodextrin, which improves naringenin
water solubility [171]. Belonging to the same class of flavonoids as hesperetin and naringenin,
eriodictyol has been described as being able to lower the retinal levels of VEGF, ICAM-1, and
endothelial nitric oxide synthase, which is involved in BRB breakdown, in STZ rat retinas [85].

Both the flavone glycoside baicalin, found in several plant species of the genus Scutellaria, and
the natural flavone luteolin, abundantly present in several plant products, including broccoli, pepper,
thyme, and celery, display antiangiogenic properties in models of retinal neovascularization. Indeed,
intravitreally-injected baicalin inhibits the growth of CNV in rats [172], while intravitreal luteolin
has been reported to inhibit retinal neovascularization in the mouse OIR model and to suppress
hypoxia-induced VEGF expression (via inhibition of HIF-1α) as well as VEGF-induced migration and
tube formation in HRMECs [173]. Similarly to baicalin and luteolin, deguelin, a derivative of the
isoflavonoid rotenone and a naturally occurring insecticide isolated from plants of the Mundulea sericea
family, effectively reduces both CNV and OIR neovascularization [174,175]. It has also been shown to
inhibit tube formation of human umbilical vein endothelial cells (HUVECs) and in vivo angiogenesis
of chick chorioallantoic membrane [174], which is consistent with deguelin antiangiogenic activity.
In addition, deguelin analogs have been recently produced which inhibit HIF-1α and reduce both
in vitro angiogenesis and neovascularization in the OIR model [176].

In line with the other flavonoids cited above, the naturally occurring homoisoflavonoids
cremastranone and homoisoflavanone, which are both found in Cremastra appendiculata, traditionally
known as a medicinal plant in East Asia, have been observed to reduce both CNV and
neovascularization in the OIR model, and to inhibit HMREC or HUVEC proliferation, migration, and
tube formation [177,178].

Chalcones are natural compounds which are present in edible plants. Intraperitoneal
administration of trans-chalcone in a mouse OIR model has been shown to significantly inhibit
neovascularization and VEGF as well as ICAM-1 upregulation [179]. In addition, intravitreal
administrations of isoliquiritigenin, from licorice root, have been observed to alleviate neoangiogenesis
in both the CNV and the OIR models, and suppress neovascularization in the corneal neovascularization
assay and VEGF-induced vessel growth in an ex ovo chick chorioallantoic membrane assay [180].

Blueberry anthocyanins are very effective in preventing the onset of microvascular damage. In the
retinas of diabetic rats treated with Vaccinium myrtillus extracts, VEGF levels have been seen to be
reduced, the expression of the tight junction proteins claudin-5, occludin, and ZO-1 is restored, and
BRB breakdown is prevented [181].

5.3. Carotenoids

Dietary lutein has been shown recently to promote a decrease in the extent of CNV induced by
laser photocoagulation in mice. This effect increases in an additive manner when lutein is administered
together with ω-3 long-chain polyunsaturated fatty acids and it is accompanied by reductions in
oxidative stress and in inflammatory mediators [182].

5.4. Saponins

Rk1 ginsenoside, a derivative of natural ginseng, has been implicated in the prevention of
pathological loss of vascular integrity thanks to its strong anti-vascular permeability action. Rk1
ginsenoside reduces leakage of retinal vessels in diabetic mice and, in HRMECs, inhibits endothelial
permeability caused by VEGF and other vasoactive factors such as thrombin and histamine [183].
Ginsenoside Re has also been reported to exert protective effects against vascular damage in the retinas
of diabetic rats [184].
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5.5. Other Compounds

In retinas of STZ rats, Lisosan G prevents VEGF upregulation and VEGFR2 stimulation,
as demonstrated by reduction of VEGFR2 phosphorylation. Consequently, the diabetes-induced
reduction of occludin and ZO-1 expression is also inhibited by Lisosan G. These effects result in
protection of the BRB, as evidenced by a dramatic reduction in vascular leakage in the retinas of STZ
rats treated with Lisosan G with respect to the retinas of control STZ rats [63].

Acetyl-11-keto-β-boswellic acid (AKBA) is an active principle derived from the plant Boswellia
serrata. It has been found to efficiently inhibit pathologic neovascularization in a mouse OIR model.
AKBA inhibits upregulation of VEGF expression, which is typical of OIR, likely by affecting the Src
homology region 2 domain-containing phosphatase 1/signal transducer and activator of transcription
3/VEGF axis [185].

Osteomeles schwerinae C. K. Schneid (Rosaceae) is a native plant in Asia. An ethanolic extract
of this plant, referred to as K24, has an inhibitory effect on AGE-induced retinal vascular leakage
by suppressing the expression of VEGF and decreasing occludin downregulation. In addition, K24
inhibits neovascular growth in retinas of OIR mice [186].

Extracts of Zingiber officinale orally administered to diabetic rats result in the normalization of the
retinal vessel diameter and reduction of basement membrane thickness [89]. Diabetes-induced BRB
breakdown is prevented with extracts of Zingiber zerumbet rhizome, containing principally kaempferol,
quercetin, curcumin, and zerumbone. An ethanol extract of the rhizome administered to diabetic
rats reduces vascular permeability and vessel dilation, favors an increase in tight junction protein
expression, reduces VEGF and pro inflammatory molecule expression, causes a decrease in adhesion
molecules such as ICAM-1, and alleviates leukostasis [187]. The vasoprotective effect of ginsenosides
is also observed when they are in combination with other compounds. For instance, Panax notoginseng
may be combined with other Chinese herbs, such as Salvia miltiorrhiza, Astragalus membranaceus,
and Scrophularia ningpoensis, to generate a compound called Fufang Xueshuantong, which causes
an improvement in microvascular lesions, induces decreases in VEGF and ICAM-1 expression and
BRB breakdown together with an increase in occludin expression [188,189]. Similarly, adding Panax
notoginsen to Dang Gui Bu Xue Tang, an aqueous extract of Radix Astragali and Radix Angelica sinensis
used in traditional Chinese medicine, reduces VEGF levels, occludin expression, vascular permeability,
leukostasis, and the number of acellular capillaries in the retinas of diabetic rats [190].

Another extract that may reduce vascular damage in DR is the fortified extract of red berries,
Ginkgo biloba, and white willow bark, as cited above. Indeed, in addition to inhibition of TNFα levels,
it also induces attenuation of VEGF upregulation in the retinas of STZ rats [95].

5.6. Relationships between Oxidative Stress, Inflammation, Neurodegeneration, and Vascular Damage

As discussed above, nutraceuticals display neuroprotective effects due to their antioxidant
and anti-inflammatory properties, as demonstrated in different experimental models of DR. These
same compounds, or compounds that have been demonstrated to possess antioxidant and/or
anti-inflammatory properties in other models, also protect the retina from the vascular damage
and vascular proliferation typical of DR. It is interesting to note that in studies analyzing VEGF in
DR models after treatment with neuroprotectants, decrease in apoptotic markers is always associated
with a decrease in VEGF expression and/or release (see for instance [12,63]). These observations
can be explained by assuming that those compounds also exert an independent regulation of the
VEGF biosynthetic pathways or of the cell response to VEGF, as suggested by the observed effects of
nutraceuticals on VEGF-induced endothelial cell proliferation, migration, and tube formation, or in
models of retinal neoangiogenesis. However, the existence of a causal relationship between neuronal
damage and vascular responses is a more likely hypothesis. Therefore, the effects of diabetes in the
retina may include an initial high glucose-induced oxidative stress that elicits an inflammatory response
and provokes damage of neurons and of other retinal cells. Neuronal suffering then would trigger
expression and release of VEGF, mainly from Müller cells, which would act as a neuroprotective factor.
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Indeed, VEGF has recognized neuroprotective properties, but its prolonged upregulation will induce
microvascular damage, BRB breakdown, and, in the long term, neoangiogenesis [3]. The assumption of
nutraceuticals from the earliest evidence of diabetes will strengthen the antioxidant power in the retina,
reducing oxidative stress and inflammation, with consequent protection from cell death, absence of
VEGF upregulation, and no induction of vascular changes (Figure 4).
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6. Clinical Studies

There are only a few clinical studies investigating the possible use of nutraceuticals for the
treatment of DR, and most of them have been focused on carotenoids. Randomized clinical trials
in patients with NPDR have shown that supplementation with lutein for three or for nine months
results in increased visual acuity and contrast sensitivity, while foveal thickness decreases, indicating
an alleviation of macular edema [191,192]. Similar results have been obtained in a placebo-controlled
randomized clinical trial with patients affected by diabetic maculopathy refractory to conventional
therapy, in which administration of 15 mg crocin tablets per day for three months caused a significant
improvement of both best-corrected visual acuity and central macular thickness [193]. In addition, Type
2 diabetes patients having a higher ratio of serum non-pro-vitamin A carotenoids (lutein, zeaxanthin,
lycopene) to pro-vitamin A carotenoids (α-carotene, β-carotene and β-cryptoxanthin) have shown
a 66% reduction in risk for DR [194]. Moreover, the optical density of the macular pigment, which
comprises the carotenoids lutein and zeaxanthin [49], has been reported to be lower in patients with
Type 2 diabetes than in age-matched controls, and still lower in patients with Type 2 diabetes and
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DR [195]. Finally, a retrospective study with Type 2 diabetic patients after two years of carotenoid
supplementation has suggested that carotenoids may have a beneficial effect on the macular function
of diabetic patients [196].

In addition to clinical studies on carotenoids, there are also a few papers which have reported the
use of other nutraceuticals in patients suffering from DR. For instance, a standardized phytosomal
curcuminoid mixture (Meriva®) greatly improves curcumin absorption [197], and in one study
38 diabetic patients treated with Meriva® showed improvements in diabetic microangiopathy and
retinopathy at four weeks post-treatment [198]. In addition, a recent study has investigated potential
beneficial effects of green tea. Indeed, a clinic-based, case-control study performed on diabetic patients
with Type 2 diabetes showed that those who regularly drank Chinese green tea every week for at least
one year in their lives had a DR risk reduction of about 50% compared with those who had not [199].

7. Bioavailability of Nutraceuticals

Bioavailability is a pharmacokinetic term referring to the fraction of bioactive compound
that reaches the blood circulation without undergoing alterations. The index of bioavailability
of nutraceuticals is important because it allows for the calculation of the right dose of nutraceutical
to ingest. For this reason, understanding the oral bioavailability of a nutraceutical compound is
as important as understanding its therapeutic potential. After ingestion, botanical compounds
must overcome a series of threats that may alter their structure before they can reach systemic
circulation, for instance, the environment of the gastrointestinal tract and the intestinal as well as the
hepatic metabolism. Unfortunately, many nutraceuticals have low oral bioavailability, and therefore
investigations to improve this aspect are of fundamental importance. Recently, significant steps
forward have been made to develop new technologies using analogous compounds, nanoformulations,
or nanoparticles, which may protect the nutraceutical from enteric adverse conditions [200–203].

Curcumin is characterized by poor bioavailability mainly due to low solubility, rapid metabolism
and poor absorption, which, despite its medical efficacy, limits its clinical applications [204]. Conjugation
of curcumin to metal oxide nanoparticles or encapsulation in lipid nanoparticles, dendrimers, nanogels,
or polymeric nanoparticles, improves the water solubility and bioavailability of curcumin, thus
increasing its pharmacological effectiveness [76]. The encapsulation of curcumin in the calix [4] arene
nanoassembly limits curcumin degradation and increases its solubility, enhancing the effect of the
compound on antioxidant and anti-inflammatory markers in both in vivo and in vitro models [205].
Similar results have been obtained using a different nanocarrier formulation comprising Pluronic-F127
stabilized d-α-Tocopherol polyethene glycol 1000 succinate nanoparticles [206]. A recent study has
reported that, among different tested curcumin formulations, only that containing a hydrophilic carrier
may provide therapeutic levels of curcumin in rabbit retinas [32].

Resveratrol, similarly to curcumin, is known for its poor oral bioavailability and scarce
pharmacokinetic properties due to low aqueous solubility and low photostability, which compromise
its great potential. In fact, as shown by pharmacokinetic studies, the levels of unmetabolized
resveratrol after oral administration are reduced to about 1% due to its high intestinal and hepatic
metabolism [207]. To solve this problem, different resveratrol nanoformulations have been tested,
including liposomes, solid lipid nanoparticles, polymeric nanoparticles, and cyclodextrins. The use
of these alternative administration methods generates different advantages because they improve
solubility, bioavailability, and physical chemical stability, and favor a controlled drug release [208–210].
The use of resveratrol analogs could be another alternative choice for administration of this nutraceutical.
The pharmacokinetic profiles of resveratrol and its analog perolstilbene have been analyzed in rats,
showing that the bioavailability of perolstilbene was 80% and that of resveratrol 20% [211]. A summary
of oral delivery systems for resveratrol has recently been published [160].

Nanoparticles can also be used to increase the bioavailability of epigallocatechin gallate, another
nutraceutical characterized by low solubility and stability. Different nanosystems have been used
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for epigallocatechin gallate delivery, including liposomes, gold nanoparticles, inorganic nanocarriers,
and lipid as well as polymeric nanoparticles [212,213].

A recent study has reported that the distribution of an orally administered nutraceutical may vary
substantially depending on tissue type. Indeed, in a pilot study, 13C-lutein was detected in a variety
of tissues in a rhesus macaque after a single oral administration, but not in the retina [214]. Some
improvement in lutein delivery to ocular tissues may derive from lutein encapsulation into hyaluronic
acid-coated PLGA nanoparticles, which have been demonstrated to efficiently bind ARPE-19 cells and
improve the physicochemical properties of lutein [215].

8. Conclusions

A review of the effects produced by the administration of nutraceuticals in DR-related models
indicates that all of the pathologic conditions seen in DR, including oxidative stress, inflammation,
neurodegeneration, and vascular lesions can be alleviated by many of these natural compounds. There
is evidence suggesting that oxidative stress, induced by diabetes through different pathways, might
promote inflammation and cause neurodegeneration. Neuronal suffering, in turn, would trigger
VEGF upregulation, causing subsequent vascular damage. Therefore, it appears that an increased
antioxidant defense, if established before extended neuronal and vascular lesions, could reduce
the subsequent pathological changes. A continuous supplementation of nutraceuticals with diet
could afford a sufficient antioxidant power, and nutraceutical-based approaches may be the most
efficacious, economic, and sustainable treatments to limit or even prevent the development of DR in
diabetic subjects.

Despite this attractive perspective, however, clinical studies examining the real potential of
nutraceuticals to ameliorate DR are still very limited in number. This is probably due the fact that it is
not totally clear whether nutraceuticals should be tested to treat DR or to prevent DR. The evidence
reported in this review has led us to hypothesize a chain of events (see Figure 4) that could be
prevented by nutraceuticals; nutraceuticals may not be as efficient in treating the disease once it has
been established. When investigating the preventative value of nutraceuticals, clinical studies are
probably more difficult to organize and would require considerably long time periods.

Another reason for limiting clinical studies is likely the poor bioavailability of most nutraceuticals.
As long as efficient delivery methods are not available for nutraceuticals to exert significant biological
action in the retina, it will be difficult to design meaningful clinical investigations. Studies investigating
new strategies for nutraceutical delivery, mainly based on nanoformulations, are very recent (they
have appeared in the last ten years), and hopefully in the near future new research may fill this gap
and promote new clinical experimentation of nutraceuticals.
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