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Abstract. Approximately one third of soft tissue tumors are 
characterized by chromosomal aberrations, in particular, 
translocations and amplifications, which appear to be highly 
specific. The identification of fusion transcripts not only 
supports the diagnosis, but provides the basis for the devel-
opment of novel therapeutic strategies aimed at blocking the 
aberrant activity of chimeric proteins. Molecular biology, 
and in particular, cytogenetic and qualitative and quantita-
tive polymerase chain reaction technologies, allow with high 
efficiency and specificity, the determination of specific fusion 
transcripts resulting from chromosomal translocations, as 
well as the analysis of gene amplifications. In this review, 
various molecular techniques that allow the identification of 
translocations and consequent fusion transcripts generated are 
discussed in the broad spectrum of soft tissue tumors.
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1. Introduction

Soft tissue sarcomas are a complex group of rare mesenchymal 
lesions, many of which are distinguishable from the others 
only through careful histological and ultramicroscopic inves-
tigations. Their diagnosis is problematic due to their rarity; 

15-20% of these sarcomas are poorly differentiated, with a 
wide cellular variety that makes their classification difficult. 
In addition, histological subtypes which are morphologically 
similar present cytogenetic and molecular differences that 
influence the prognosis.

Sarcomas are generally classified on the basis of tumor cell 
line differentiation rather than on the type of tissue from which 
they arise. A number of histotypes of differentiated tumor 
cells have been identified: adipocyte differentiation, fibroblast/
myofibroblast differentiation, fibrohistiocytic differentiation, 
smooth/skeletal muscle differentation, tumors of uncertain 
differentation and a separate group which includes Ewing's 
sarcoma (ES). However, not all histological types described 
present specific chromosomal alterations. For this reason, 
they are often grouped into ‘sarcomas with specific genetic 
alterations’ and ‘sarcomas with no specific genetic altera-
tions’ (Fig. 1). In pleomorphic sarcomas, only cytogenetic and 
molecular biology allow a correct diagnosis, identifying 
specific chromosomal and molecular rearrangements (1).

Thus, the combination of morphological and molecular 
techniques represents an important progress, not only for a 
more adequate diagnostic definition, but also for the prog-
nostic and therapeutic indications of these malignancies. 
Comparative genomics, in situ hybridization and gene array 
analysis allowed the rapid acquisition of the fundamentals 
of the biology/genetics of sarcomas (2). However, these tech-
niques are not affordable for all laboratories. The cytogenetic 
techniques (Fig. 2a) and those associated with polymerase 
chain reaction (PCR) technology (Fig. 2b and c) have instead 
allowed us to extend the possibility to identify gene transloca-
tions/amplifications specific for these tumors in all diagnostic 
pathology laboratories, making the costs and methods more 
affordable for all.

In this review, we summarize not only all known chromo-
somal aberrations associated with soft tissue tumors, but also 
the different methods that help identify them and characterize 
the fusion transcripts produced.

2. Adipocytic tumors

Lipogenic tumors represent a heterogeneous group of lesions, 
mainly represented by liposarcomas. Among the principal 
histological subtypes of liposarcoma, myxoid liposarcoma 
(MLS) is the second most common, followed by well-differ-
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entiated liposarcoma (3), that have not been implicated in such 
chromosomal translocations or fusion genes.

Lipoblastoma. Lipoblastomas are pediatric neoplasms, typi-
cally benign lesions, composed of adipose cells in different 
stages of maturation within a variably myxoid matrix, and they 
contain clonal rearrangements of chromosome band 8q12. In 
lipoblastomas, several chromosomal rearrangements have 
been described, involving the pleiomorphic adenoma gene 1 
(PLAG1) oncogene. In particular, it was shown that the hyal-
uronic acid synthase 2 (HAS2) or collagen 1 α2 (COL1A2) 
gene promoter regions are fused to the entire PLAG1 coding 
sequence (4). The PLAG1 status was investigated through 
in situ hybridization techniques, particularly fluorescence 
detection [fluorescence in situ hybridization (FISH)] and 
chromogenic detection [chromogenic in situ hybridization 
(CISH)] (5).

MLS. The non-random reciprocal translocation t(12;16)(q13;p11) 
is a characteristic of MLS (6,7). FISH is an alternative to 
ancestral cytogenetic methods, using painting probes against 
the centromeres of chromosome 12 metaphases and interphase 
nuclei (8-10). Early studies using FISH relied on the use of cosmid 
probes derived from YAC clones, which map at the CHOP 
locus (11,12). Currently, centralized laboratories specialized in 
FISH for the diagnosis of sarcomas, use dual-color, break-apart 
FISH probes spanning the genomic regions of FUS (16p11) 
(Vysis Inc., Downers Grove, IL, USA) (13,14).

Using Southern blot techniques, in samples with cytoge-
netic rearrangements in the region 12q13, it has been shown that 
CHOP/DDIT3 t(12;16)(q13;p11) is the gene involved in trans-
location (15). A chimeric transcript between the CHOP gene, 
which encodes a transcription factor, and the gene TLS/FUS 
that localizes in the region 16p11, is produced (16,17). The 
protein FUS/TLS interacts with several nuclear receptors and 
specific transcription factors. Through RT-PCR (18), different 
variants of the fusion transcript FUS/CHOP can be detected. 
The most frequent variants are the I and II variants, which 
are generated by alternative splicing between exon 2 of CHOP 
and exons 5 and 7 of the FUS gene (19-22). The different 
expression profile of the transcript FUS/CHOP has also been 
revealed by nested-PCR (23,24) or nested-PCR and direct 
sequencing (25,26) in frozen or paraffin-embedded biopsies. 
Cloning studies have demonstrated that the different variants 
have similar activities in transforming mesenchymal cells 
using the same molecular pathways (27).

Real-time PCR is a more specific and sensitive technique 
for both frozen and formalin-fixed, paraffin-embedded (FFPE) 
tissues (28). The TLS-CHOP chimeric product is also capable 
of promoting the development of MLS and tumorigenesis 
through the repression of the expression of a microRNA, 
miR-486, as demonstrated in studies on cloned cell lines from 
NIH3T3 fibroblasts and MLS tissues (29).

MLS can also present the t(12; 22)(q13,q12) aberration 
with its chimeric transcript EWS/CHOP fusion between 
exon 7 of the EWS gene and exon 2 of CHOP. FISH is an 
excellent method for detecting the presence of gene rear-
rangements in CHOP, but RT-PCR is the only method able 
to detect fusion partners, FUS or EWS (30,31). Patients who 
exhibit these fusion products show a more favorable clinical 

history compared to other patients positive for transcripts and 
different variants. Therefore, a correct diagnosis also related to 
biomolecular data is important, particularly in cases where the 
myxomatous change is minimal compared to their dominant 
counterparts which resemble pleomorphic malignant fibrous 
histiocytoma (32).

3. Fibroblastic/myofibroblastic tumors

Fibrosarcoma is a primary malignant tumor composed of 
immature fibroblasts. Several forms are recognized: infantile 
fibrosarcoma, which presents at birth or in early childhood, 
identical to the adult form apart from the clinical course and is 
much more favorable, as well as dermatofibrosarcoma protu-
berans (DFSP).

Infantile fibrosarcoma. Infantile fibrosarcoma has the same 
characteristics of benign lesions of childhood, such as infantile 
fibromatosis and myofibromatosis (33). The specific translo-
cation t(12;15)(p13;q25) (34), which makes the differential 
diagnosis possible, was identified by cytogenetic techniques 
and cloning of chromosome break sequences. FISH is a 
specific method, although more costly, and can be used to 
determine the status of chromosomal rearrangements of the 
regions 12p13 and 15q25 (35). Early studies were carried out 
using FISH probes or chromosome-specific bacterial artifi-
cial chromosome (BAC) clone probes (36). These were then 
replaced by commercial probes for dual-color fusion, the Ets 
variant 6 (ETV6) gene (Abbott Molecular, Inc., Des Plaines, 
IL, USA) (37).

The translocation generates a fusion transcript ETV6- 
neurotrophic tyrosine kinase, receptor, type 3 (NTRK3). The 
ETV6 gene is localized on chromosome arm 12p13, while 
the NTRK3 gene is in the chromosomal region 15q25 (38). 
Techniques of cloning and sequencing have shown that the 
fusion occurs between exon 5 of the ETV6 gene and exon 13 of 
the NTRK3 gene (38,39). Reverse transcriptase PCR (RT-PCR) 
is a specific method, fast and economical, for determining the 
presence of the fusion gene, ETV6-NTRK3, in fresh tissue 
samples or archived material (40-42).

DFSP. DFSP is a rare variant that is derived from the fibrous 
component of the dermis and grows slowly, forming ulcers on 
the skin and subcutaneous tissues. The translocation t(17;22)
(q22;q13) is highly specific for DFSP and can generate a 
chimeric transcript COL1A1/platelet-derived growth factor 
subunit B (PDGFB) and a supernumerary ring chromosome, 
r(17,22) (43,44).

Early studies on the detection of chromosomal transloca-
tions by FISH, were based on chromosome painting and 
α-satellite probes. Later studies reported the use of a dual-color 
dual-fusion BAC probe for COL1A1/PDGFB translocation, 
obtained by cloning vectors, BACs, covering the PDGFB gene 
entirely. In this manner, the different variants of the chimeric 
transcript were identified (45,46). Currently, commercial 
FISH probes are available, e.g., ZytoLight-SPEC COL1A1-
PDGFB Dual Color Dual Fusion Probe (ZytoVision GmbH, 
Bremerhaven, Germany) (47). Different methods, such as 
Southern blot analysis, RT-PCR and FISH, based on frozen 
tissue specimens or using archival FFPE tumor samples have 
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shown that COL1A1/PDGFB chimeric genes are present in all 
cases of DFSP (43,48,49).

Finally, to detect the copy number changes on the chromo-
somal regions, 17q and 22q, comparative genomic hybridization 

(CGH) studies have been performed, and have confirmed 
the amplification of 17q, but not always that of 22q (50,51)1. 
The breakpoint is at the level of exon 2 of PDGFB in the 
region 22q, but may involve several exons of the COL1A1 gene 

Figure 1. Schematic representation of soft tissue tumors, grouped on the basis of cell line differentiation, with chromosomal translocations and chimeric 
proteins produced.

Figure 2. Different methods for gene translocation detection: (a) fluorescence in situ hybridization (FISH) (Vysis LSI CHOP Dual Color Break-apart 
Rearrangement Probe in a myxoid liposarcoma sample); (b) RT-PCR (fusion transcript of 195 bp in a myxoid liposarcoma sample); (c) real-time PCR (ampli-
fication curves associated to fusion transcripts in several myxoid liposarcoma samples).
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in the region 17q, such as exons 8, 10, 22, 24, 27, 32, 34, 38, 40, 
45, 46 and 47, as shown by RT-PCR followed by sequencing 
analysis (52,53). The same methodology has allowed to identify 
additional variants of chimeric transcript, such as the one due to 
fusion at the level of exon 2 of PDGFB with COL1A1 gene but 
at the level of exon 41 (54). All possible variants of the fusion 
transcript can be detected using either multiplex RT-PCR (55) 
or FISH on paraffin-embedded tissues (46).

Real-time PCR provides a more sensitive alternative for 
analyzing the presence of the fusion transcript or the ampli-
fication of the regions affected by the rearrangement in fresh 
tissue or archived samples (56). Real-time PCR also allows the 
quantification of mRNA transcripts and the PDGFB chimeric 
gene, which is overexpressed compared to benign counterparts 
(normal tissue or dermatofibroma) (57,58).

4. Skeletal muscle tumors

Rhabdomyosarcomas originate most often in striated muscles 
at the level of the arms and legs and are more common 
in children than in adults. Three main forms are known: 
polymorphous rhabdomyosarcoma and alveolar rhabdomyo-
sarcoma in adults, and embryonal rhabdomyosarcoma, which 
is more common in children. The tumor is ubiquitous and the 
most common sites are the arms, but also the head and neck, 
the urogenital tract and retroperitoneum. The progression is 
extremely aggressive, with a great tendency to recurrence and 
metastasis. The alveolar variant tends to have a worse prog-
nosis than the embryonal variant.

Alveolar rhabdomyosarcoma. Two chromosomal translo-
cations, t(2;13)(q35;q14) and t(1;13)(p36;q14), are present 
in approximately 80% of all alveolar rhabdomyosarcoma 
cases (59-61).

The presence of t(2;13) in rhabdomyosarcoma cell lines 
was demonstrated by ancillary approaches, such as clas-
sical cytogenetics and FISH, using painting cosmid probes 
labeled with digoxigenin and biotin on both metaphases and 
interphase nuclei (62). t(2;13)(q35;q14) was firstly detected by 
FISH on interphase nuclei in minimally invasive biopsies of 
patients treated with neoadjuvant chemotherapy and then on 
non-suitable tumor material. In early hybridization studies, 
two cosmid clones were used in interphase cells with inserts of 
regions proximal or distal to the 13q14 breakpoint and a yeast 
clone with the inserted region distal to the 2q35 point (63). 
Present commercial dual-split-signal color FISH probes 
(Abbott Molecular) are more sensitive and specific to chimeric 
products, due to the two translocations involving the 13q14 
region (64,65).

Studies on cDNA cloning and sequencing have shown that 
t(2;13)(q35;q14) produces a fusion transcript between the paired 
box 3 (PAX3) gene and FKHR gene, respectively (66,67); the 
PAX7-FKHR fusion transcript results from the t(1;13) trans-
location (68).

However, the survival and mortality rate in metastatic 
patients depend on the rearrangement type: the 4-year survival 
rate is 75% for patients with PAX7-FKHR vs. 8% for those 
with PAX3-FKHR. If PAX3-FKHR is expressed, there is a 
significant risk of death (P=0.019); besides, these patients may 
present bone marrow involvement (69).

The technical related issues associated with FISH in the 
diagnosis of alveolar rhabdomyosarcoma in children have 
been avoided by using RT-PCR, although this method is less 
sensitive than FISH (70,71); however, the chimeric transcript 
PAX3/FKHR has been detected in cell lines and in fresh tissue 
samples and FPPE samples using only very small amounts of 
tumor tissue (72,73). With multiplex RT-PCR it is also possible 
to calculate the residual disease (74) and allows the differential 
diagnosis of alveolar rhabdomyosarcoma and ES (72).

The presence of both translocation t(2;13)(q35;q14) and 
t(1;13)(p36;q14) products is detected with specific primers for 
the regions flanking the breakpoints in 13q and 1p, as well as 
for 2q (75), with RNA extracted from fresh or frozen tissue 
and formalin-fixed, paraffin-embedded tissue samples (76). 
The quality of the extracted RNA and the absence of specific 
primers for unusual variants are the technique limitations, 
but certainly the problems related to RNA quality will be 
reduced with fresh or frozen meterial or with the increase in 
the number of neoplastic cells after laser capture microdissec-
tion (77). The specificity of the test is very high (94-100%), 
compared to electrophoresis on an agarose gel. Discordant 
data have been obtained by analyzing the same samples by 
Southern blot analysis (78). A correct diagnosis also requires 
ancillary data, such as clinical history, immunohistochemistry 
and histology, while the uncertain cases may require further 
FISH investigation.

Multiplex fluorescent analysis of chromosomal transloca-
tions (MFACT) is another alternative method which can be 
used in place of conventional RT-PCR. This method has the 
advantage of completely eliminating the manipulation of the 
PCR products and thus it greatly reduces the risk of cross-
contamination (79).

Real-time PCR using a hydrolysis probe, is a highly sensi-
tive and specific method that reveals and further quantifies 
the chimeric transcripts PAX3-FKHR and PAX7-FKHR in 
the peripheral blood of patients, yielding similar results to 
nested-PCR. Patients positive for the fusion transcripts are at 
high risk of tumor progression (80). An initial screening for 
immunohistochemistry helps to select patients for molecular 
investigations, since it has been shown that only patients with 
alveolar rhabdomyosarcoma and not those with the embryonic 
phenotype that present with >50% of cells immunoreactive for 
myogenin, show the rearrangement of PAX (81).

5. Tumors of uncertain differentiation

Tumors that escape histological classification, as they lack a 
definite differentiation from a certain type of mesenchymal 
tissue, are encompassed in this category. They mostly occur 
between the ages of 15 and 40 years and are more common in 
males.

Synovial sarcoma. Synovial sarcoma is the most common 
lesion in this group. The peak of incidence is the third decade 
of life, and the male/female incidence ratio is approximately 
1.2:1. Synovial sarcoma can be mono- or biphasic and the 
difference is at the histopathological level: biphasic synovial 
sarcoma presents with epithelial and spindle cells, while 
monophasic synovial sarcoma almost always presents with 
spindle cells.
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The t(x;18)(p11.2;q11.2) translocation has been observed 
in patients with this neoplasm, often as a unique cytogenetic 
abnormality (82), for which the SYT gene on chromosome 18 
is juxtaposed to one of the two genes related, SSX1 or SSX2, 
but distinct on chromosome X (83,84).

The first cytogenetics and FISH studies on paraffin-embedded 
samples were performed using centromeric probes together 
with whole chromosome painting probes for chromosomes X 
and 18 (85). The translocation (X;18)(p11;q11) breakpoint has 
been demonstrated by both Southern blot analysis and FISH 
analysis using specific yeast artificial chromosome (YAC) 
probes (86,87). Dual-color break-apart probes, synthesized by 
cloning the breakpoint regions of interest in BAC clones and 
labeled with fluorescein-12-dUTP and TexRed-5-dUTP, were 
very useful in CISH and FISH (88). Currently, interphase 
FISH is performed on fixed, paraffin-embedded tissues using a 
commercially available LSI SS18 dual-color break-apart probe 
(Abbott Molecular/Vysis Inc.), a more specific and sensitive 
probe than non-commercial CISH probes (89,90).

The SS18-SSX chimeric product was detected even in 
FFPE samples by ISH using biotinylated tyramide and probes 
labeled with digoxigenin specific for the cDNA. The method 
produces signals in epithelial cells of biphasic sarcomas, with 
mild or focal positivity in monophasic tumors (91).

RT-PCR has a specificity of 100% with a sensitivity of 96% 
for the detection of the fusion transcript in paraffin-embedded 
lesions with the t(X;18) (SYT-SSX) translocation, limited only 
by the use of particular fixatives that produce a poor quality 
of extracted RNA (92,93). The molecular analysis evaluates 
the incidence of molecular variants, using sets of specific 
primers for SS18-SSX1 and SS18-SSX2; however, a statisti-
cally significant association between histological subtype 
(monophasic vs. biphasic) and SSX1 or SSX2 (94) has not been 
found. New variants for both SS18-SSX1 and SS18-SSX2 have 
been shown by sequencing the products of RT-PCR (95-97).

FISH and RT-PCR investigations are useful and necessary 
in those cases where the differential diagnosis between syno-
vial and other spindle cell sarcomas (98) is difficult.

The fusion transcripts are detected and quantified by 
real-time RT-PCR, more sensitive and rapid than RT-PCR, 
using specific primers and TaqMan fluorescent probes 
complementary to the breakpoints in the genes involved in 
the translocation (99-101). Multiplex real-time PCR analyzes 
all variants of chimeric transcripts together, using appropriate 
sets of primers and probes: SS18-SSX1 has been shown to be 
present in both monophasic and biphasic synovial sarcomas 
more frequently than the SS18-SSX2 variant. They are mutu-
ally exclusive (102).

Clear cell sarcoma (CCS). CCS is a malignancy that can be 
morphologically confused with non-cutaneous melanoma as 
it presents the same immunophenotype. The differential diag-
nosis is possible thanks to the translocation t(12;22)(q13;q12), 
for which the chimeric gene EWSR1/ATF1 is formed in 
melanocytic tumors of soft tissues. Less commonly, CCS can 
be marked by t(2;22)(q34;q12), which produces the fusion 
transcript, EWSR1/CREB1, typical of gastrointestinal CCS, 
but that can also characterize CCS of soft tissue (103).

In order to characterize the translocation and its chimeric 
product, the first studies were conducted on cell lines, such as 

KAO, obtained from a girl of 9 years, or the HS-MM. mela-
noma cells, which were used as negative controls for t(12;22); 
CCS cells alone have been shown to be positive for the translo-
cation and the EWS/ATF1 fusion gene, analyzed by FISH and 
RT-PCR, respectively (104).

Nowdays, slides of FPPE samples and tumor microarray 
(TMA) are routinely analyzed by interphase FISH with commer-
cial probes LSY EWS dual-color break-apart (Vysis Inc.) and 
the positive cases can be analyzed by RT-PCR to determine 
the type of chimeric transcript EWS ATF1 (105,106). All cases 
of melanoma are negative to FISH for the same region, the 
22q12 (107).

Four variants of the fusion transcript are detected by 
RT-PCR and sequencing, due to different breakpoints in the 
relevant gene regions: three subtypes are due to in-frame fusion 
and are type 1, 2 and 3, due to the fusion-EWS exon 8 and ATF1-
exon 4, EWS-ATF1-exon 7 and 5, and EWS-ATF1-exon 10 
and 5, respectively; the subtype 4 is due to the out-of-frame 
fusion of the region with exon 7 of EWS and exon 7 of ATF1. In 
addition to these four main transcripts, which may also occur 
together, there can be out-of-frame fusion between exon 10 of 
EWS and 3 of ATF1, or between exon 8 of EWS and 4 of ATF1, 
with insertion of nucleotides at the junction point (108,109). 
RT-PCR is performed using extracted RNA from either frozen 
or FFPE tissue (110).

Real-time PCR is much more sensitive than classical 
RT-PCR, and is highly specific and very helpful in the differ-
ential diagnosis of melanoma, on fresh or frozen or FPPE 
samples (111).

Desmoplastic small round-cell tumor (DSRCT). DSRCT is a 
rare and aggressive malignancy, with typical localization to 
serosa of the abdominal-pelvic peritoneum, with a male/female 
incidence ratio of 4:1 and occurs during adolescence or early 
adulthood. In 40% of patients, it metastasizes to the liver, 
lungs and lymph nodes.

The tumor shows epithelial and mesenchymal properties 
and neural differentiation, and the cells present the translo-
cation t(11;22)(p13;q12), which juxtaposes the gene, EWSR1, 
to the tumor suppressor gene, WT1 (112,113), whose identi-
fication in specialist laboratories is very helpful for a correct 
differential diagnosis, complicated by similarities with other 
small round cell tumors. The fusion protein EWSR1/WT1 acts 
as a potent transcriptional activator (114).

In clinical diagnostics of FFPE tissue sections, interphase 
FISH is routinely performed with a commercially available 
EWSR1 (22q12) dual color, break-apart rearrangement probe, 
but the t(11;22) is also found in 90% of EWS/primitive neuro-
ectodermal tumor (PNET) and CCS cases (105).

The biological differences between DSRCT, ES and CCS 
can be explained by the presence of the different partners in the 
EWS gene translocation. Studies using Southern blot analysis, 
multi-enzymatic digestion and northern blot analysis have 
demonstrated that gene rearrangement in the region 22q12 
produces the fusion of the EWS gene on 11p13 with WT1, 
the gene involved in Wilms tumor. RT-PCR, with the use of 
a primer for exon 7 of EWS and primers for exons 8 or 9 of 
WT1, confirmed the data (115). The chimeric mRNA is due 
to an in-frame fusion of the amino-terminal domain of EWS 
with the zinc-finger DNA-binding domain of WT1, which can 



CERRONE et al:  MOLECULAR APPROACH FOR SOFT TISSUE TUMOR DIAGNOSIS1384

undergo alternative splicing (116). Chromosomal translocation 
and fusion with EWS affect two independent biochemical 
functions of WT1, binding activity to DNA and transcriptional 
regulation, a deregulation that influences tumorigenesis in 
intra-abdominal DSRCT (114,117).

The variability in the breakpoint EWS produces molecular 
variants of the fusion gene EWS-WT1, as happens for the 
chimeric gene EWS-FLI1 in ES, such as an in-frame splicing 
of exon 9 of EWS to exon 8 of WT1, a variant found in a 
DSRCT unusually arising on hand, or an in-frame junction of 
EWS to exons 8-10 of WT1 (118).

To differentiate DSRCT from EWS/PNET, when the 
genetic information is not available, immunohistochemistry 
is recommended with an anti-WT1 antibody, highly specific 
and sensitive, that is a reliable index for the presence of the 
EWS-WT1 chimeric product (119).

RT-PCR can detect all chimeric messages that are formed 
by fusion between exons 1-7 of EWS and exons 8-10 of 
WT1 (120). Multiple in-frame cDNA can be also detected. It is 
produced by large internal deletions, insertions of small parts 
of heterologous DNA at the site of the junction between the 
two exons EWS and WT1, or the loss of exon 6 of EWS or 
exon 9 of WT1. The molecular diversity and functionality of 
these fusion transcripts may have significant biological impli-
cations for their tumorigenic potential (121).

Inflammatory myofibroblastic tumor (IMT). IMT is a 
mesenchymal tumor that presents with fibroblastic and 
myofibroblastic spindle cell proliferation mixed with lympho-
cytes, plasma cells and histiocytes (122). It can commonly 
occur in children, teenagers and adults under the age of 40. 
It was described for the first time in lungs and remains the 
most frequent mesenchymal endobronchial tumor in child-
hood (123). IMT can localize in any anatomical site, but it 
rarerly occurs in the liver. The lesion often presents with 
ambiguous morphological, structural and vascular properties, 
since it has both an inflammatory and neoplastic nature and 
therefore, diagnosis can be difficult.

Cytogenetic analysis has revealed clonal chromosomal 
abnormalities exhibiting the neoplastic nature of the disease. 
Approximately half of inf lammatory myofibroblastic 
tumors present rearrangements of the locus of the anaplastic 
lymphoma kinase (ALK) gene on chromosome 2p23, resulting 
in the aberrant expression of ALK. FISH of interphase nuclei 
of FPPE samples were carried out using a commercial dual-
color (red and green) ALK probe (Vysis Inc.), that labeled 
at telomeric region in SpectrumOrange and at centromeric 
region in SpectrumGreen of chromosome 2 (124,125). FISH 
leads to a correct diagnosis of IMT, even in cases in which the 
inflammatory component is minimal and during prenatal life 
as well (126). It is also possible to perform FISH on samples of 
fine needle aspiration (FNA) or endoscopic ultrasound-guided 
FNA (EUS-FNA) (127,128).

The disease can also present morphological characteristics 
of other similar lesions, such as child congenital fibrosar-
coma (CIFS) and hemangiopericytoma, but the identification 
of the present transcript fusion by RT-PCR facilitates the 
correct diagnosis (129,130).

ALK, which is normally downregulated in neural tissues, 
is overexpressed in IMT cells with the 2p23 rearrangement, in 

which the N-terminal domain of tropomyosin (TPM) is fused 
to the C-terminus of ALK. Cloning studies have shown two 
fusion products, TPM4-ALK and TPM3-ALK, which encode 
for oncoproteins with constitutive kinase activity (131,132). 
RT-PCR seems the best method to identify the ALK fusion 
transcripts (133,134).

ALK can be also fused with clathrin heavy chain (CTLC), 
a gene localized to 17q23; however, patients that are t(2;17) 
positive show other abnormal karyotypes as well (135).

RT-PCR with specific pairs of primers and direct sequencing 
of the amplification products have also enabled the identifica-
tion of new partners of ALK, such as dynactin-1, when the 
alteration der(2) t(2;12)(p23;q11) is present (136), or when the 
SEC31L1/ALK fusion gene, due to translocation t(2;4)(p23;q21), 
is present in two variants of different lengths (137).

A partial response by the inhibitor of ALK, crizotinib, has 
been reported in a patient with inflammatory myofibroblastic 
tumor with ALK translocation (138,139).

Alveolar soft-part sarcoma (ASPS). ASPS represents approxi-
mately 0.5-1% of soft tissue sarcomas and typically develops 
in adolescents and young adults; in children the localization 
is typical on the head and neck (140,141). Although growth is 
indolent, up to 79% of patients develop metastatic disease, since 
a significant percentage of them is resistant to conventional 
chemotherapeutic drugs. The development of chemoresistant 
metastases contributes to the increase in the mortality rate.

The translocation der(17)t(X;17)(p11;25) is the ASPS 
biomolecular marker (142) that causes the fusion of the tran-
scription factor, TFE3, on Xp11.22, with a novel gene on 17q25, 
termed ASPL (ASPSCR1). The chimeric product, ASPL-TFE3, 
acts as a transcription factor and induces an aberrant transcrip-
tion of genes regulated by TFE3 (143,144).

The translocation is confirmed by dual-and triple-color 
FISH on metaphases and interphase nuclei (145). Early studies 
of fluorescence in situ were performed using YAC and cosmid 
probes from the genomic regions of interest (146).

RT-PCR can be performed on frozen and FPPE tumor 
tissue to detect the presence of the resulting ASPSCR1-TFE3 
fusion transcripts and its variants. The location of the 
fusion transcript, if present, leads to the proper diagnosis of 
ASPS, previously considered as a subgroup of RCC in chil-
dren (147,148). The chimeric products of t(X;17)(p11;25) are 
detected by nested RT-PCR, which is more sensitive, also in 
circulating tumor cells in peripheral blood of ASPS patients 
with distant metastases (149).

Preliminary clinical studies have shown that patients with 
ASPS positive for der(17)t(X;17)(p11;25) respond to treat-
ment with trabectedin, the only currently available clinical 
drug which has shown to be effective in the treatment of this 
disease (150).

Extraosseous myxoid chondrosarcoma (EMC). EMC presents 
strings of small acidophilic cells similar to chondroblasts in a 
myxoid stroma, and occurs particularly in the lower extremities, 
particularly in the fifth decade of life with a male/female inci-
dence ratio of 2:1 (151). Patients may have long-term survival; 
however, local recurrences and metastases occur in approxi-
mately half of the cases, commonly in the lungs (152-154). 
Unlike bone chondrosarcoma, EMC behaves in a less aggres-
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sive manner. Therefore, it is deemed as two prognostically 
distinct entities (152).

Previous cytogenetic data have included a translocation 
t(9;22)(q22-31;q12), that produced the EWS/CHN chimeric gene 
and showed complex karyotypes (155,156). The translocation 
t(9;17)(q22;q11.2) is less frequent and combines with the CHN 
RBP56 gene, also known as TAF15, TAF2N or TAFII68 (157). 
A third translocation was also identified, typical of EMC, but 
less common, affecting chromosomes 9 and 15 and forming 
the chimeric gene, CHN/TCF12. Gene TCF12, also known as 
HTF4, presents different isoforms by alternative splicing and 
the breakpoint affects the region of intron 5 (158,159). Further 
molecular analyses have revealed additional chromosomal aber-
rations that can aid in the diagnosis of EMC, identifying other 
chimeric variants, such as the fused trascript TFG (TRK-fused 
gene)/CHN associated with t(3;9)(q11-q12;q22) (156,160,161).

The translocation occurs due to different breakpoints in 
various introns of the gene, EWS and CHN (termed NR4A3, 
NOR1 or TEC) (162), resulting in different variants of the 
chimeric products, EWS/CHN. The most frequent are: type 1, 
for the fusion between exons 12 of EWS and 3 of CHN, and 
type 5, between exons 13 of EWS and 3 of CHN. The chimeric 
gene RBP56/CHN is always formed by fusion between exons 6 
of RBP56 and 3 of CHN. The mapping of the different regions 
of breakpoints in the EWS and CHN genes has shown that 
there are no sequence-specific recombinases or homology to 
explain the various breakpoints, due to other associated events 
such as deletions, duplications and inversions (163).

In FISH on formalin-fixed, FNA biopsy and paraffin-
embedded tissues, using commercial LSY EWSR1 (22q12) 
dual-color, break-apart probe (Vysis Inc.), it is possible to 
demonstrate the presence of the EWSR1 gene rearrange-
ment (13,164,165). The translocation at gene NR4A3 has been 
shown by dual-color FISH using a custom probe, synthesized 
by means of BAC and telomeric chromosome clones, labeled 
with SpectrumGreen and SpectrumOrange (166). Variant 
translocations were also detected by interphase FISH, such as 
t(9;15)(q22;q21) and t(7;9;17)(q32;q22;q11), with satellite probes 
for chromosomes 7, 8 and 12, and telomeric probes for 1q and 
19q (Vysis Inc.) (167).

RT-PCR on archival FPPE samples, using specific pairs of 
primers, is a useful technique for detecting both the chimeric 
products due to the main translocations, such as EWS-CHN 
or RBP56-CHN (168), and different transcripts from 
EWSR1/TAF15/TFG-NR4A3 fusion, such as EWSR1-CREB1 
fusion transcript which is present in cases of primary pulmo-
nary myxoid sarcoma (169).

6. Ewing's sarcoma

ES is a bone cancer, the most frequent after osteosarcoma, 
histologically characterized by sheets of small round cells, blue 
staining with H&E, which can be confused with lymphoma or 
embryonic rhabdomyosarcoma. It is rare in newborns and after 
the age of 30, with a higher incidence at the age of 16. ES and 
PNET not only have similar microscopic characteristics, but also 
show the same genetic alteration, a translocation (170-172); thus, 
they are subsequently grouped in a class of tumors defined as 
‘Ewing’s sarcoma family tumors’ (ESFT). The typical translo-
cation affects the region of chromosome 22 in which the family 

of ETS transcription factors are mapped. In 90% of cases the 
chimeric gene has the region of chromosome 11 as a partner of 
the gene EWS, producing the fusion transcript, EWSR1-FLI1; 
chromosome 21 is the less frequent partner and in particular 
the translocation forms the product gene, EWSR1-ERG (173). 
The region of chromosome 22 with EWSR1 can translocate into 
other chromosomal regions, t(21;22), t(7;22), t(17;22) and t(2;22), 
producing different chimeric transcripts according to the fusion 
partner (ERG, ETV1, E1AF and FEV) (173-175).

Colorimetric or fluorescence studies have used YAC 
probes, tested on paraffin-embedded tissue sections (176), 
while others have used and validated constructed probes 
on cell lines (177). Using a triple-target FISH on interphase 
nuclei, metaphase chromosomes and DNA fibers, it has been 
proven how the transcript EWS/ERG, in particular, may occur. 
The technique has been performed with co-hybridization of 
probes cloned in cosmids, complementary to the telomeric and 
centromeric regions of the region with the EWS breakpoint. 
FISH, in particular, has shown that an inversion of the ERG 
gene or part of it may be followed by an insertion in the EWS 
gene on der(22) (178). It is now of routine use to investigate 
translocations involving the EWSR1 gene using a dual inter-
phase LSY color break-apart EWS-FISH (179), while the 
different variations of the formed fusion transcripts have been 
investigated by RT-PCR with specific pairs of primers (180).

RT-PCR amplifies RNAs extracted from fresh or cryopre-
served tissue samples; however, the results are specific and 
confirmed on archivial FPPE material (181). The method is also 
sensitive to detect minimal residual disease (182) and a simul-
taneous detection of all chimeric products can be done using a 
mixture of primers. This method can be very useful in clinical 
practice, to guarantee diagnosis, to perform investigations of 
minimal metastatic and residual disease and to evaluate the 
prognostic significance of the subtypes of chimeric transcripts 
even when fresh tumor tissue is not available (182).

The specificity of EWS transcripts with their respective 
partners for ES was tested using nested RT-PCR on different 
samples of FPPE tissue (183,184).

Combining the biomolecular investigations by nested 
RT-PCR, more sensitive than conventional RT-PCR, with cyto-
genetic analysis by FISH in FPPE samples, a clear diagnosis 
of ES/PNET is possible. In particular, in situ hybridization 
of nuclear extraction (NE-FISH) is more reliable than that 
of thin-section (TS-FISH) in detecting the translocation of 
EWSR1 (185). The specificity of the amplification product for 
nested RT-PCR is confirmed by the subsequent digestion of 
the PCR fragments with different restriction endonucleases, a 
rapid method to determine the combination of exons present in 
a chimeric mRNA (186).

The use of western blotting to detect the fusion protein 
of 68-kDa EWS/FLI1 in samples of surgical biopsies and in 
fine needle aspirates of ES, also detected in cell lines of ES, 
bypasses the problems related to the quality of mRNA extracted 
from paraffin-embedded samples or the risk of contamination 
in amplification techniques, such as RT-PCR (187).

It is possible to genotype the allelic discrimination for 
single nucleotide polymorphisms (SNPs) in the EWS gene 
using a TaqMan assay real-time-PCR. The analysis revealed a 
higher incidence of the presence of homozygous TT in patients 
with ES. The analysis also allowed the detection and identified 
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the region around the SNP, formed by a hexamer palindrome 
(5'-GCTAGC-3') and three nucleotides (GTC), very close to 
the breakpoints in both the EWS and FLI1 genes. In patients 
homozygous for this set of alleles, there a tendency to fracture 
doubles, increasing the possibility of a translocation. SNP 
can be then a candidate marker for susceptibility to ES (188). 
Moreover, investigations by TaqMan real-time-PCR with a 
set of pairs of specific primers and probes can quantify the 
different chimeric transcripts in ES (EWS-FLI1, EWS-ERG, 
EWS-TV1, EWS-ETV4 and EWS-FEV) (189).

7. Conclusion

A number of studies have been undertaken to increase knowl-
edge on chromosomal aberrations and facilitate the diagnosis 
of subsequent lesions, detecting specific translocations and 
chimeric products (190-192). The described chromosomal 
rearrangements not only aid in the diagnosis and classifica-
tion of soft tissue tumors, but are particularly useful in the 
differential diagnosis of patients with an uncertain or dubious 
morphology (193). Routine techniques, such as FISH and 
RT-PCR, can be within the reach of pathology laboratories, 
helping the pathologist in the diagnosis of such neoplasms (194). 
Obviously, as for all biomolecular methods, an essential condi-
tion is mandatory for the correct development of these methods 
and to ensure useful results for diagnosis; this includes all 
pre-analytical stages of preparation of the biological sample. 
Appropriate sampling and all stages, ranging from fixation/
inclusion to the cutting of sections destined for FISH and 
purification of nucleic acids, must be conducted in the correct 
manner and by established standardized procedures.
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