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Abstract: The increased interest in nanomedicine and its applicability for a wide range of biological
functions demands the search for raw materials to create nanomaterials. Recent trends have focused
on the use of green chemistry to synthesize metal and metal-oxide nanoparticles. Bioactive chemicals
have been found in a variety of marine organisms, including invertebrates, marine mammals, fish,
algae, plankton, fungi, and bacteria. These marine-derived active chemicals have been widely used
for various biological properties. Marine-derived materials, either whole extracts or pure components,
are employed in the synthesis of nanoparticles due to their ease of availability, low cost of production,
biocompatibility, and low cytotoxicity toward eukaryotic cells. These marine-derived nanomaterials
have been employed to treat infectious diseases caused by bacteria, fungi, and viruses as well as
treat non-infectious diseases, such as tumors, cancer, inflammatory responses, and diabetes, and
support wound healing. Furthermore, several polymeric materials derived from the marine, such
as chitosan and alginate, are exploited as nanocarriers in drug delivery. Moreover, a variety of pure
bioactive compounds have been loaded onto polymeric nanocarriers and employed to treat infectious
and non-infectious diseases. The current review is focused on a thorough overview of nanoparticle
synthesis and its biological applications made from their entire extracts or pure chemicals derived
from marine sources.

Keywords: marine; nanoparticles; infectious disease; antimicrobial; anticancer; antioxidant;
antiinflammatory; antidiabetic

1. Introduction

Infectious diseases have the potential to contribute to an increase in the global death
rate [1]. Infectious diseases can be caused by viruses, fungi, and bacteria [2]. These microor-
ganisms cause a variety of diseases, including cholera, candidiasis, and COVID-19 [3,4].
COVID-19 is a recent example that has triggered a pandemic [5]. Multiple drug resistance
in viruses, fungi, and bacteria has reached alarming levels that must be addressed promptly.
Various health organizations throughout the world have stated that various drug-resistant
pathogenic microorganisms must be eradicated quickly [6]. Furthermore, current drugs
for treating infectious diseases to patients suffering from non-infectious illnesses, such as
cancer, inflammation, obesity, and diabetes, might possibly harm the human body [7–9]. To
meet this demand, novel molecules that can function as antimicrobials against pathogenic
microbes must be investigated [10]. The terrestrial ecosystem has yet to investigate the
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marine environment [11]. Many applications for marine compounds have been docu-
mented [12]. Secondary metabolites produced by marine microorganisms have a wide
range of applications [13]. The potential biological activity of marine organisms stems
from communication and defensive systems in their natural habitat [13]. Many possible
antimicrobial applications from marine sources have been investigated [14].

Furthermore, due to their biodiversity and production of various molecules with
varying chemical structures, marine organisms can be exploited as valuable biologics to
treat cancer, inflammation, and immune system diseases [15]. As a result of their diverse
biological activities, natural compounds derived from marine resources have significantly
contributed to disease treatment in place of conventional pharmaceuticals [16]. Nanotech-
nology is a developing technology with several applications in various sectors [17]. Recent
research trends have demonstrated that nanoparticles have a wide range of therapeutic
potential [18]. The biosynthesis of nanoparticles is a simple and inexpensive method [19].
Furthermore, the approach of synthesizing nanoparticles from diverse natural products
is extensively employed as an eco-friendly method, since it does not produce toxic by-
products [20]. Various techniques have been developed to synthesize different types of
inorganic nanoparticles, such as gold, zinc, titanium, magnesium, and silver [21]. The
biosynthesis of nanoparticles provides antibacterial, drug delivery, sensing, and anticancer
treatment. Nanoparticles produced from pure compounds, in particular, outperform
traditional drugs in terms of biological activity [22]. This review paper advances our
understanding of marine-derived compound nanoparticles as possible therapeutics for a
variety of biological roles.

2. Green Synthesis of Nanoparticles (NPs) for Its Application in the Field of Medicine

Nanotechnology is a new discipline of research that works with chemical, biological,
and physical sciences to produce nanosized particles with various applications. The size
range of nanoparticles has been investigated between 1–100 nm [23–25]. Because of their
high surface area to volume ratio, nanoparticles have a substantially larger proportion of
surface, which leads to enhanced reactivity [26]. Because of their small size, nanoparticles
can have a variety of sizes and forms [27]. Nanoparticles have a wide range of applica-
tions, including the medicinal, diagnostic, drug discovery, biological sensor, and reagent
industries [28]. These biologically active nanoparticles are produced by employing various
biological fluids as reducing agents for metal and non-metal ions, such as gold, silver,
copper, zinc oxide, platinum, and titanium oxide [29]. The diverse therapeutic applica-
tions of nanoparticles, as well as the outbreak of several infectious diseases, motivate this
research [30]. The general approaches for nanoparticle production include bioassisted,
chemical, and physical methods [31]. Researchers are currently more interested in biologi-
cal entities than chemical approaches. Fungi, bacteria, plants, and algae from the marine
have been found to produce nanoparticles [12]. Green synthetic nanoparticles can be easily
decomposed using enzymes included in the nanoparticles, making them more environmen-
tally benign than conventional agents [29]. The reduction of metal ions by reducing agents
found in the organism is essential for the synthesis of metal nanoparticles [32]. These reac-
tions are driven by phenolics, terpenoids, alkaloids, amines, carbonyl groups, flavanones,
proteins, pigments, and amides found in the organism [33]. Because marine organisms
dwell on the unexplored seabed, it is critical to understand the metabolic mechanisms
leading to metal ion reduction by diverse types of marine organisms [33]. Figure 1 depicts
the different marine organisms, such as algae, bacteria, fungi, and animals, employed in
the synthesis of metal nanoparticles.
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ket for marine-derived compounds has surpassed 10 billion USD [39]. The production of 
marine-based nanoparticles from a variety of sources, including bacteria, fungus, sea-
weeds, and marine plants, has received considerable attention [33]. Algae with high cell 
growth rates, high stress tolerance, and an abundance of physiologically active sub-
stances, such as Ulva lactuca, Spirulina platensis, and Sargassum muticum, are regarded as 
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ments as well as a broad variety of temperatures, salinity, and pH, making them suitable 
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Figure 1. Different types of metal and metal-oxide nanoparticles are synthesized using natural
products from various marine organisms.

3. Marine Organisms and Compounds for the Green Synthesis of NPs

Current research and innovation in marine science are contributing to the expo-
nential growth of numerous sectors, including pharmaceuticals, environmental trends,
nanomedicine, and food [14]. The ocean covers around 70–71% of the earth’s surface [34].
Previous research studied the oceans, accounting for around 2.2 million distinct species [35].
The ocean contains an unimaginable number of marine-derived compounds with varied
applications that are beneficial to humans, such as antimicrobial compounds [36]. The
marine ecosystem contains around 25,000 physiologically active chemicals with various
applications [37]. Currently, the marine environment paves the way for numerous antibac-
terial, antifungal, and antiviral compounds. Seaweeds, bacteria, and fungus are possible
sources for combating infectious diseases [14,38]. According to prior research, the mar-
ket for marine-derived compounds has surpassed 10 billion USD [39]. The production
of marine-based nanoparticles from a variety of sources, including bacteria, fungus, sea-
weeds, and marine plants, has received considerable attention [33]. Algae with high cell
growth rates, high stress tolerance, and an abundance of physiologically active substances,
such as Ulva lactuca, Spirulina platensis, and Sargassum muticum, are regarded as promis-
ing biocatalysts for the synthesis of various types of nanomaterials [40–42]. Among pure
algal compounds, phloroglucinol, eckol, phlorofucofuroeckol A, fucodiphlorethol G, 7-
phloroeckol, 6,6′-bieckol, and dieckol act as effective reducing agents in the nanoparticle
synthesis process [43]. Diverse marine microorganisms adapt to harsh marine environments
as well as a broad variety of temperatures, salinity, and pH, making them suitable biological
factories for green nanoparticle synthesis [44]. Bacteria and fungi produce intracellular or
extracellular inorganic compounds that react with metal ions to form nanoparticles [45,46].
Furthermore, nanoparticles made from marine-derived animals show good biocompatibil-
ity [47]. Seafood waste, in particular, may be used to make a variety of biological products
by utilizing its high value-added qualities during the purification process [48]. Figure 2
shows numerous pure compounds obtained from marine organisms that act as reducing
agents in the nanoparticle synthesis process.
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4. Marine Bioinspired NPs Used for Bacterial Infection

Table 1 summarizes a detailed review of marine-based nanoparticles utilized in treating
various infectious diseases. Bacterial infection has a negative impact on public health [49].
Nanoparticles are attractive options since they have excellent bactericidal activity when
treating pathogenic bacteria [50]. Several studies have been carried out to investigate the
mechanisms of marine-inspired nanoparticles as antibacterial agents [51]. In general, ma-
rine antimicrobial macromolecules exhibit antibacterial mechanisms, such as (1) inhibition
of DNA replication, (2) inhibition of expression of enzymes and other cellular proteins re-
quired for ATP production, (3) structural changes and damage to bacterial cell membranes,
and (4) ROS production by inhibiting respiratory enzymes [52]. Several marine bacteria,
including Vibrio spp., Pseudoalteromonas spp., and Ruegeria spp., generate antimicrobial
compounds, a feature seen globally [53]. The marine bacterium Pseudomonas rhizosphaerae,
in particular, has been shown to produce benzene-type secondary metabolites with potent
antibacterial properties [54]. Secondary metabolites produced by marine algae, on the other
hand, include polyphenols, terpenes, acetogenin, and aromatic compounds, which have
a variety of biological functions, including antibacterial effects [55]. Silver nanoparticles
derived from the marine cyanobacterium Chroococcus minutus showed antibacterial action
against pathogenic strains of Escherichia coli and Streptococcus pyogenes, which have been
discovered to be novel antibacterial for upper respiratory tract infection [56]. The synthesis
of silver nanoparticles from cyanobacterium sources had improved control over pathogenic
bacteria. Silver nanoparticles derived from the marine endophytic fungus Penicillium
polonicum showed antibacterial activity against Acinetobacter baumanii, with MIC value of
15.62 µg/mL and MBC value of 31.24 µg/mL [44]. These findings were attributed to the
activation of apoptosis by altering the osmotic pressure regulation of cells during the inter-
action of silver nanoparticles and bacteria. Silver nanoparticles using S. muticum extracts
as a capping agent significantly suppressed the growth of Bacillus subtilis, E. coli, Klebsiella
pneumoniae, and Salmonella Typhimurium [57]. These silver nanoparticles interacted with
the bacterial membrane and penetrated the bacterium. Moreover, silver nanoparticles
synthesized using S. swartzii showed antibacterial action by producing considerable deteri-
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oration in E. coli [58]. When combined with silver nanoparticles, S. wightii and Valonopsis
pachynema demonstrated increased antibacterial activity against Micrococcus luteus and S.
marcescens [59]. Silver nanoparticles produced from these seaweeds had a strong antibac-
terial activity because silver ions caused bacteria to release K+ ions. Silver nanoparticles
produced from an aqueous extract of Gelidiella acerosa inhibited the growth of P. aerugi-
nosa and B. subtilis [60]. These bacteria were discovered to absorb silver nanoparticles
from the cell surface. Silver nanoparticles produced using a culture-free extract of marine
Streptomyces sp. Al-Dhabi-87 had excellent antibacterial activity against wound-infecting
microorganism strains such as Staphylococcus aureus, S. epidermidis, and Enterococcus fae-
calis [61]. These nanoparticles displayed antibacterial action by releasing intracellular
components and altering the cellular structure. Secondary metabolites found in S. longi-
folium extract reduced CuSO4 to Cu2+, resulting in copper oxide nanoparticles [62]. These
CuSO4 nanoparticles showed remarkable antibacterial activity against V. parahemolyticus, V.
harvey, Aeromonas hydrophila, and Serratia marcescens.

Carrageenan is a water-soluble, high-molecular-weight, sulfated polysaccharide iso-
lated from many species of red algae. Carrageenan has been widely used in the phar-
maceutical, medical, and food industries due to its high viscosity, gelling capacity, and
biocompatibility [63,64]. Vijayakumar et al. [65] synthesized Kappa-carrageenan wrapped
zinc-oxide nanoparticles (KC-ZnONPs) with antibacterial and antibiofilm activity against
Methicillin-resistant S. aureus (MRSA) (Figure 3). Based on hemocompatibility studies on
human RBCs and eco-safety studies using Artemia salina, the synthesized KC-ZnONPs
showed high biocompatibility and were non-toxic to the environment.

Fucoidan, a pure chemical derived from Fucus vesiculosus, was used to synthesize
gold nanoparticles, which demonstrated antibacterial action against P. aeruginosa (MIC
value of 512 µg/mL) [66]. In addition, the fucoidan-gold nanoparticles reduced the pro-
duction of virulence factors, such as rhamnolipid, pyocyanin, and pyoverdine. Due to the
presence of mannose, the capsular polymeric material isolated from marine B. altitudinis
proved efficient as a stabilizer for CuO nanoparticle synthesis [67]. The MIC value of CuO
nanoparticles containing mannose against P. aeruginosa was 1.0 µg/mL. Silver nanoparticles
synthesized by the marine fungus Aspergillus flavus utilizing amylase showed antibacterial
efficacy against Gram-positive and Gram-negative bacteria [68]. In particular, amylase-
silver nanoparticles had the strongest antibacterial activity against A. hydrophila (MIC value
of 1.6 µg/mL). Khan et al. [69] synthesized gold nanoparticles from chitosan oligosac-
charide, a natural marine compound, to treat P. aeruginosa biofilm infections. Chitosan
oligosaccharide-gold nanoparticles exhibited antibiofilm efficacy by lowering bacterial
hemolysis and P. aeruginosa virulence factors. P. aeruginosa hemolysis and protease activity
were reduced by a nanocomposite of chitosan and polypyrrole [70]. Moreover, the produc-
tion of various virulence factors, such as rhamnolipid, pyoverdine, and pyocyanin was
reduced by this nanocomposite.
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Figure 3. Synthesis of Kappa-Carrageenan wrapped Zinc-oxide nanoparticles (KC-ZnONPs) as an
antibacterial agent against Methicillin-resistant Staphylococcus aureus. Reprinted with permission
from reference [65]. Copyright, 2019 Elsevier B.V.

5. Marine Bioinspired NPs Used for Fungal Infection

Fungal infection is a constant cause of death [71]. The number of fungal infection cases
is increasing, and it has been claimed that over 150 million fungal infections occur yearly,
with a 1.5 million death rate from fungal infection [72]. Several secondary metabolites with
antifungal action are produced by marine microorganisms, mammals, and algae, similar to
antibacterial activity [73]. Antifungal chemicals are produced by a variety of marine species,
including bacterial chitinases, lipopeptides, and lactones [74]. Brown algae phlorotannins,
on the other hand, have antifungal activity by altering the composition of ergosterol in the
yeast cell membrane [75]. The marine depsipeptidepapuamide A has been shown to trigger
fungus apoptosis by binding to phosphatidylserine in the cell membrane and entering
the plasma membrane [76]. Plakortide F acid, a polyketide endoperoxide produced from
marine sponges, also had antifungal activity through affecting Ca2+ homeostasis [77]. As
a result, many researchers continue to look for antifungal activity in a variety of marine
organisms for application to nanoparticles. Green synthesis of silver nanoparticles from U.
rigida had antifungal action against the fungus Trichophyton mantigrophytes and T. cutaneum,
which are linked toskin infections [78].
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Table 1. List of marine-bioinspired metallic nanoparticles treating infectious diseases.

Name of
Marine-Derived
Compound/Product

Sources/Organism Name of NPs Size Range of MNPs Shape/
Morphology

Antimicrobial
Types Microbial Pathogens References

Extracts

• Ulva rigida
• Cystoseira myrica
• Gracilaria foliifera

AgNPs 12 nm Spherical Antibacterial

• Bacillus cereus
• Escherichia coli
• Candida albicans
• Staphylococcus aureus
• Cryptococcus neoformans

[78]

Extracts U. lactuca AgNPs 20–50 nm - Antibacterial

• E. coli
• Enterobacter spp.
• Klebsiella pneumonia
• Methicillin-resistant

S. aureus (MRSA)
• Pseudomonas aeruginosa
• S. aureus

[79]

Extracts • Halimeda opuntia
• Kappaphycus alvarezii

SeNPs 30, 80 nm Spherical Antibacterial • Vibrio harveyi
• V. parahaemolyticus

[80]

Extracts Spirulina platensis SNPs 200–450 nm Spherical Antibacterial V. parahaemolyticus [81]

Extracts Chroococcus minutus AgNPs - - Antibacterial • E. coli
• Streptococcus pyogenes

[56]

Extracts U. lactuca SeNP 85 nm Spherical Antibacterial

• Lactobacillus
• C. albicans
• S. mutans
• S. aureus

[82]
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Table 1. Cont.

Name of
Marine-Derived
Compound/Product

Sources/Organism Name of NPs Size Range of MNPs Shape/
Morphology

Antimicrobial
Types Microbial Pathogens References

Extracts Sargassum muticum AgNPs 20–54 nm Spherical Antibacterial

• E. coli
• B. subtilis
• Salmonella Typhimurium
• K. pneumoniae

[57]

Extracts S. swartzii AgNPs 20–40 nm Spherical Antibacterial E. coli [58]

Extracts Gelidium corneum AgNPs 20–50 nm Spherical Antibacterial E. coli [83]

Extracts Laminaria ochroleuca AgNPs 10–20 nm Spherical Antibacterial

• E. coli
• B. cereus
• P. aeruginosa
• S. aureus
• K. pneumoniae
• Micrococcus luteus

[84]

Extracts Streptomyces sp.
Al-Dhabi-87 AgNPs 10–17 nm Spherical Antibacterial

• Enterococcus faecalis
• E. coli
• S. aureus
• S. epidermidis
• P. aeruginosa
• K. pneumoniae

[61]

Extracts • S. wightii
• Valonopsis pachynema

AgNPs 30–40, 55–70 nm - Antibacterial • M. luteus
• Serratia marcescens

[59]

Extracts

• Streptomyces sp.
• Rhodococcus

rhodochrous
AgNPs 5.52, 35 nm Spherical Antibacterial

• B. subtilis
• E. coli
• P. aeruginosa
• S. aureus

[85]
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Table 1. Cont.

Name of
Marine-Derived
Compound/Product

Sources/Organism Name of NPs Size Range of MNPs Shape/
Morphology

Antimicrobial
Types Microbial Pathogens References

Extracts Gelidiella acerosa AgNPs - - Antibacterial
• B. subtilis
• P. aeruginosa
• S. aureus

[60]

Extracts Acanthophora spicifera AuNPs <20 nm Spherical Antibacterial • V. harveyi
• S. aureus

[86]

Extracts G. amansii AgNPs 27–54 nm Spherical Antibacterial

• Aeromonas hydrophila
• V. parahaemolyticus
• P. aeruginosa
• E. coli
• S. aureus
• B. pumilus

[87]

Extracts S. wighitii MgONPs 68.06 nm Flower Antibacterial

• S. pneumonia
• MRSA
• E. coli
• P. aeruginosa
• A. baumannii

[88]

Extracts Oscillatoria princeps AgNPs 3.30–17.97 nm Spherical Antibacterial
• S. aureus
• S. pyogenes
• E. coli

[89]
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Table 1. Cont.

Name of
Marine-Derived
Compound/Product

Sources/Organism Name of NPs Size Range of MNPs Shape/
Morphology

Antimicrobial
Types Microbial Pathogens References

Extracts Nocardiopsis
dassonvillei-DS013 AgNPs 30–80 nm Circular Antibacterial

• Enterococcus sp.
• Klebsiella sp.
• B. subtilis
• Streptococcus sp.
• Proteus sp.
• Pseudomonas sp.
• Shigella sp.
• E. coli

[90]

Extracts Streptomyces sp.
Al-Dhabi-87 AgNPs 11–21 nm Cubic Antibacterial

• B. subtilis
• S. aureus
• S. epidermidis
• P. aeruginosa
• E. coli
• E. faecalis
• K. pneumoniae

[91]

Extracts Penicillium polonicum AgNPs 10 nm Spherical Antibacterial A. baumanii [44]

Chitosan Marine Seafood AgNPs 5–20 nm Spherical Antibacterial • E. coli
• P. aeruginosa

[92]

Chitosan • Aspergillus sp.
• Alternaria sp.

• Chitosan-AgNPs
• Chitosan-AuNPs

• 4.5 ± 20.0–
50.2 ± 74.0 nm

• 3.47 ± 2.00–
35.50 ± 2.00 nm

Spherical Antibacterial S. aureus [93]
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Table 1. Cont.

Name of
Marine-Derived
Compound/Product

Sources/Organism Name of NPs Size Range of MNPs Shape/
Morphology

Antimicrobial
Types Microbial Pathogens References

Extracts
• Chlorococcum humicola
• Chlorella vulgaris AgNPs 10.69, 12.83 nm Spherical Antibacterial

• E. coli
• S. Typhimurium
• K. pneumoniae

[94]

Extracts Cymodocea serrulata AgNPs 40.49–66.44 nm - Antibacterial V. parahaemolyticus [95]

Extracts S. longifolium CuONPs 40–60 nm - Antibacterial

• V. parahemolyticus
• A. hydrophila
• Serratia marcescens
• V. harveyi

[62]

Extracts C. crinita ZnONPs 23–200 nm Rectangular Antibacterial

• E. coli
• B. cereus
• S. Typhimurium
• S. aureus
• C. albicans
• A. niger

[96]

Extracts Synechocystis sp. AgNPs 10–35 nm Spherical Antibacterial MRSA [97]

Extracts O. limnetica AgNPs 3.30–17.97 nm Quasi-spherical Antibacterial • E. coli
• B. cereus

[98]

Extracts Red algae Co3O4NPs 29.8 ± 8.6 nm Spherical Antibacterial • P. aeruginosa
• E. coli

[99]

Extracts U. lactuca AgNPs 20–50 nm - Antiviral • Aedes aegypti
• Culex pipiens

[79]
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Table 1. Cont.

Name of
Marine-Derived
Compound/Product

Sources/Organism Name of NPs Size Range of MNPs Shape/
Morphology

Antimicrobial
Types Microbial Pathogens References

Extracts
• Oscillatoria sp.
• S. platensis

• Ag2O/AgONPs
• AuNPs

• 14.42–48.97 nm
• 15.60–77.13 nm

• Spherical
• Octahedral,

pentagonal
and triangular

Antiviral HSV-1 [100]

Extracts • Streptomyces sp.
• R. rhodochrous

AgNPs 5.52–35.00 nm Spherical Antiviral Poliovirus [85]

Extracts

• Pectinodesmus sp.
strain HM3

• Dictyosphaerium sp.
strain HM1

• Dictyosphaerium sp.
strain HM2

AgNPs 50–65, 15–30, and
40–50 nm Spherical Antiviral Newcastle disease virus [101]

Extracts U. rigida AgNPs 12 nm Spherical Antifungal • Trichophyton mentagrophytes
• T. cutaneum

[78]

Extracts S. griseus AgNPs 14.54 nm Spherical Antifungal C. albicans [102]

Extracts G. corneum AgNPs 20–50 nm Spherical Antifungal C. albicans [83]

Extracts P. fluorescens AgNPs - - Antifungal • Fusarium udum
• A. niger

[103]

Extracts
• C. serrulate
• Padina australis AgNPs - - Antifungal

• Pyriporia oryzea
• Helminthosporium oryzae
• Alternaria sp.
• Rhizoctonia solani
• Xanthomoanas oryzae

[104]

Extracts
• C. umhumicola
• C. vulgaris AgNPs 10.69,12.83 nm Spherical Antifungal

• F. solani
• F. moniliforme
• Penicillium sp.

[94]
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These silver nanoparticles produced an insoluble chemical that inactivated the fungal
cell wall’s sulfhydryl group and disrupted the membrane, resulting in an antifungal effect.
Silver nanoparticles synthesized from aqueous extracts of Cymodocea serrulata and Padina
australis had antifungal action against plant fungi, including Pyriporia oryzea, Alternaria sp.,
Helminthisporium oryzea, Rhizoctonia solani, and Xanthomanas oryzae [104]. These antifungals
were discovered as a consequence of cell wall disruption, DNA damage, and an increase in
ROS. Silver nanoparticles (AgNPs) synthesized from Gelidium corneum extract, which served
as a reducing agent had excellent antifungal and antibiofilm properties against Candida
albicans [83]. Biosynthetic silver nanoparticles, in particular, demonstrated antifungal
effectiveness by generating cell membrane and cell wall destruction, as well as cytoplasmic
damage (Figure 4).
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6. Marine Bioinspired NPs for Treating Viral Infection

A viral particle is smaller than a live cell. Several viral infections have been docu-
mented to be caused by a pathogenic virus. Viruses cause a variety of diseases, leading to
increased death rate. Viral infections include smallpox, polio, HIV, and hepatitis C [105].
Antiviral compounds produced by marine organisms include polyphenols, alkaloids, lipids,
carbohydrates, steroids, terpenoids, exopolysaccharides, polyketides, zoanthoxanthins,
and peptides [106]. Virus adsorption, penetration, capsid decoration, biosynthesis, virus
assembly, and virus release are all inhibited or inactivated by marine polysaccharides [107].
One of the metabolites produced by marine organisms, phlorotannins, has been shown
to interfere with viral attachment, penetration, and replication [15]. Silver nanoparticles
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derived from the seaweed U. lactuca showed cytotoxic efficacy against the vector-borne
pathogens Aedes aegypti and Culex pipiens [79]. Because of their small particle size, silver
nanoparticles synthesized from U. lactuca demonstrated more effective action than conven-
tional insecticides. Additionally, these silver nanoparticles bonded to the insect cuticle and
entered within the cell, disrupting additional cell functions. Silver nanoparticles mediated
by Oscillatoria sp. and gold nanoparticles mediated by S. platensis displayed antiviral
efficacy against herpesvirus [100]. These nanoparticles induced glycoprotein aggregation
and surface changes, both of which might inhibit viral binding and penetration. Silver
nanoparticles derived from extracellular extracts of the marine actinomycetes Rhodococcus
rhodochrous and Streptomyces sp. inhibited poliovirus in RD cells [85]. The interaction of
viral proteins with silver nanoparticles caused poliovirus inhibition. Silver nanoparticles
derived from Dictyosphaerium sp., a freshwater microalgae, had substantial antiviral activity
against the Newcastle disease virus [101]. These silver nanoparticles were bound to the
viral glycoprotein envelope, limiting virus penetration.

7. Marine Bioinspired NPs for Treating Non-Infectious Diseases

Table 2 shows studies that have used marine bioinspired nanoparticles to treat a wide
range of non-infectious diseases. Inflammation is the body’s natural response to tissue
injury, infection, and genetic alterations [108]. The immune system is activated within the
body under inflammatory circumstances, resulting in the release of various inflammatory
mediators, such as bradykinins and prostaglandins [109]. Thus, reducing prostaglandin
levels can aid in the prevention of chronic disease by controlling inflammation [110]. To
reduce inflammation and inflammatory mediators, steroids and nonsteroidal antiinflam-
matory medications constitute one of the treatment paths for inflammatory diseases [111].
These synthetic antiinflammatory drugs, on the other hand, can have substantial negative
effects [112]. As a result, it is required to use marine-based organisms with high biological
activity to generate nanoparticles with similar therapeutic benefits and no negative effects.
Silver nanoparticles produced from macroalgae such as Galaxaura elongate, Turbinaria ornate,
and Enteromorpha flexuosa have shown considerable antiinflammatory action via membrane
stabilization [113]. Silver nanoparticles, in particular, reduced prostaglandin production by
inhibiting protein denaturation, cyclooxygenase, and 5-lipoxygenase. At 500 µg/mL, ZnO
nanoparticles wrapped in Kappa-carrageenan demonstrated 82% antiinflammatory efficacy
(Figure 3) [65]. Because of their high surface area to volume ratio, these nanoparticles were
more effective than bulk materials in inhibiting cytokines and inflammatory coenzymes.
Cancer is caused by the uncontrollable growth of cells and tissues [114]. Cancer treatment
options include surgery, radiation, and potentially toxic medication therapy [115]. As a
result, several investigations are being done to discover anticancer drugs that kill cancer
cells without hurting humans [116]. Nanoparticles loaded with various physiologically
active chemicals are one of the most effective drug delivery techniques for cancer ther-
apy [117]. Marine-derived natural products, in particular, are potential molecules for the
development of anticancer drugs because they may influence multiple pathways, such as
immunity, cancer cell death, and tumor growth [118]. Silver nanoparticles derived from
Caulerpa taxifolia showed antitumor efficacy against A549 lung cancer cells [119]. Necrosis
and condensation of A549 cells were shown to be mediated by silver nanoparticles derived
from marine algae, suggesting that nanomaterials are relevant for cancer cell research.
Furthermore, gold nanoparticles inhibited phosphorylation of AKT and ERK, which are
essential for cell growth in HeLa cancer cells [47]. Interestingly, these gold nanoparticles
derived from jellyfish extract exhibited a significant lethal effect on HeLa cancer cells. Cu2O
nanoparticles derived from Rhodotorula mucilaginosa showed anticancer activity against
SKOV-3, MCF-7, HepG2, A549, SW620, and HT-29 [117]. In particular, reactive oxygen
species production and oxidative stress enhanced the anticancer mechanism of Cu2O
nanoparticles. Similarly, Shunmugam et al. [120] synthesized gold nanoparticles from the
marine bacterium V. alginolyticus, which had antioxidant and anticancer activity (Figure 5).
The anticancer activity was attributed to the treated cells’ nuclear condensation.
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Table 2. List of marine-bioinspired metallic nanoparticles for treating non-infectious diseases.

Name of
Marine-Derived
Compound/Product

Organisms/Sources Name of NPs Size Range of
MNPs

Shape/
Morphology

Types of
Non-Infectious Disease
Treatment

Effects/Activities References

Extracts
• Ulva rigida
• Cystoseira myrica
• Gracilaria foliifera

AgNPs 12 nm Spherical Anticancer Human breast adenocarcinoma
cell line [78]

Extracts • Streptomyces sp.
• Rhodococcus rhodochrous

AgNPs 5.52, 35 nm Spherical • Anticancer
• Anti-leishmanial

• HepG2 cell line
• Leishmania tropica

[85]

Extracts Acanthophora spicifera AuNPs <20 nm Spherical Anticancer Human colon adenocarcinoma
(HT-29) cells [86]

Extracts Sargassum wighitii MgONPs 68.06 nm Flower Anticancer A549 [88]

Extracts Rhodotorula mucilaginosa Cu2ONPs 51.6–111.4 nm Spherical Anticancer

• SW620
• SKOV-3
• MCF-7
• HT-29
• HepG2
• A549

[117]

Extracts Pterocladia capillacea CuONPs 62 nm Spherical Anticancer Breast cancer, ovarian cancer, and
hepatocellular carcinoma cell lines [121]

Extracts Laminaria digitata ZnONPs 100–350 nm Spindle Anticancer Fibroblasts cells and human colon
cancer cells [122]

Extracts Hamigera pallidass AgNPs 5.85 ± 0.84,
3.69–16.11 nm Spherical

• Anticancer
• Antioxidant

• Human breast cancer
• DPPH (2,

2-diphenyl1-picrylhydrazyl)
[123]
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Table 2. Cont.

Name of
Marine-Derived
Compound/Product

Organisms/Sources Name of NPs Size Range of
MNPs

Shape/
Morphology

Types of
Non-Infectious Disease
Treatment

Effects/Activities References

Extracts

• Galaxaura elongate
• Turbinaria ornata
• Enteromorpha flexuosa

AgNPs 30–90, 20–60,
30–90 nm Spherical

• Anticancer
• Antioxidant
• Antidiabetic
• Antiinflammatory

• HepG2
• DPPH, ABTS scavenger
• α-Amylase inhibition
• Proteinase inhibition and

albumin denaturation
inhibition

[113]

Extracts U. lactuca AgNPs 8–14 nm Spherical Anticancer Human colon cancer [124]

Extracts Alternaria chlamydospora AuNPs - Spherical • Anticancer
• Antioxidant

• A549 cell lines
• DPPH

[125]

Extracts
• Chondrus crispus
• Gelidium corneum
• Porphyra linearis

AuNPs
16.9 ± 2.5,
15.0 ± 3.0,
44.2 ± 6.1 nm

Spherical • Antitumoral
• Antioxidant

• Monocytic cell line
• Human promyelocytic cells

[126]

Extracts C. crinita ZnONPs 23–200 nm Rectangular Antioxidant DPPH [96]

Extracts Synechocystis sp. AgNPs 10–35 nm Spherical Wound-healing Diabetic wounded animals [97]

Carrageenan
&Carrageenan
oligosaccharide

Marine red algae AuNPs 141 ± 6 nm Spherical Anticancer HCT-116 and HepG2 cells [127]

Extracts Paracoccus haeundaensis AuNPs 20.93 ± 3.46 nm Spherical
• Anticancer
• Antioxidant

• A549
• AGS cancer cells
• DPPH

[128]

Extracts Caulerpa taxifolia AgNPs - - Anticancer A549 lung cancer cells [119]

Extracts Nemopilema nomurai AuNPs 35.2 ± 8.7 nm Spherical Anticancer HeLa cancer cells [47]
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Table 2. Cont.

Name of
Marine-Derived
Compound/Product

Organisms/Sources Name of NPs Size Range of
MNPs

Shape/
Morphology

Types of
Non-Infectious Disease
Treatment

Effects/Activities References

Extracts Oscillatoria limnetica AgNPs 3.30–17.97 nm Quasi-spherical Anticancer • Human colon cancer cell line
• Human breast cell line

[98]

Extracts Red algae Co3O4NPs 29.8 ± 8.6 nm Spherical Anticancer HepG2 cancer cells [99]

Extracts Vibrio alginolyticus AuNPs 50–100 nm Monodispersed,
irregular shape Anticancer HCA-7 cells [120]
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Silver nanoparticles derived from shrimp shell chitin acted as a reducing agent and
had anticancer action against human hepatocarcinoma [129]. In HepG2 cells, chitin-silver
nanoparticles increased the expression of apoptosis-related proteins Bax, PARP, cytochrome-
c, caspase-3, and caspase-9, while decreasing the expression of antiapoptosis proteins Bcl-2
and Bcl-xl. Phloroglucinol-encapsulated starch biopolymer exhibited dose-dependent
anticancer activities against the HepG2 liver cancer cell line [130]. These findings were
ascribed to the biopolymer’s hydrophobicity, which increased adhesion and adsorption
capability to the cancer cell surface.

Cells produce potentially harmful ROS as a result of oxygen metabolism, which
involves enzymatic and non-enzymatic reactions [131]. High levels of ROS caused by
oxidative stress induce a variety of diseases in the body, including diabetes, hypertension,
and Alzheimer’s [132]. Antioxidants, on the other hand, have a role in delaying, regulating,
and avoiding the oxidative process that leads to the beginning and progression of the
disease [133]. Through SOD enzymes, which catalyze the recombination of oxygen radicals,
these antioxidants counteract the consequences of oxidative stress [134]. Currently, research
is being performed to investigate natural substances capable of controlling oxidative stress,
which leads to the investigation of nanoparticles with antioxidant activities. Many species
with antioxidant activity in marine organisms, in particular, have been found and have
piqued the interest of researchers due to their potential biological activity [135]. The an-
tioxidant activity of gold nanoparticles produced by the marine fungus A. chlamydospora
(inhibition of DPPH radicals) was dose-dependent [125]. Furthermore, in a concentration-
dependent way, gold nanoparticles mediated by the marine bacteria Paracoccus haeundaensis
cell-free supernatant demonstrated strong reducing power via DPPH scavenging activ-
ity [128]. Selenium nanoparticles produced from Spirulina phycocyanin protected INS-1E
rat insulinoma cells against palmitic acid-induced cell death [136]. Phycocyanin and sele-
nium shielded cells from oxidative damage and signaling pathways downstream. These
findings indicate that marine-derived nanoparticles can be employed as effective natural
antioxidants.

Figure 6 depicts the biological activity of nanoparticles synthesized using phloroglu-
cinol. Silver nanoparticles synthesized using phloroglucinol showed anticancer efficacy
against the MCF-7 breast cancer cell line [137]. Silver ions from phloroglucinol silver
nanoparticles entered cancer cells and interacted with intracellular macromolecules, such as
organelles, proteins, and DNA, to trigger apoptosis. Another study found that phloroglucinol-
gold nanoparticles triggered death in HeLa cancer cells via enhancing mitochondrial mem-
brane permeability [138]. Phloroglucinol-encapsulated chitosan nanoparticles showed
antibiofilm action against single-species biofilms, such as K. pneumoniae, S. aureus, S. mu-
tans, and C. albicans, and mixed-species biofilms, such as C. albicans-S. aureus/K. pneumo-
niae/S. mutans [139]. Gold and zinc oxide nanoparticles produced with phloroglucinol
showed significant antibacterial action against P. aeruginosa [140]. Moreover, these nanopar-
ticles inhibited P. aeruginosa twitching, swimming, and swarming motility, all of which have
virulence features. Similarly, several marine-derived pure compounds are employed in
synthesizing nanoparticles and encapsulating drugs for application in the field of medicine
(Table 3).



Mar. Drugs 2022, 20, 527 20 of 30Mar. Drugs 2022, 20, x FOR PEER REVIEW 18 of 28 
 

 

 
Figure 6. Application of phloroglucinol in the form of nanoparticles for treating infectious and non-
infectious diseases. (A) The cytotoxicity action of phloroglucinol-engineered AgNPs towards MCF̶7 
breast cancer cell lines. (a) SEM image of AgNPs and (b) TEM image of AgNPs. Reproduced with 
permission from reference [137]. (B) Synthesis of the phloroglucinol-conjugated gold nanoparticles, 
which exhibit therapeutic potential towards cancer cells. The action mechanism involved apoptosis 
of cancer cells by promoting mitochondrial transmembrane permeation, as evident by fluorescence 
staining and gene expression studies. Reprinted with permission from reference [138], (C) Encapsu-
lation of phloroglucinol into the chitosan nanoparticles. The PG-CSNPs exhibit antibiofilm proper-
ties towards single- and mixed-species biofilms of C. albicans-S. aureus/S. mutans/K. penumoniae. Re-
printed with permission from reference [139], and (D) Synthesis of metal (AuNPs) and metal oxide 
(ZnONPs) nanoparticles using phloroglucinol. The synthesized PG-AuNPs and PG-ZnONPs 
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Figure 6. Application of phloroglucinol in the form of nanoparticles for treating infectious and non-
infectious diseases. (A) The cytotoxicity action of phloroglucinol-engineered AgNPs towards MCF-7
breast cancer cell lines. (a) SEM image of AgNPs and (b) TEM image of AgNPs. Reproduced with
permission from reference [137]. (B) Synthesis of the phloroglucinol-conjugated gold nanoparticles,
which exhibit therapeutic potential towards cancer cells. The action mechanism involved apoptosis of
cancer cells by promoting mitochondrial transmembrane permeation, as evident by fluorescence stain-
ing and gene expression studies. Reprinted with permission from reference [138], (C) Encapsulation
of phloroglucinol into the chitosan nanoparticles. The PG-CSNPs exhibit antibiofilm properties to-
wards single- and mixed-species biofilms of C. albicans-S. aureus/S. mutans/K. penumoniae. Reprinted
with permission from reference [139], and (D) Synthesis of metal (AuNPs) and metal oxide (ZnONPs)
nanoparticles using phloroglucinol. The synthesized PG-AuNPs and PG-ZnONPs showed antibiofilm
and antivirulence properties towards P. aeruginosa. Reproduced with permission from reference [140].
Copyright 2021 by the authors and licensee MDPI, Basel, Switzerland.
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Table 3. Application of marine-derived compounds in the synthesis of nanoparticles and encapsulation of drugs for application in the field of medicine.

Classification
of Sources

Natural Pure
Compounds

Types of
Nanomaterial Size Morphology Biological Activity Action Mechanism References

Algae Fucoidan AuNPs ~53 nm Spherical Antibacterial activity against
Pseudomonas aeruginosa

• Reduced the generation of
numerous important
virulence factors

• Impaired bacterial motility,
including twitching, swimming,
and swarming

[66]

Algae Phloroglucinol AuNPs and ZnONPs 41.6 ± 3.9,
52.7 ± 3.8 nm

Spherical and
hexagonal

Antibacterial activity against P.
aeruginosa

• P. aeruginosa virulence factors,
such as rhamnolipid, pyocyanin,
pyoverdine, protease, and
hemolytic capabilities,
were reduced.

• Impaired bacterial motility,
including twitching, swimming,
and swarming

[140]

Algae Phycocyanin SeNPs 165, 235, 371,
815 nm Spherical Antioxidant

Protected INS-1E cells against palmitic
acid-induced cell death by reducing
oxidative stress and signaling pathways
downstream

[136]

Algae Fucoxanthin AgNPs 20–25 nm Spherical

Antibacterial activity against
Escherichia coli, Bacillus
stearothermophilus, and
Streptococcus mutans

- [141]

Algae Phloroglucinol Starch biopolymer 1–100 nm Spherical Anticancer Adhesion and adsorption on the
surfaces of cancer cells are enhanced [130]
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Table 3. Cont.

Classification
of Sources

Natural Pure
Compounds

Types of
Nanomaterial Size Morphology Biological Activity Action Mechanism References

Algae Phloroglucinol CSNPs 414.0 ± 48.5 nm Spherical

Antibiofilm activity against
Klebsiella pneumoniae,
Staphylococcus aureus, Candida
albicans, S. mutans, and
mixed-species such as C.
albicans-S. aureus/K.
pneumoniae/S. mutans

The positive charge of CSNPs allows for
easy biofilm penetration and binding [139]

Algae Usnic acid

Nanofibrous poly(ε-
caprolactone)/
decellularized
extracellular matrix
scaffolds

3.89 ± 2.52,
4.95 ± 2.19,
5.00 ± 2.05 µm

Fusion of the
fiber junctions

• Antibacterial activity
against Cutibactrium acnes,
S. mutans, S. aureus, S.
epidermidis, and C. albicans

• Antibiofilm activity against
K. pneumoniae and P.
aeruginosa

• Wound healing capability

• Increased swelling, surface
erosion, and degradation due to
high release qualities

• Improved cellular activities, such
as cell adhesion, proliferation,
differentiation, and migration

[142]

Algae Carrageenan ZnONPs 97.03 ± 9.05 nm Hexagonal
wurtzite phase

• Antibacterial activity
against MRSA

• Antiinflammatory activity

• Penetrated quickly through the
bacterial cell membrane and had a
greater bactericidal impact

• Inflammation enhancers such as
cytokines and inflammation-assist
enzymes are blocked

[65]

Bacteria Mannose CuONPs 108 nm Spherical Antibacterial activity against P.
aeruginosa

Entered the cell membrane, causing
lysis and cell rupture [67]

Fungi • Asperpyrone B
• Asperpyrone C

AgNPs 8–30 nm Spherical Acetylcholine esterase inhibitory
activity Enzyme structural alterations [143]

Fungi α-amylase AgNPs 22.88–26.35 nm Spherical

Antibacterial activity against
Aeromonas hydrophila, P.
aeruginosa, Vibrio anguillarum, S.
faecium, S. agalactiae, and
Listeria spp.

Damage to cell membranes, oxidative
stress, and protein and DNA damage [68]
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Table 3. Cont.

Classification
of Sources

Natural Pure
Compounds

Types of
Nanomaterial Size Morphology Biological Activity Action Mechanism References

Animal Chitin AgNPs 17–49 nm Spherical
Anticancer activity in human
hepatocellular carcinoma
HepG2 cells

• Increased levels of
apoptosis-related proteins, such as
PARP, cytochrome-c, Bax,
caspase-3, and caspase-9

• Reduced expression of the
antiapoptotic proteins Bcl-xL and
Bcl-2 in HepG2 cells

[129]

Animal Astaxanthin AuNPs 58.2 ± 4.6 nm Polygonal and
spherical Antioxidant

Reduced ROS and increased antioxidant
enzyme activity in rice plants treated to
Cd to alleviate oxidative stress

[144]

Animal Chitosan
oligosaccharide AuNPs 56.01 ± 3.48 nm Spherical Antibacterial activity against P.

aeruginosa

• Inhibited bacterial hemolysis
• Reduced P. aeruginosa virulence

factor synthesis
• Reduced bacterial swimming and

twitching motilities

[69]

Animal Thiol chitosan AuNSs 185 ± 19 nm Spherical Antibacterial activity against E.
coli, P. aeruginosa, and S. aureus - [145]

Animal Chitosan Polypyrrole
nanocomposites 55.77 ± 3.48 nm Spherical Antibiofilm activity against P.

aeruginosa

• P. aeruginosa hemolytic and
protease activities were inhibited

• Reduced the production of many
virulence factors, including
pyocyanin, pyoverdine, and
rhamnolipid

[70]
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8. Conclusions and Future Perspectives

In conclusion, because of their potential biological activity, marine-derived products
have been widely used in the pharmaceutical industry. With an increased understanding
of their biological functions, various marine-derived compounds have been used in the
synthesis of nanoparticles. These products comprised polymers, organic compounds, and
extract, which act as a powerful reducing agent in synthesizing metal and metal-oxide
nanoparticles. Furthermore, certain polymeric material is used to effectively deliver the
drug in the treatment of infectious and non-infectious diseases. The review detailed the
list of the marine organism from which the extract was extracted and which was used to
synthesize several forms of nanoparticles. Furthermore, these nanoparticles have been
shown to have antimicrobial properties against bacterial, fungal, and viral pathogens.
Antimicrobial mechanisms include the breakdown of cell membranes, as well as damage
to cell walls and DNA. These marine-inspired nanoparticles have also shown promise in
the treatment of non-infectious diseases, such as diabetes, cancer, wounds, inflammatory
reactions, and leishmanial infections. Though significant progress has been made in
the production of nanoparticles utilizing extracts from marine sources, relatively little
information is known on the synthesis of nanoparticles using pure active compounds. This
is because of the fact that there are several variations in extract preparation due to a number
of environmental factors. As a result, future research should prioritize the use of pure
active compounds for nanoparticle synthesis. Most antimicrobial research involving these
nanoparticles has been conducted at the phenotypic level; however, investigations at the
gene level are highly needed to explain the molecular mechanism.
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