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Abstract: We have synthesized a series of 10 new, PSMA-targeted, near-infrared imaging agents
intended for use in vivo for fluorescence-guided surgery (FGS). Compounds were synthesized
from the commercially available amine-reactive active NHS ester of DyLight800. We altered the
linker between the PSMA-targeting urea moiety and the fluorophore with a view to improve the
pharmacokinetics. Chemical yields for the conjugates ranged from 51% to 86%. The Ki values
ranged from 0.10 to 2.19 nM. Inclusion of an N-bromobenzyl substituent at the ε-amino group of
lysine enhanced PSMA+ PIP tumor uptake, as did hydrophilic substituents within the linker. The
presence of a polyethylene glycol chain within the linker markedly decreased renal uptake. In
particular, DyLight800-10 demonstrated high specific uptake relative to background signal within
kidney, confirmed by immunohistochemistry. These compounds may be useful for FGS in prostate,
renal or other PSMA-expressing cancers.

Keywords: NIRF; molecular imaging; fluorescence-guided surgery; prostate-specific membrane
antigen; DyLight800

1. Introduction

As surgeons use robot-assisted laparoscopy in more operations and for an increas-
ing number of indications, they are less likely to palpate the tumor and surgical bed to
determine the extent of their resection. Accordingly, they must increasingly rely on visual
inspection, which real-time fluorescence imaging can enhance by helping to avoid leaving
behind a positive margin [1]. This is particularly true in the case of cancers curable only
through surgery, such as colorectal cancer [2]. Advances in optical imaging instrumen-
tation and molecular imaging agents are promoting the increased use of intraoperative,
near-infrared (NIR) fluorescence imaging to help improve outcomes [3,4]. Most clinical
studies employing fluorescence-guided surgery (FGS) involve the use of non-targeted pro-
toporphyrins, such as 5-aminolevulinic acid, or cyanine dyes, such as indocyanine green,
with quantum yields suitable for imaging in vivo to depths of between 0.5 and 1 cm [5,6].
However, there are a variety of available tumor-targeting moieties to which one may attach
NIR dyes to confer a measure of specificity, including small molecules, peptides, proteins,
antibodies, aptamers and nanobodies, among others [2,7]. One may also confer specificity
of optical imaging agents through pharmacokinetic optimization in a structure-inherent
targeting strategy, as recently shown for a small series of squaraine dyes [8]. The goal in
designing such agents is to have one that will enable high tumor-to-background ratios at a
convenient time after administration, usually within 12–24 h, for sensitive, real-time FGS.

Others and we have developed targeted NIR agents to enable specific evaluation of
nerves, vascular structures within tumors, and tumor epithelium [9–13]. Regarding the last,
the prostate-specific membrane antigen (PSMA) has received considerable attention as an
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optical imaging target because of its abundant expression on the surface of most prostate
cancer cells and the synthetic accessibility of fluorescent conjugates of urea-based PSMA-
binding affinity agents [13–18]. A PSMA-targeted NIR agent could be useful toward the
end of a prostatectomy to help ensure a negative surgical margin. PSMA is also expressed
in the neovascular endothelium of most solid tumors, such as lung, colon, pancreatic, renal
carcinoma, and melanoma, but not in normal vasculature [19,20], so it might be a useful
target in surgical guidance during the resection of non-prostate tumors as well.

We have previously tested our initial PSMA-targeted NIR agent, YC-27, which bears
the IRDye 800CW fluorophore, in xenograft-bearing mice and showed that it was useful in
preventing recurrence in the surgical margin [21]. We have also coupled it with concurrent
NIR laser excitation and ultrasound to delineate tumors by photoacoustic imaging [22].
However, YC-27 may not represent an optimized structure with respect to pharmacokinetics
or properties of the fluorophore. Because of its commercial availability and putatively
higher fluorescence intensity and photostability [23], we switched to the DyLight800
fluorophore and altered the structure of the linker between the fluorophore and the PSMA-
targeting moiety in a series of compounds to optimize performance, i.e., tumor visualization
in vivo at 24 h post-injection. Our ultimate goal is to have an imaging agent with an
optimized fluorophore and pharmacokinetics for real-time surgical guidance in a field that
contains PSMA-expressing tissues.

2. Materials and Methods
2.1. Chemistry

General Methods. All chemicals and solvents were purchased from either Sigma-
Aldrich (Milwaukee, WI) or Fisher Scientific (Pittsburgh, PA, USA). Boc-15-amino-4,7,10,13-
tetraoxapentadecanoic acid and H-Lys(Boc)-Ot-Bu.HCl were purchased from Chem-Impex
International (Wood Dale, IL, USA). t-Boc-N-amido-PEG8-acid was purchased from Broad-
Pharm, Inc. (San Diego, CA, USA). The N-hydroxysuccinimide (NHS) ester of DyLight800
was purchased from Thermo Fisher Scientific (Rockford, IL, USA). Care was taken to limit
the exposure of DyLight800-NHS and DyLight800-urea conjugates 1–10 from light. 1H
NMR spectra were recorded on a Bruker Ultrashield 500 MHz spectrometer. ESI mass
spectra were obtained on a Bruker Esquire 3000 plus system. (Billerica, MA, USA). High-
performance liquid chromatography (HPLC) purifications were performed on a Varian
Prostar System (Varian Medical Systems, Palo Alto, CA, USA).

DyLight800-1: To the trifluoroacetate salt of (S)-5-carboxy-5-(3-((S)-1,3-dicarboxypropyl)
ureido)pentan-1-amine, 1 [24] (0.5 mg, 1.2µmol) in DMSO (0.1 mL), N,N-diisopropylethylamine
(0.010 mL, 57.4 µmol) was added, followed by the NHS ester of DyLight800 (0.3 mg,
0.29 µmol). After 1 h at room temperature, the stirred reaction mixture was purified by
HPLC (column, Phenomenex Luna C18, 10 µ, 250 × 4.6 mm; mobile phase, A = 0.1% TFA in
H2O, B = 0.1% TFA in CH3CN; linear gradient, 0 min = 5% B, 5 min = 5% B, 45 min = 100%
B; flow rate, 1 mL/min) to afford 0.3 mg (87%) of DyLight800-1. ESI-Mass calculated for
C57H69N5O18S3

2− [M-2H]2− 603.7 found 603.6.
DyLight800-2: To a solution of (S)-N-(4-bromobenzyl)-5-carboxy-5-(3-((S)-1,3-dicarboxypropyl)

ureido)pentan-1-amine 2 (20) (0.5 mg, 1.0 µmol) in DMSO (0.1 mL), N,N-diisopropylethylamine
(0.005 mL, 28.7 µmol) was added, followed by the NHS ester of DyLight800 (0.3 mg,
0.29 µmol). After stirring overnight at room temperature, the reaction mixture was pu-
rified by HPLC (column, Phenomenex Luna C18, 10 µ, 250 × 4.6 mm; mobile phase,
H2O/CH3CN/TFA = 67/33/0.1; flow rate, 1 mL/min) to afford 0.2 mg (51%) of DyLight800-
2. ESI-Mass calculated for C64H74BrN5O18S3

2− [M-2H]2− 687.7 found 687.5.
DyLight800-3: To the trifluoroacetate salt of (3S,7S,22S)-1,3,7,22-tetracarboxy-5,13,20-

trioxo-4,6,12,21-tetraazahexacosan-26-amine 3 (9), (0.5 mg, 0.7 µmol) in DMSO (0.1 mL),
N,N-diisopropylethylamine (0.010 mL, 57.4 µmol) was added, followed by the NHS ester of
DyLight800 (0.3 mg, 0.29 µmol). After 1 h at room temperature, the stirred reaction mixture
was purified by HPLC (column, Phenomenex Luna C18, 10 µ, 250 × 4.6 mm; mobile phase,
A = 0.1% TFA in H2O, B = 0.1% TFA in CH3CN; linear gradient, 0 min = 5% B, 5 min = 5%
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B, 45 min = 100% B; flow rate,1 mL/min) to afford 0.3 mg (70%) of DyLight800-3. ESI-Mass
calculated for C71H94N7O22S3

− [M-H]− 1492.6 found 1492.4.
(3S,7S)-12-(4-Bromobenzyl)-1,3,7-tricarboxy-5,13,20-trioxo-4,6,12,21-tetraazahexacosan-26-

aminium trifluoroacetate, 4. To a solution of (S)-N-(4-bromobenzyl)-6-(tert-butoxy)-5-(3-
((S)-1,5-di-tert-butoxy-1,5-dioxopentan-2-yl)ureido)-6-oxohexan-1-amine, 12 [25] (0.066 g,
0.1 mmol) in CH2Cl2 (4 mL), triethylamine (0.05 mL, 0.36 mmol) was added, followed by
(S)-2,5-dioxopyrrolidin-1-yl 8-((1-(tert-butoxy)-6-((tert-butoxycarbonyl)amino)-1-oxohexan-
2-yl)amino)-8-oxooctanoate, 11 (0.060 g, 0.11 mmol). After stirring overnight at room
temperature, the solvent was evaporated and a solution of TFA/H2O (95:5, 0.3 mL) was
added. The mixture was kept at room temperature for 1 h, then purified by HPLC (column,
Phenomenex Luna C18, 10 µ, 250 × 10 mm; mobile phase, A = 0.1% TFA in H2O, B = 0.1%
TFA in CH3CN; linear gradient, 0 min = 5% B, 5 min = 5% B, 25 min = 100% B; flow rate,
4 mL/min) to afford 0.048 g (55%) of 4. 1H NMR (500 MHz, D2O, compound exists as a
mixture of rotamers) δ 7.40–7.45 (m, 2H), 7.04 (m, 2H), 4.44–4.51 (m, 2H), 4.19–4.25 (m, 2H),
4.08 (m, 1H), 3.26 (m, 2H), 2.91 (m, 2H), 2.38–2.42 (m, 3H), 2.17–2.25 (m, 3H), 2.08–2.10 (m,
1H), 1.81–1.89 (m, 2H), 1.37–1.68 (m, 13H), 1.25 (m,4H). 1.14 (m, 2H). ESI-Mass calculated
for C33H51BrN5O11

+ [M + H]+ 772.3 found 772.2.
DyLight800-4: To a solution of 4 (0.5 mg, 0.57 µmol) in DMSO (0.1 mL), N,N-

diisopropylethylamine (0.010 mL, 57.4 µmol) was added, followed by the NHS ester of
DyLight800 (0.5 mg, 0.48 µmol). After stirring for 1 h at room temperature, the reaction
mixture was purified by HPLC (column, Phenomenex Luna C18, 10 µ, 250 × 4.6 mm;
mobile phase, A = 0.1% TFA in H2O, B = 0.1% TFA in CH3CN; linear gradient, 0 min = 5% B,
5 min = 5% B, 45 min = 100% B; flow rate, 1 mL/min) to afford 0.5 mg (63%) of DyLight800-4.
ESI-Mass calculated for C78H98BrN7O22S3

2− [M-2H]2− 829.9 found 830.5.
(3S,7S)-1,3,7-Tricarboxy-5,13,20-trioxo-4,6,12,21-tetraazahexacosan-26-aminium trifluo-

roacetate 5: To the formate of (S)-6-(tert-butoxy)-5-(3-((S)-1,5-di-tert-butoxy-1,5-dioxopentan-
2-yl)ureido)-6-oxohexan-1-amine, 15 (0.027 g, 0.05 mmol) [24] in CH2Cl2 (2 mL), triethy-
lamine (0.02 mL, 0.14 mmol) was added, followed by 2,5-dioxopyrrolidin-1-yl 8-((5-((tert-
butoxycarbonyl)amino)pentyl)amino)-8-oxooctanoate,13 (0.023 g, 0.05 mmol). After stirring
at room temperature for 2 h, the solvent was evaporated and the residue was purified
by a silica gel column (5% MeOH in CH2Cl2) to give the protected intermediate (0.037 g,
0.044mmol) 88%). ESI-Mass calculated for C42H78N5O11 [M + H]+ 828.6 found 828.6. To
this, a solution of TFA/H2O (95:5, 0.3 mL) was added. The mixture was stirred at ambient
temperature for 2 h, then purified on a Sep-Pak Vac 12 cc syringe column (Waters) using
a gradient of water to acetonitrile/water 5:5 (v:v) to give compound 5 (0.023 g, 78%). 1H
NMR (500 MHz, D2O/CD3CN = 2:1) δ 3.97–4.02 (m, 2H), 3.05 (m, 4H), 2.83–2.86 (m, 2H),
2.31 (m, 2H), 2.09 (m, 4H), 1.79 (m, 1H), 1.66 (m, 1H), 1.40–1.56 (m, 12H), 1.19–1.28 (m, 8H).
ESI-Mass calculated for C25H46N5O9

+ [M + H]+ 560.3 found 560.3.
DyLight800-5: To a solution of compound 5 (0.5 mg, 0.74 µmol) in DMSO (0.1 mL),

N,N-diisopropylethylamine (0.010 mL, 57.4 µmol) was added, followed by the NHS ester of
DyLight800 (0.3 mg, 0.29 µmol). After stirring 2 h at room temperature, the reaction mixture
was purified by HPLC (column, Phenomenex Luna C18, 10 µ, 250 × 4.6 mm; mobile phase,
A = 0.1% TFA in H2O, B = 0.1% TFA in CH3CN; linear gradient, 0 min = 5% B, 5 min = 5%
B, 25 min = 100% B; flow rate, 1 mL/min) to afford 0.3 mg (72%) of DyLight800-5. ESI-Mass
calculated for C70H93N7O20S3

2− [M-2H]2−, 723.8, found 723.6.
(3S,7S)-12-(4-Bromobenzyl)-1,3,7-tricarboxy-5,13,20-trioxo-4,6,12,21-tetraazahexacosan-26-

aminium trifluoroacetate, 6: To a solution of compound 12 (0.016 g, 0.024 mmol) in
CH2Cl2 (2 mL), triethylamine (0.01 mL, 0.072 mmol) was added, followed by 13 (0.011 g,
0.024 mmol). After stirring at room temperature for 2 h, the solvent was evaporated and
the residual was purified by HPLC (column, Phenomenex Luna C18, 10 µ, 250 × 10 mm;
mobile phase, A = 0.1% TFA in H2O, B = 0.1% TFA in CH3CN; linear gradient, 0 min = 40%
B, 5 min = 40% B, 25 min = 100% B; flow rate, 4 mL/min) to give 0.013 g (54%) of the
protected intermediate. ESI-Mass calculated for C49H83BrN5O11 [M + H]+ 996.5 found
996.4. To the protected intermediate, a solution of TFA/H2O (95:5, 0.3 mL) was added. The
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mixture was kept at ambient temperature for 2 h, then purified on a Sep-Pak Vac 12 cc
syringe column (Waters) using a gradient of water to acetonitrile/water of 5:5 (v:v) to give
compound 6 (0.008 g, 73%). 1H NMR (500 MHz, D2O/CD3CN = 1:1, compound exists as a
mixture of rotamers) δ 7.43–7.49 (m, 2H), 7.08 (m, 2H), 4.43–4.49 (m, 2H), 4.02–4.08 (m, 2H),
3.18–3.26 (m, 2H), 3.04–3.08 (m, 2H), 2.82–2.85 (m, 2H), 2.23–2.36 (m, 4H), 2.08–2.11 (m, 2H),
1.79–1.82 (m, 1H), 1.66 (m, 1H),1.49–1.58 (m, 12H), 1.13–1.26 (m, 8H). ESI-Mass calculated
for C32H51BrN5O9

+ [M + H]+ 728.3 found 728.2.
DyLight800-6: To a solution of compound 6 (0.5 mg, 0.59 µmol) in DMSO (0.1 mL),

N,N-diisopropylethylamine (0.010 mL, 57.4 µmol) was added, followed by the NHS ester of
DyLight800 (0.3 mg, 0.29 µmol). After stirring 2 h at room temperature, the reaction mixture
was purified by HPLC (column, Phenomenex Luna C18, 10 µ, 250 × 4.6 mm; mobile phase,
A = 0.1% TFA in H2O, B = 0.1% TFA in CH3CN; linear gradient, 0 min = 5% B, 5 min = 5%
B, 25 min = 100% B; flow rate, 1 mL/min) to afford 0.4 mg (86%) of DyLight800-6. ESI-Mass
calculated for C77H98BrN7O20S3

2− [M-2H]2−, 807.8, found 808.6.
(21S,25S)-21,25,27-Tricarboxy-15,23-dioxo-3,6,9,12-tetraoxa-16,22,24-triazaheptacosan-

1-aminium trifluoroacetate, 7: To a solution of 15 (0.053 g, 0.1 mmol) in CH2Cl2 (2 mL),
triethylamine (0.027 mL, 0.2 mmol) was added, followed by 2,5-dioxopyrrolidin-1-yl 2,2-
dimethyl-4-oxo-3,8,11,14,17-pentaoxa-5-azaicosan-20-oate, 17 (0.046 g, 0.1 mmol). After
stirring at room temperature for 2 h, the solvent was evaporated and the residue was
purified by a silica gel column (5% MeOH in CH2Cl2) to give the protected intermediate
(0.051 g, 61%). ESI-Mass calculated for C40H74N4O14Na [M + Na]+ 857.5 found 857.5. To
the protected intermediate, a solution of TFA/H2O (95:5, 0.2 mL) was added. The mixture
was stirred at ambient temperature for 2 h, then purified using a Sep-Pak Vac 12 cc syringe
column (Waters) using a gradient of 100% water to acetonitrile/water 3:7 (v:v). Product
fractions were collected and lyophilized to give compound 7 (0.032 g, 79%). 1H NMR
(500 MHz, D2O) δ 4.20 (m, 1H), 4.12 (m, 1H), 3.76 (m, 4H), 3.65–3.70 (m, 12H), 3.17–3.20 (m,
4H), 2.46–2.50 (m, 4H), 2.12–2.15 (m, 1H), 1.92–1.98 (m, 1H), 1.78–1.83 (m, 1H), 1.64–1.72 (m,
1H), 1.49–1.55 (m, 2H), 1.37–1.41 (m, 2H). ESI-Mass calculated for C23H43N4O12

+ [M + H]+

567.3 found 567.2.
DyLight800-7: To a solution of compound 7 (0.3 mg, 0.45 µmol) in DMSO (0.1 mL),

N,N-diisopropylethylamine (0.010 mL, 57.4 µmol) was added, followed by the NHS ester
of DyLight800 (0.3 mg, 0.29 µmol). After stirring for 2 h at room temperature, the reaction
mixture was purified by HPLC (column, Phenomenex Luna C18, 10 µ, 250 × 4.6 mm;
mobile phase, A = 0.1% TFA in H2O, B = 0.1% TFA in CH3CN; gradient, 0 min = 5% B,
5 min = 5% B, 45 min = 100% B; flow rate, 1 mL/min) to afford 0.3 mg (72%) of DyLight800-7.
ESI-Mass calculated for C68H90N6O23S3

2− [M-2H]2− 727.3 found 727.1.
(21S,25S)-16-(4-Bromobenzyl)-21,25,27-tricarboxy-15,23-dioxo-3,6,9,12-tetraoxa-16,22,24-

triazaheptacosan-1-aminium trifluoroacetate, 8: To a solution of compound 12 (0.066 g,
0.1 mmol) in CH2Cl2 (2 mL), triethylamine (0.027 mL, 0.2 mmol) was added, followed by
2,5-dioxopyrrolidin-1-yl 2,2-dimethyl-4-oxo-3,8,11,14,17-pentaoxa-5-azaicosan-20-oate, 17
(0.046 g, 0.1 mmol). After stirring for 2 h at room temperature, the solvent was evaporated,
and the residue was purified by a silica gel column (5% MeOH in CH2Cl2) to give the pro-
tected intermediate (0.082 g, 81%) ESI-Mass calculated for C47H79BrN4O14Na+ [M + Na]+

1025.5 found 1025.3. To the protected intermediate, a solution of TFA/H2O (95:5, 0.2 mL)
was added. The mixture was kept at an ambient temperature for 2 h, and the solvent was
evaporated and the residue purified on a Sep-Pak Vac 12 cc syringe column (Waters) using
a gradient of 100% water to acetonitrile/water 1:1 (v:v). The fractions were collected and
lyophilized to give compound 8 (0.056 g, 67%). 1H NMR (500 MHz, D2O, compound exists
as a mixture of rotamers) δ 7.49–7.55 (m, 2H), 7.12–7.15 (m, 2H), 4.52–4.61 (m, 2H), 4.10 (m,
1H), 4.03 (m, 1H), 3.68–3.80 (m, 4H), 3.54–3.64 (m, 12H), 3.32–3.38 (m, 2H), 3.13–3.15 (m,
2H), 2.62–2.76 (m, 2H), 2.37–2.40 (m, 2H), 2.04–2.08 (m, 1H), 1.86–1.89 (m, 1H), 1.67–1.73
(m, 1H), 1.51–1.61 (m, 3H), 1.26–1.30 (m, 2H). ESI-Mass calculated for C30H48BrN4O12

+

[M + H]+ 735.2 found 735.2.
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DyLight800-8: To a solution of compound 8 (0.5 mg, 0.60 µmol) in DMSO (0.1 mL),
N,N-diisopropylethylamine (0.010 mL, 57.4 µmol) was added, followed by the NHS ester
of DyLight800 (0.3 mg, 0.29 µmol). After stirring for 2 h at room temperature, the reaction
mixture was purified by HPLC (column, Phenomenex Luna C18, 10 µ, 250 × 4.6 mm;
mobile phase, A = 0.1% TFA in H2O, B = 0.1% TFA in CH3CN; gradient, 0 min = 5% B,
5 min = 5% B, 45 min = 100% B; flow rate, 1 mL/min) to afford 0.3 mg (65%) of DyLight800-8.
ESI-Mass calculated for C75H95BrN6O23S3

2− [M-2H]2− 811.2 found 811.0.
2,5-Dioxopyrrolidin-1-yl 2,2-dimethyl-4-oxo-3,8,11,14,17,20,23,26,29-nonaoxa-5-

azadotriacontan-32-oate, 20: To a solution of t-Boc-N-amido-PEG8-acid (0.25 g, 0.46 mmol)
and N-hydroxysuccinimide (0.053 g, 0.046 mmol) in CH2Cl2 (4 mL), dicyclohexylcarbodi-
imide (0.1 g, 0.048 mmol) was added. After stirring at room temperature overnight, the
mixture was filtered, and the filtrate was evaporated to give compound 20. ESI-Mass
calculated for C28H50N2O14Na [M + Na]+ 661.3 found 661.3.

(33S,37S)-33,37,39-Tricarboxy-27,35-dioxo-3,6,9,12,15,18,21,24-octaoxa-28,34,36-
triazanonatriacontan-1-aminium trifluoroacetate 9: To a solution of the formate salt of
15 (0.053 g, 0.1 mmol) in CH2Cl2 (2 mL), triethylamine (0.027 mL, 0.2 mmol) was added,
followed by 2,5-dioxopyrrolidin-1-yl 2,2-dimethyl-4-oxo-3,8,11,14,17,20,23,26,29-nonaoxa-5-
azadotriacontan-32-oate, 20 (0.070 g, 0.11 mmol). After 2 h of stirring at room temperature,
the solvent was evaporated, and the residual was purified by a silica gel column (5% MeOH
in CH2Cl2) to give the protected intermediate (0.076 g, 76%). A solution of TFA/H2O
(95:5, 0.2 mL) was added to the protected intermediate (0.060 g, 0.059 mmol). The mixture
was kept at an ambient temperature for 2 h, then purified by Sep-Pak Vac 12 cc (Waters)
using a gradient of water to acetonitrile/water of 3:7 (v:v). The fractions were collected
and lyophilized to give compound 9 (0.036 g, 72%). 1H NMR (500 MHz, D2O) δ 4.12 (m,
1H), 4.07 (m, 1H), 3.76 (m, 4H), 3.65–3.70 (m, 28H), 3.17–3.20 (m, 4H), 2.48–2.50 (m, 2H),
2.41–2.44 (m, 2H), 2.06–2.10 (m, 1H), 1.88–1.92 (m, 1H), 1.76–1.79 (m, 1H), 1.65–1.69 (m, 1H),
1.49–1.53 (m, 2H), 1.35–1.38 (m, 2H). ESI-Mass calculated for C31H59N4O16

+ [M + H]+ 743.4
found 743.3.

DyLight800-9: To a solution of compound 9 (0.5 mg, 0.60 µmol) in DMSO (0.1 mL),
N,N-diisopropylethylamine (0.010 mL, 57.4 µmol) was added, followed by the NHS ester
of DyLight800 (0.3 mg, 0.29 µmol). After stirring for 2 h at room temperature, the reaction
mixture was purified by HPLC (column, Phenomenex Luna C18, 10 µ, 250 × 4.6 mm;
mobile phase, A = 0.1% TFA in H2O, B = 0.1% TFA in CH3CN; gradient, 0 min = 5% B,
5 min = 5% B, 45 min = 100% B; flow rate, 1 mL/min) to afford 0.4 mg (86%) of DyLight800-9.
ESI-Mass calculated for C76H106N6O27S3

2− [M-2H]2− 815.3 found 815.1.
(33S,37S)-28-(4-Bromobenzyl)-33,37,39-tricarboxy-27,35-dioxo-3,6,9,12,15,18,21,24-octaoxa-

28,34,36-triazanonatriacontan-1-aminium trifluoroacetate 10: To a solution of compound
12 (0.066 g, 0.1 mmol) in CH2Cl2 (3 mL), triethylamine (0.027 mL, 0.2 mmol) was added,
followed by 2,5-dioxopyrrolidin-1-yl 2,2-dimethyl-4-oxo-3,8,11,14,17,20,23,26,29-nonaoxa-
5-azadotriacontan-32-oate, 20, (0.070 g, 0.11 mmol). After stirring overnight at room
temperature, the solvent was evaporated, and the residue was purified on a silica gel
column (5% MeOH in CH2Cl2) to give the protected intermediate (0.094 g, 79%). To the pro-
tected intermediate (0.07 g, 0.059 mmol), a solution of TFA/H2O (95:5, 0.2 mL) was added.
The mixture was kept at ambient temperature for 2 h, then purified by HPLC (column:
Phenomenex Luna C18, 10 µ, 250 × 10 mm; mobile phase, A = 100% water + 0.1%TFA,
B = 100% acetonitrile + 0.1% TFA, Linear Gradient: 0 min 100%A, 25 min 100%B; flow rate,
4 mL/min) to give compound 10 (0.031g, 52%). 1H NMR (500 MHz, D2O, compound exists
as a mixture of rotamers) δ 7.49–7.53 (m, 2H), 7.12–7.16 (m, 2H), 4.52–4.61 (m, 2H), 4.21 (m,
1H), 4.10 (m, 1H), 3.71–3.80 (m, 4H), 3.54–3.66 (m, 28H), 3.32–3.38 (m, 2H), 3.15–3.16 (m,
2H), 2.63–2.78 (m, 2H), 2.44–2.47 (m, 2H), 2.09–2.15 (m, 1H), 1.88–1.96 (m, 1H), 1.71–1.77
(m, 1H), 1.50–1.64 (m, 3H), 1.28–1.30 (m, 2H). ESI-Mass calculated for C38H64BrN4O16

+

[M + H]+ 912.9 found 913.3.
DyLight800-10: To a solution of compound 10 (0.5 mg, 0.50 µmol) in DMSO (0.1 mL),

N,N-diisopropylethylamine (0.010 mL, 57.4 µmol), followed by the NHS ester of DyLight800
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(0.3 mg, 0.29 µmol) was added. After stirring for 2 h at room temperature, the reaction
mixture was purified by HPLC (column, Phenomenex Luna C18, 10 µ, 250 × 4.6 mm;
mobile phase, A = 0.1% TFA in H2O, B = 0.1% TFA in CH3CN; gradient, 0 min = 5% B,
5 min = 5% B, 45 min = 100% B; flow rate, 1 mL/min) to afford 0.3 mg (58%) of DyLight800-
10. ESI-Mass calculated for C83H111BrN6O27S3

2− [M-2H]2− 899.3 found 899.1.
Synthetic details for the linkers used in compounds 4–10 are presented in the

Supplemental Materials.

2.2. NAALADase Assay

Cell lysates of LNCaP cell extracts were incubated with PSMA-targeted imaging
agents (0.01 nM–100 µM) in the presence of 4 µM NAAG at 37 ◦C for 2 h. The amount
of released glutamate from NAAG was measured by incubating with a working solution
of the Amplex Red glutamic acid kit (Molecular Probes Inc., Eugene, OR, USA) at 37 ◦C
for 60 min. Fluorescence was determined by reading with the Cytation 5 Cell Imaging
Multi-Mode Reader (BioTek, Winooski, VT, USA) with excitation at 545 nm and emission at
590 nm [26]. Inhibition curves were determined using semi-log plots, and IC50 values were
determined as the concentration at which enzymatic activity was inhibited by 50%. Assays
were performed in triplicate, with the entire inhibition study being repeated at least once to
confirm the affinity and mode of inhibition. Enzyme inhibitory constants (Ki values) were
generated using the Cheng–Prusoff conversion [27]. Data analysis was performed using
GraphPad Prism version 9 for Windows (GraphPad Software, San Diego, CA, USA).

2.3. Cell Lines and Tumor Models

PSMA+ PC3 PIP and PSMA− PC3 flu cell lines were originally obtained from Dr.
Warren Heston (Cleveland Clinic). Cells were grown to 80–90% confluence in a single
passage before trypsinization and formulation in Hank’s balanced salt solution (HBSS,
Sigma, St. Louis, MO, USA) for implantation into mice. PC3-ML-PSMA [28] cells main-
tained in RPMI1640 supplemented with 10% FBS and 1× Pen/Strep. Animal studies were
carried out in compliance with guidelines related to the conduct of animal experiments of
the Johns Hopkins Animal Care and Use Committee. For optical imaging studies and ex
vivo biodistribution, male NOD-SCID mice (Johns Hopkins University, in-house colony)
were implanted subcutaneously with 1 × 106 PSMA+ PC3 PIP and PSMA− PC3 flu cells in
opposite flanks. Mice were imaged when the tumor xenografts reached 3–5 mm in diameter.
For the metastatic model of a PSMA-expressing prostate tumor, 1 × 106 PC3-ML-PSMA
cells were injected intravenously into 4 to 6-week-old NSG (NOD/Shi-scid/IL-2Rγnull)
mice (Animal Resources Core, Johns Hopkins). Four weeks post-injection of the cells,
animals were used for imaging.

2.4. In Vivo Imaging and Ex Vivo Biodistribution

After image acquisition at baseline (pre-injection), each mouse was injected intra-
venously with 1 nmol of DyLight800-urea conjugate (DyLight800-1 to DyLight800-10, 3–4
mice per compound), and images were acquired at 1 h, 2 h, 4 h and 24 h time points using
a Pearl Impulse Imager (LI-COR Biosciences, Cambridge, UK). Following the 24 h image,
each mouse was sacrificed by cervical dislocation, and tumor, muscle, liver, spleen, kidneys
and stomach were collected and assembled on a petri dish for image acquisition. All images
were scaled to the same intensity for direct comparison.

2.5. Immunohistochemistry (IHC)

The kidney and liver were fixed in 10% formalin for 24 h and embedded in paraffin.
Sectioning and H&E staining were performed by Johns Hopkins Oncology Tissue Services.
For PSMA IHC, slides were stained with anti-PSMA antibody (Cat# SIR089, Dako, Santa
Clara, CA, USA) with 1:2 dilution in the presence of background reducing components
(Cat# S3022, Dako). Slides were then stained with anti-mouse HRP linked antibody from
EnVision plus system-HRP (DAB) (Cat# K4006, Dako). Processed slides were scanned by
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Johns Hopkins Oncology Tissue Services, and the images were analyzed using Aperio
Image Scope software (Leica Biosystems Inc, Buffalo Grove, IL, USA).

2.6. Statistical Considerations

An unpaired t-test was performed to determine whether there were differences in
PSMA+ PC3 PIP tumor uptake and the kidney and corresponding PSMA− PC3 flu tumor
for DyLight800-1–10. Statistical significance was determined to be present at p < 0.01.
Calculations were performed using GraphPad Prism 9 (San Diego, CA, USA).

3. Results
3.1. Chemical Synthesis

General syntheses of DyLight800-1 and -2 (no linker) are presented in Scheme 1, while
general syntheses of DyLight-3 through -10 (with linker) are shown in Scheme 2.
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Scheme 2. General syntheses of DyLight800-3 to -10. (See Figure 1 for R’ and linkers).

Commercially available amine-reactive active NHS ester of DyLight800 with principal
excitation/emission wavelength at 777/794 nm was conjugated with amines 1–10 to pro-
duce the dye-PSMA inhibitors shown in Figure 1. The conjugation reactions were readily
completed at room temperature. The chemical yields for the conjugates ranged from 51%
to 86%.
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Figure 1. Whole body and excised organ imaging of mice with PSMA+ PC3 PIP and PSMA- PC3 flu
tumors at 24 h post-injection of 1 nmol of DyLight800-urea conjugates.
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3.2. In Vitro Inhibition Assay

The Ki values were determined using a modification of the Amplex Red glutamic acid
assay [26] and are presented in Table 1. The Ki values range from 0.10 to 2.19 nM, which is
similar to other compounds of this class [29].

Table 1. PSMA inhibitory activities.

Compound Ki (nM) 95% Confidence Interval of Ki

DyLight800-1 0.37 0.26–0.52

DyLight800-2 0.16 0.11–0.22

DyLight800-3 0.10 0.06–0.15

DyLight800-4 0.29 0.17–0.51

DyLight800-5 0.45 0.31–0.65

DyLight800-6 0.68 0.40–1.17

DyLight800-7 0.85 0.52–1.36

DyLight800-8 0.50 0.34–0.73

DyLight800-9 2.19 1.22–2.71

DyLight800-10 0.83 0.73–0.94

3.3. Imaging

Figure 1 shows the imaging at 24 h post-injection of 1 nmol of compound DyLight800-
1 to DyLight800-10 in mice with PSMA+ PC3 PIP and PSMA- PC3 flu tumors. All ten
compounds demonstrated robust PSMA+ PC3 PIP tumor uptake and little uptake in PSMA-

PC3 flu tumors, indicating target selectivity in vivo. Fluorescence intensities of PIP, flu,
kidney and liver are shown in Figure 2A. We found significant differences in uptake of each
agent between the PSMA-expressing tumors and kidney and between these tumors and
the PSMA-negative tumors according to the levels of significance indicated.
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Figure 2. (A) Biodistribution data at 24 h postinjection from regions of interest (ROI) drawn over
organs displayed in ex vivo images. Three to four animals were imaged per agent. Comparisons were
made between the tumor and kidney, as well as between PSMA+ PC3 PIP tumor and kidney and
between PSMA+ PC3 PIP and PSMA− PC3 flu tumor. Values are represented as mean ± standard
error of the mean (SEM). PIP = PSMA+ PC3 PIP tumor; flu = PSMA− PC3 flu tumor. * = p < 0.01;
** = p < 0.001; *** = p < 0.0001. (B) Ratio of uptake in PSMA+ PC3 PIP tumor to kidney based on the
data in panel (A).
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As noted above, the key consideration for a suitable FGS agent is tumor/background
at the time of surgery. The agent must also have high absolute tumor uptake to be de-
tectable. DyLight800-3, DyLight800-4, DyLight800-5 and DyLight800-6 demonstrated
the highest PSMA+ PIP tumor uptake. Comparing DyLight800-7 and DyLight800-9 with
DyLight800-8 and DyLight800-10, it was demonstrated that the N-bromobenzyl substituent
significantly increased the PSMA+ PIP tumor uptake. DyLight800-1 and DyLight800-2,
which have no linker between the dye and Lys-Glu urea, had much lower PSMA+ PIP
tumor uptake than other compounds with linkers, confirming the importance of the linker
moiety for modifying pharmacokinetics. DyLight800-7, DyLight800-8, DyLight800-9 and
DyLight800-10, which have PEG4 or PEG8 linker had significantly less kidney uptake com-
pared to DyLight800-3, DyLight800-4, DyLight800-5 and DyLight800-6. While Dylight800-1,
Dylight800-9 and DyLight800-10 showed the most favorable tumor/background, their ab-
solute uptake levels were relatively low. Nevertheless, for renal surgery, one of them, partic-
ularly DyLight-10, may have the best properties (Figure 2B). DyLight800-3 or DyLight800-4
may be superior for prostate surgery, due to higher absolute uptake where renal uptake
is of no consequence. Figure 3 shows the capacity for the dyes to identify lesions within
metastatic foci of liver and kidney, while Figure 4 provides correlative histology from
this experiment.

We also compared the uptake of DyLight800-3 to that of our previously published
compound YC-27 (Figure 5) [13]. Qualitatively, the uptake in tumor of DyLight800-3 is
similar to or slightly higher than that of YC-27, while renal uptake is much lower for the
latter. Note that these two compounds differ only in the fluorophore, with YC-27 bearing
the IRDye 800CW dye.
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Figure 3. Selected agents successfully detected PSMA-expressing metastatic lesions in the kidney and
liver. Ex vivo fluorescent images of kidney (A,C,E,G,I,K,M,O,Q) and liver (B,D,F,H,J,L,N,P,R) from
mice injected with 1 nmole of compounds DyLight800-4 (A–F), DyLight800-6 (G–L), and DyLight800-
10 (M–R). Fluorescence intensity was optimized to maximize the contrast between tumor and kidney
for each image.
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Figure 4. Immunohistochemistry confirmed the expression of PSMA in metastatic tumors and the
cortex regions of mouse kidney. H&E staining (A,D,G,J), control staining without the 1◦ (anti-PSMA)
Ab (B,E,H,K), and staining with anti-PSMA Ab (C,F,I,L). Scanned images of a whole section with
0.5× magnification (A–C and G–I, scale bar = 5 mm) and magnified images of boxed regions
(D,E,F,J,K,L, scale bar = 200 µm) are shown.
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Figure 5. Head-to-head comparison of DyLight800-3 to YC-27. In each case, 1 nmol of agent was
administered intravenously. Compounds provided comparable PSMA+ PC3 PIP tumor (white arrows
in column A) uptake at 24 h post-injection. At 24 h, animals were sacrificed and organs were removed
and imaged (column B). Images are scaled to the same maximum value.
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4. Discussion

FGS is increasingly employed for a variety of conditions, particularly in surgical on-
cology. As of today, Clinical trials.gov lists 53 active or recent studies involving FGS, with
likely even more ongoing [30]. As with most imaging modalities, in order to be successful,
high sensitivity and specificity are required for the NIR agent and the detection system.
Here we have focused on optimization of what we have shown is a highly specific fluores-
cent platform for targeting PSMA [13–15]. We have done so in two ways: first, by replacing
our initial fluorophore with DyLight800, due to its putatively superior quantum yields
and photostability [23] and its ready availability. Second, we attempted to enhance the
pharmacokinetics by altering the linker between the fluorophore and the PSMA-targeting
moiety. We did so by altering the linker length, its overall degree of hydrophilicity and by
affixing a bromobenzyl group to the ε-amino group of lysine, to which we also attached
the fluorophore. We have previously shown that the N-bromobenzyl group in that position
is capable of mitigating off-target tissue uptake [31].

Although these agents are suggested for use in enhancing surgery, which means that
in the context of prostate cancer, only local images in the tumor margin or of local-regional
lymph nodes would be obtained, since PSMA is expressed in the neovasculature of many
other tumors, it is important to minimize uptake in other organs, such as the kidney. For
example, we have previously shown that we can target clear cell renal cell carcinoma
(ccRCC) to good effect with a positron-emitting version of our PSMA-targeting ureas,
DCFPyL (piflufolostat F 18) [32–34], and could potentially use an optimized NIR version
for surgical guidance in partial nephrectomy, for which non-targeted carbocyanine dyes
have been leveraged [11]. In this instance, DyLight800-10 may be the best agent among
those synthesized here, as there is little renal uptake yet sufficient brightness to enable
clear visualization of metastatic foci (Figure 2). That compound arguably demonstrates
the highest signal-to-noise ratio. For prostate surgery, DyLight800-3 or DyLight800-3–4,
which contain an acid group in the linker, may be superior, as renal uptake would be of no
consequence in the surgical field. Nevertheless, that high renal uptake may be indicative of
other non-target binding, which would have to be evaluated further. In all, it appears that
the presence of the longer linker and enhanced hydrophilicity, such as the introduction of
an acid group or a polyethylene glycol (PEG) chain in the linker, improve pharmacokinetics.
The presence of the N-bromobenzyl group increased PSMA+ PIP tumor uptake. We hope
that inclusion of the N-bromobenzyl substituent will also promote a decrease in salivary
gland uptake, as it has for our corresponding radiotheranostics [31].

One strategy to improve the performance of PSMA-targeting agents for FGS is to use
a fluorescent molecular rotor [35], which provides nearly instantaneous detection upon
binding of PSMA. However, the clinical use and utility of such an agent may still be dictated
by pharmacokinetics if administered intravenously. We must wait on the order of 12 to 24 h
after administration for imaging in these preclinical models for clearance from non-target
tissues. Others have developed NIR cancer detection agents that are merely sprayed onto
the surgical site, further enhancing their convenience [36–38]. Whether those, or frankly
any of these agents, actually improve outcomes measured by overall or progression-free
survival remains to be determined in larger, prospective studies [5].

We undertook this study to optimize a PSMA-targeting NIR agent with respect to fluo-
rophore and pharmacokinetics. Our qualitative, head-to-head comparison of DyLight800-3
to YC-27 did not reveal a substantial difference in tumor uptake, although the latter had
significantly lower renal uptake. The literature also provides little evidence for the supe-
riority of DyLight800 over IRDye 800CW, and actually suggests the contrary in terms of
quantum yield and brightness in certain in vitro assays [39,40]. Remaining, however, is the
possibility that the issue of coupling a particular dye with a certain camera may further
enhance sensitivity, while we used the Pearl Impulse Imager for our studies herein.
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5. Conclusions

In conclusion, inclusion of an N-bromobenzyl substituent promoted increased PSMA+

PIP tumor uptake, while a hydrophilic linker, particularly with the inclusion of PEG, may
decrease nonspecific binding, particularly to the kidney, in this new series of PSMA-targeted
NIR agents. Such modifications, perhaps coupled with what could be a truly superior
flurophore [40], may render this latest generation of NIR probes even more suitable for FGS
in prostate cancer, ccRCC or other PSMA-expressing tumors than existing agents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biom12030405/s1. Scheme S1: Reagent and conditions and
corresponding synthetic detail.
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