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INTRODUCTION

In this Opinion, adaptations to hypoxia are examined during the short time domains of breath
holds from three accomplished diving animals: northern elephant seals (Mirounga angustirostris),
California sea lions (Zalophus californianus), and emperor penguins (Aptenodytes forsteri). Review
of dive behavior, oxygen (O2) storage, and arterial blood O2 profiles during dives reveals that
the elephant seal undergoes the most frequent and extreme hypoxemia. Exceptional breath hold
durations, routine hypoxemia, established research protocols, and accessibility to the animals make
the elephant seal stand out for physiological investigation and evaluation of biochemical/molecular
adaptations in hypoxemic tolerance, protection against re-perfusion injury, and O2 transport
during dives.

The northern elephant seal and southern elephant seal (M. leonina) are the premier pinniped
divers (Le Boeuf et al., 1988; Hindell et al., 1991, 1992; Hassrick et al., 2010; Robinson et al., 2012).
During several month-long trips to sea, these animals spend 80–90% of their time underwater,
perform routine dives of 20–30min duration to average depths >400m, have short inter-dive
surface intervals that average two min, and typically gain about one kg d−1 in body mass.

In contrast to elephant seals, California sea lions only spend about 30% of their time
at sea diving (Feldkamp et al., 1989). Most dives are <100m in depth and between 1 and
4min in duration (McDonald and Ponganis, 2013; Tift et al., 2017). However, dependent on
geographic location, climate variability, and prey distribution, these sea lions can regularly
perform 10-min dives to 400–500m, with the current longest reported dive of 16min
(Melin et al., 2008; McHuron et al., 2016, 2018).

Emperor penguins are the premier avian divers; they exploit the entire water column to
depths >500m. Shallower dives are up to 5–6min in duration while deep dives are about
10min (Kooyman and Kooyman, 1995; Kirkwood and Robertson, 1997; Sato et al., 2011). The
longest dive documented by a continuous dive profile in an emperor penguin is 27.6min. During
foraging trips to sea, emperor penguins spent about 31% of their time resting on the sea ice
(Watanabe et al., 2012).
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O2 STORES: MAGNITUDE, DISTRIBUTION
AND UTILIZATION

Themagnitude and distribution of respiratory, blood, andmuscle
O2 stores are dependent on diving lung volume, blood volume,
hemoglobin (Hb) concentration, muscle mass, myoglobin (Mb)
concentration, and the quantity of extractable O2 from each
store (i.e., reduction in Hb saturation during a dive). As recently
reviewed (Ponganis, 2015), total body O2 stores have been
estimated at 94, 55, and 68ml O2 kg−1 body mass for elephant
seals, California sea lions, and emperor penguins, respectively.
The distribution of these stores varies considerably with 68, 39,
and 31% in the blood, 28, 48, and 36% in muscle, and 4, 13, and
33% in the respiratory system of elephant seals, California sea
lions, and emperor penguins, respectively.

The cardiovascular dive response (the decrease in heart rate
(bradycardia) and increase in peripheral vascular resistance
associated with a breath hold) and pulmonary gas exchange
play a critical role in blood O2 utilization and arterial
partial pressure of O2 (PO2) profiles during dives. Heart
rate is a primary determinant of pulmonary blood flow and,
consequently, extraction of O2 from the lung. Vasoconstriction
and redistribution of peripheral blood flow which accompany the
bradycardia result in a decreased blood O2 extraction by tissue,
thus slowing the depletion rate of the blood O2 store (Irving et al.,
1941; Valtin, 1973; Lutz et al., 1975; Kvietys and Granger, 1982).
Elephant seals, California sea lions, and emperor penguins all
display variability in the degree of diving bradycardia which can
be dependent on the depth and nature of a given dive (Andrews
et al., 1997; Meir et al., 2008; McDonald and Ponganis, 2014;
Wright et al., 2014).

Cessation of gas exchange at depth due to alveolar collapse
(100% pulmonary shunt) also affects arterial oxygenation
patterns during dives in marine mammals (Kooyman et al.,
1970, 1973a; Kooyman and Sinnett, 1979, 1982; Falke et al.,
1985; Fahlman et al., 2009, 2017; McDonald and Ponganis,
2012). In penguins, it is unclear if gas exchange ceases at
depth (Kooyman et al., 1973b).

ARTERIAL PO2 AND HEMOGLOBIN
SATURATION PROFILES DURING DIVES

Arterial PO2 profiles and calculated Hb saturation profiles have
been obtained during dives of these three species (Figure 1) with
use of intravascular PO2 electrodes, backpack bio-loggers, and
O2-Hb dissociation curves on free-diving animals (Meir and
Ponganis, 2009; Meir et al., 2009; McDonald and Ponganis, 2012,
2013; Tift et al., 2017, 2018). Among these three elite divers, it is
the elephant seal that experiences routine and extreme arterial
hypoxemia with arterial Hb saturations below 80% for ∼80%
of dive durations (Figure 1). Although hypoxemia likely occurs
in the other two species, it is notable that their arterial Hb
saturations can remain above 90% for almost 90% of the dive
duration (Figure 1). In sea lions and penguins, the maintenance
of high arterial Hb saturations throughout much of the dive
are attributable, at least in part, to (a) diving on inspiration not

expiration (Sato et al., 2002; Fahlman et al., 2008; McDonald
and Ponganis, 2012; Tift et al., 2017), (b) larger respiratory
fraction of total O2 stores, and (c) maintenance of gas exchange
at deeper depths.

The elephant seal also experiences significant arterial Hb
desaturation during its spontaneous, frequent sleep apneas on
land (Stockard et al., 2007). All these studies reveal that elephant
seals encounter hypoxemia far more often in their life cycle than
either California sea lions or emperor penguins. Based upon the
Krogh Principle (Krebs, 1975), elephant seals are ideal models for
investigation of the physiological and biochemical mechanisms
of hypoxemic tolerance in divers.

CEREBRAL HYPOXEMIC PROTECTION

In general, there are three factors in seals that contribute
to enhanced brain O2 delivery during breath holds: (a) high
Hb concentrations, (b) hypercarbia (leading to decreased Hb-
O2 affinity and an increase in cerebral blood flow, and (c)
increased brain capillary density (Kerem and Elsner, 1973). In
addition, selective brain cooling and potential cerebro-protection
can occur via arterio-venous shunting in the foreflippers with
brain temperature declines of 3–4◦C during 15-min forced
submersions (Blix et al., 2010). Some notable biochemical and
molecular adaptations in the seal brain include: (a) a 3-fold
elevation in brain glycogen, (b) normal lactate dehydrogenase
(LDH) activity with >70% LDH 1 and 2 isoenzymes (lactate
oxidation), primarily located in glial cells, (c) increased gene
expression of S100B (a stress protein with calcium binding
activity), clustrin (an extracellular chaperone molecule), and
most glycolytic enzymes, but decreased expression of pyruvate
dehydrogenase, and (d) normal neuroglobin and cytochrome
oxidase gene expression, but, in contrast to terrestrial mammals,
located in glial cells (Mitz et al., 2009; Schneuer et al., 2012;
Czech-Damal et al., 2014; Fabrizius et al., 2016; Hoff et al.,
2016, 2017). The ability to study elephant seals during their
voluntary sleep apnea events, which can include routine ten-
min breath holds even inside an NMR scanner (Ponganis et al.,
2008), make them ideal model organisms to investigate metabolic
rate, glucose consumption, and blood flow in brain and muscle
with advanced scanning techniques, such as functional magnetic
resonance imaging, positron emission tomography, and near-
infrared diffuse correlation spectroscopy (Ridgway et al., 2006;
Smith et al., 2013; Shang et al., 2017).

AVOIDANCE OF RE-PERFUSION INJURY

Re-perfusion injury occurs when O2-rich blood returns to
previously ischemic and hypoxic tissues, and is often associated
with reactive oxygen species (ROS) generation, intracellular
calcium accumulation, and inflammation (Powers and Jackson,
2008). In the seal heart, although a 10-fold elevation in glycogen
content may provide a large glycolytic energy store and prevent
intracellular calcium accumulation during ischemia/hypoxemia,
an impressive 25-fold elevation in glutathione content should
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FIGURE 1 | Arterial partial pressure of oxygen (PO2) and hemoglobin (Hb) saturation profiles in elephant seals, California sea lions and emperor penguins. Depth and

PO2 profiles are depicted for each species in the upper panel. The shape of the arterial PO2 profiles of individual dives are dependent on the magnitude and

distribution of O2 stores in each animal, depth of dive, and on multiple factors within a dive, including heart rate, lung O2 extraction, peripheral O2 delivery (i.e., the

intensity of the dive response), lung or air sac volume and compression with depth, and the depth at which pulmonary gas exchange ceases in mammals (alveolar

collapse, i.e., 100% pulmonary shunt). Shaded areas indicate dives; time scale is different for each species. In the lower panel, Hb saturation profiles for a single dive

in each species were constructed with their respective O2-Hb dissociation curves and an arterial PO2 profile. In elephant seals, arterial Hb saturation is below 80% for

most of the dive. In contrast arterial Hb saturations in sea lions and emperor penguins remain above 90% for most of the dive. Time scale is percentage of time of total

dive duration. Adapted from prior publications (Meir and Ponganis, 2009; Meir et al., 2009; McDonald and Ponganis, 2012, 2013).

also enhance the potential for scavenging of ROS during re-
perfusion (Henden et al., 2004; Vázquez-Medina et al., 2007).
Significant elevations in glutathione content were also found
in seal kidney, lung, and muscle. In all tissues, enzymes
associated with the recycling of glutathione were elevated. In
addition to enhanced scavenging of ROS, it has also been
found that the whole blood inflammatory response of seals on
exposure to a potent endotoxin (lipopolysaccharide—LPS) is
significantly blunted (Bagchi et al., 2018). Interleukin-6 cytokine
production in blood was 50–500 times lower in elephant seals
and Weddell seals (Leptonychotes weddellii) than in humans.
Lastly, endogenous carbon monoxide (CO) levels are high in
these two species with carboxyhemoglobin levels as high as
10% in elephant seals (Pugh, 1959; Tift et al., 2014). Such high
CO levels raise the possibility that CO may play a role in
the prevention of inflammatory responses during re-perfusion.
Exposure to moderate levels of exogenous CO has shown
to exhibit potent anti-inflammatory effects (Motterlini and
Otterbein, 2010). Again, elephant seals represent ideal models

for further investigation in re-perfusion injury avoidance and the
physiological role of endogenous CO, with established protocols
in place to examine tissue stress responses and collect serial blood
samples during voluntary breath-holds (Stockard et al., 2007;
Vazquez-Medina et al., 2011a,b; Tift et al., 2013, 2014).

O2 TRANSPORT: HEMOBLOBIN
O2 AFFINITY

Although the presence of carboxyhemoglobin should decrease
the start-of-dive blood O2 store of the elephant seal, the
increased Hb-O2 affinity induced by the presence of CO may be
beneficial for O2 delivery during dives. Increased Hb-O2 affinity
is advantageous during severe hypoxia because it promotes O2

uptake from the lung and increases the O2 content of blood at
a given arterial PO2. The Hb-O2 affinity is increased in penguins
and in a variety of mammals and birds adapted to live in hypoxic
environments or at high altitude (Milsom et al., 1973; Black
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and Tenney, 1980; Weber, 2007; Meir and Ponganis, 2009; Storz
et al., 2010; Storz, 2016; Weber et al., 2017). In many pinnipeds,
including elephant seals, the Hb-O2 affinity is not known to be
high; their P50 values (PO2 at 50% Hb saturation: low values =
high Hb-O2 affinity) were 25–30mm Hg (3.3–4.0 kPa) which
resemble values seen in hypoxia intolerant species (Lenfant et al.,
1969, 1970; Qvist et al., 1981; Meir et al., 2009; McDonald and
Ponganis, 2013). However, in several species of cetaceans, high
Hb-O2 affinities have been reported, with P50 values ranging from
19 to 25mm Hg (2.5–3.3 kPa) (Horvath et al., 1968; Dhindsa
et al., 1974; Vedvick and Itano, 1976). In the manatee, the
P50 was near 16mm Hg (2.1 kPa) (White et al., 1976; Farmer
et al., 1979). The lack of a relative increase in Hb-O2 affinity of
pinnipeds in contrast to that in other divers (penguins, cetaceans,
manatees) warrants further investigation of carboxyhemoglobin
levels, blood O2 contents, O2-Hb binding characteristics in the
presence vs. absence of CO, and blood-to-tissue O2 transfer. The
elephant seal is ideal with its high CO values, long dives and
sleep apneas, its established research/blood sampling protocols
(translocation studies at sea and sleep apnea studies on land), and
its accessibility for research (Stockard et al., 2007; Ponganis et al.,
2008; Meir et al., 2009; Tift et al., 2013).

CONCLUSIONS

Elephant seals, sea lions, and emperor penguins are all highly
adapted to perform remarkable dives. However, it is the elephant

seal that undergoes the most frequent and extreme arterial
hypoxemia due to its continuous dive behavior and sleep apneas
on land. These factors, in addition to (a) extensive knowledge of
biochemical and molecular adaptations to hypoxia in seals, (b)
established sleep apnea and dive research protocols, and (c) its
accessibility on the California coast make the elephant seal stand
out for investigation of time domains of hypoxia adaptation in
diving animals.
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