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Introduction

Endocrine disrupting chemicals (EDCs) are chemicals that in-
terfere with the body’s endocrine system and cause adverse 
developmental, reproductive, neurological, and immune ef-
fects. EDCs may mimic, in whole or in part, natural body hor-
mones that exhibit their effects by acting on specific receptor 
proteins. They also bind to cell receptors, thereby blocking 
their interaction with natural hormones, or alter hormone 
metabolism. Individual EDCs may interact with more than 
one receptor, and multiple EDCs can interact with the same 
receptor, highlighting the unusual properties of environmen-
tal EDCs [1]. We can divide these chemicals according to 
their lipophilic nature. Chemicals with high lipophilic activity 
and a longer half-life are called ‘persistent EDC’ or ‘persistent 
organic pollutants’ (POPs), which may bioaccumulate in fat 
and can be biomagnified through the food chain. Represen-
tative chemicals are dioxins, dichlorodiphenyl-trichloroeth-
ylene, heptachlor, and polychlorinated biphenyls. For POPs, 
many epidemiologic and in vitro studies provided estimates 
of the gynecologic health risks in human populations [2-8].

There are other chemicals with a shorter half-life and lower 

liposolubility, which are called nonpersistent EDCs (npEDCs). 
Examples of npEDCs are bisphenol A (BPA), phthalates, 
parabens, and triclosans (TCSs). BPA (4,4'-(propane-2,2-diyl)
diphenol) is a well-known EDC component of baby bottles, 
children’s toys, dental sealants, coating of receipts, and epoxy 
resins used to coat the inside of food cans. Di-2-ethylhexyl 
phthalate (DEHP) is used as a plasticizer and is contained in 
a wide range of products such as plastics, cosmetics, and 
medical devices. Parabens (alkyl esters of 4-hydroxy benzoic 
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acid) are used as preservatives in personal care products such 
as cosmetics and pharmaceutical products. TCS is an antimi-
crobial compound used in consumer products such as tooth-
paste, mouth wash, and hand sanitizers. In contrast to POPs, 
the exact effect of npEDCs on gynecologic health risk is not 
totally understood. These chemicals may cause subtle chang-
es in ovary and/or uterus development and alterations in 
hormonal signaling, possibly resulting in variable phenotypes 
[9]. Although the direct effect of npEDCs on these conditions 
is difficult to prove, low-dose and continuous environmental 
exposure might play a critical role on gynecologic health. The 
purpose of this article was to review the scientific evidence 
of a causal relationship between exposure to npEDCs and 
representative female reproductive issues, menstrual cycle, 
endometriosis, uterine fibroid (UF), polycystic ovarian syn-
drome (PCOS), and infertility/subfertility.

Menstrual cycle

1. Bisphenol A
In rodents, the effects of BPA exposure on estrous cycle 
were examined in several studies [10-13]. Uterine exposure 
to BPA alters several apoptotic factors and causes germ cell 
nest breakdown, which results in estrous cycle changes [10]. 
BPA treatment significantly decreases serum estradiol (E2) 
concentration, which is accompanied by increased duration 
of the estrus phase, increased ovarian cell apoptosis, and 
decreased E2-regulated protein expression and collagen con-
tent in the uterus [11]. In contrast, high-dose BPA shortens 
the estrous cycle day and length [12]. Neonatal exposure to 
BPA leads to abnormal function of the neural network that 
controls the cycle. Hypothalamic LH-releasing hormone pre-
mRNA processing and steroid receptor expression in nuclei 
controlling estrous cyclicity are permanently disrupted [13].

In humans, urinary BPA metabolites were measured in  
221 healthy women and BPA was associated with shorter 
luteal phase. However, no association was seen in follicular 
phase length [14]. Analysis of the longitudinal urine samples 
from healthy, premenopausal women showed that BPA was 
associated with increased E2, which may influence the men-
strual cycle [15]. Only a few associations have been reported 
between BPA exposure and changes in menstrual charac-
teristics. The effects of BPA exposure on estrous cyclicity in 
rodents and menstrual cycle in humans are still inconclusive.

2. Phthalates
In rodents, DEHP exposure decreased the levels of estrogen 
and progesterone, in addition to prolonging menstrual cycles 
and anovulation [16]. High-dose DEHP treatments resulted in 
reduced serum estradiol, prolonged estrous cycles, and inhi-
bition of ovulation [17]. Continuous exposure to DEHP dur-
ing adult life prolonged the duration of estrous cycle. Low 
levels of DEHP disrupted phosphatidylinositol 3-kinase signal-
ing, which resulted in abnormal estrous cycles and primordial 
follicle recruitment [18]. DEHP treatment showed decreased 
estradiol production in cultured rat ovarian tissues [19]. In 
cultured mouse antral follicle DEHP and mono-(2-ethylhexyl)-
phthalate (MEHP) inhibited estradiol biosynthesis and in-
hibited mRNA expression of cyclin-D-2, cyclin-dependent-
kinase-4, and aromatase (Arom) [20]. MEHP also acts on the 
granulosa cells by decreasing the level of cyclic adenosine 
monophosphate stimulated by follicle stimulating hormone 
and by activating peroxisome proliferator-activated recep-
tors (PPARs), which leads to decreased Arom transcription 
[21]. These may suggest that phthalates alter E2 production 
through the decreased expression of cell cycle regulators and 
specific receptor-mediated responses.

In humans, high concentrations of urinary monocarboxyoc-
tyl phthalate are associated with short luteal phase. But 
menstrual cycle-specific estimates of urinary phthalate me-
tabolites were not associated with the follicular-phase length 
[14]. Another study did not show a consistent relationship 
between menstrual phase and phthalate metabolite con-
centrations [22]. Based on described studies, a mechanistic 
model explaining phthalate effects on menstrual cycle has 
been proposed. However, the exact effects of phthalates on 
menstrual cycle are inconclusive.

3. Parabens and triclosan
Parabens and paraben metabolites are associated with in-
creased E2 levels in healthy premenopausal women. In Japa-
nese women, butyl paraben concentrations (odds ratio [OR], 
0.83; 95% confidence interval [CI], 0.70–0.99) are negatively 
correlated with menstrual cycle length and urinary estrogen-
equivalent total paraben concentrations (OR, 0.73; 95% CI, 
0.56–0.96) [23]. To date, no studies have addressed the ef-
fects of TCS on the menstrual cycle.
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Endometriosis

Endometriosis has a multifactorial etiology involving genetic, 
hormonal, immunologic, and environmental factors [24]. As 
for other reproductive disorders, a direct causality between 
npEDCs and endometriosis is difficult to prove. Moreover, the 
experimental and epidemiological data are not always con-
sistent. EDCs are of particular interest as potential contribu-
tors to endometriosis because they can alter steroidogenesis, 
immunologic function, and are epigenetic causal factors 
involved in this disease progression [25].

1. Bisphenol A
As rodents do not develop spontaneous endometriosis, 
experimental models are used to study the relationship be-
tween BPA and endometriosis. Oral administration of BPA 
increases gland nest density and periglandular collagen accu-
mulation, characteristics of an endometriosis-like phenotype, 
in adult CD-1 mice. These have shown increased collagen I 
and III expression and decreased matrix metalloproteinase 
(MMP)-2 and MMP-14 expression in those tissues around the 
uterus [26,27]. Prenatal exposure of mouse to BPA induces 
an endometriosis-like phenotype in female offspring. More-
over, the effects of EDCs during critical developmental stages 
seem to be long-lasting [28]. In these mice, primordial and 
developing follicle numbers were significantly lower than 
those in controls [29]. These results indicate that EDCs may 
induce endometriotic phenotype and compromise ovarian 
function of the following generations.

In humans, the serum of patients with endometriosis is 
known to contain at least 1 of the 2 bisphenols (BPA and 
bisphenol B) [30]. One population-based case-control study 
revealed the median creatinine-corrected total urinary BPA 
concentrations were higher (1.32 µg/g, interquartile range 
[IQR], 0.79–2.21) in endometriosis patients than in controls 
(1.24 µg/g, IQR, 0.65–2.54). Especially for non-ovarian pelvic 
endometriosis, statistically significant positive associations 
were observed with urinary BPA concentrations [31]. In pa-
tients with ovarian endometrioma, the mean urinary concen-
tration of BPA was found to be significantly higher than that 
in control subjects (5.53±3.47 ng/mL vs. 1.43±1.57 ng/mL) 
[32]. Some other epidemiologic studies have shown a posi-
tive association between urinary BPA levels and endometrio-
sis [8,30,33]. In contrast, a cross-sectional study in Japanese 
and USA patients found no significant associations between 

endometriosis and urinary BPA concentrations [34,35]. Thus, 
not all studies have shown positive associations.

Low BPA concentrations affect human endometrial stromal 
cell (ESC) physiology. BPA enhanced progesterone-induced 
decidualization and promoted ESC migration and oxidative 
stress in vitro [36,37]. Currently, the molecular mechanisms 
involved in the progression of endometriosis are not well 
understood. Moreover, studies using parenteral routes of ad-
ministration may have limited relevance, if any, to human risk 
assessment. Thus, the impact of BPA on reproduction is still 
unclear and epidemiologic data in humans are limited.

2. Phthalates
Earlier studies have analyzed the levels of phthalates in se-
rum in relation to the risk of endometriosis. Cobellis et al. 
[38] were the first to demonstrate significantly higher plasma 
concentrations of DEHP in endometriotic women than in 
controls. In Korea, women with advanced endometriosis ex-
hibited significantly higher plasma levels of MEHP and DEHP 
than those in control women without endometriosis [39]. 
Similar results were observed in Indian women [40,41].

The urinary concentration of phthalate metabolites is com-
monly used as a representative biomarker of exposure to 
DEHP because, after oral administration of DEHP, about 75% 
of the compound is excreted in urine in the form of DEHP 
metabolites after 44 hours in humans [42]. In the National 
Health and Nutrition Examination Survey (NHANES), a cross-
sectional study of urinary phthalates revealed a significantly 
positive association between mono-n-butyl phthalate (MBP) 
and the risk of endometriosis [43]. Moreover, specific phthal-
ates were associated with MRI-diagnosed endometriosis 
[34]. In the Endometriosis, Natural History, Diagnosis, and 
Outcomes Study, 6 phthalate metabolites [MBP, mono-[(2-
carboxymethyl) hexyl] phthalate, mono (2-ethyl-5-carboxy-
phentyl) phthalate, MEHP, mono (2-ethyl-5-hydroxyhexyl) 
phthalate (MEHHP), and mono (2-ethyl-5-oxohexyl) phthal-
ate) (MEOHP) were significantly associated with increased 
odds of endometriosis [34].

In contrast to the above studies, a population-based case-
control study conducted in the USA as part of the Women’s Risk 
of Endometriosis study failed to demonstrate the association 
between specific phthalate metabolites and endometriosis 
risk [44], while a study in Japanese women failed to demon-
strate a positive association between urinary concentrations 
of phthalate metabolites and the risk of endometriosis [45].
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Some in vitro studies suggested that exposure to phthal-
ates might play a role in the establishment of endometriosis. 
In particular, DEHP promotes the viability of ESCs [46], and 
treatment of endometrial cells with DEHP leads to significant 
increases in MMP-2 and MMP-9 activities, cellular invasive-
ness, extracellular signal-regulated kinase (ERK) phosphoryla-
tion, and p21-activated kinase 4 expression [47]. In human 
ESCs, DEHP exposure increases p-ERK/p-p38- and nuclear 
factor-κB-mediated transcription through an oxidative stress 
pathway. Moreover, DEHP induces the expression of estrogen 
receptor-α (ERα) in a dose-dependent manner [48]. Notably, 
in the endometrium of patients with endometriosis, DEHP 
induces aldo-keto reductase activity, which is involved in 
prostaglandin synthesis and progesterone-resistance [49]. Al-
though in vitro results support the hypothesis that phthalates 
may be an inducer of endometriosis, further investigations 
will be required to definitively establish the association be-
tween phthalates and endometriosis.

3. Parabens and triclosan
ESCs exposed to TCS showed increased decidualization ef-
fect which suggested than TCS may alter the nature of nor-
mal ESCs [36]. That is the only study about TCS effects in 
relation to endometriosis, and no studies have addressed the 
possible relationship between paraben and endometriosis.

Uterine fibroid

UF is one of the most frequent gynecologic tumors among 
women of reproductive age and causes symptoms such as 
abnormal uterine bleeding, menorrhagia, and pelvic pain. It 
is known as an estrogen-dependent disease, and a possible 
involvement of EDCs has been suggested [50]. We here de-
scribe the effect of BPA and phthalate on UF. There are no 
studies about paraben and TCS with UF.

1. Bisphenol A
In China and the USA, the mean urine BPA concentration 
was significantly higher in the UF group than in controls 
[15,51,52]. In contrast, Korean studies revealed that the 
serum concentration of BPA is not related to UF progression 
[53,54]. Thus, epidemiological studies on BPA and UF are not 
consistent.

An in vitro study showed that BPA promoted the growth 

of UF cells and the expression of ERα, insulin-like growth fac-
tor-1, and vascular endothelial growth factor in a dose and 
time-dependent manner [55]. BPA seems to promote the 
proliferation of UF cells via the ERα and transforming growth 
factor-β signaling pathways [56]. At environmentally relevant 
doses, BPA enhanced cell proliferation, induced cyclooxygen-
ase-2 (COX-2) gene expression, and promoted cell migration 
and invasiveness [57]. BPA induced proliferation in immortal-
ized human UF cells through membrane-associated ERα36 
by the activation of Src, epidermal growth factor receptor, 
Ras, and microtubule affinity regulating kinase pathways [58]. 
Most of these in vitro studies indicated that BPA increased 
the proliferation of human UF cells, possibly contributing to 
UF growth.

2. Phthalates
The NHANES from 1999–2004 showed a positive associa-
tion between a specific phthalate metabolite (MBP) and the 
risk of UFs. However, other metabolites (MEHP, MEHHP, and 
MEOHP) were inversely associated with UFs [43]. Women 
with UFs exhibited significantly higher levels of total urinary 
MEHP than those in healthy controls [59]. In one population-
based study conducted in Korea, the urinary concentration 
of 16 phthalate metabolites was compared in women with 
and without UF. Using multiple logistic regression analyses, a 
significant association was found between the levels of total 
urinary DEHP metabolites and UF [60]. Recently, in the USA, 
a cross-sectional study on premenopausal women seeking 
surgical care for UFs showed elevated urine concentrations 
of several phthalates, which were positively associated with 
the uterine volume. In particular, these effects were more 
prominent for DEHP metabolites [61].

In vitro treatment of DEHP promoted cell viability, prolifera-
tive activity, and anti-apoptotic activity in human leiomyoma 
cells. Furthermore, DEHP treatment on human UF cells in-
creased hypoxia inducible factor 1α and COX-2 expression, 
which may be involved in inflammatory response [62]. These 
findings suggest an association between phthalate exposure 
and UF. Despite the importance of these reports, additional 
phthalates should be tested for association with UFs.

Polycystic ovarian syndrome

PCOS is one of the most common ovulatory disorders with 
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hyperandrogenemia and/or insulin resistance. Recently, 
there is emerging evidence about the effect of npEDCs on 
PCOS, especially BPA. However, data regarding the impact 
of phthalate, TCS, and paraben exposure on PCOS are very 
limited.

1. Bisphenol A
After a positive relationship between androgen concentra-
tion and BPA in women with ovulatory dysfunction has been 
suggested [63], a case control study (71 women with PCOS 
and 100 women without PCOS) found that serum BPA was 
significantly higher in PCOS women and that there was a sig-
nificant positive association between BPA, androgen concen-
tration, and insulin resistance [64]. Furthermore, PCOS wom-
en with higher serum BPA had more severe insulin resistance, 
increased free androgen index, and increased markers of 
chronic inflammation [65]. Market seller women with PCOS 
exhibited higher serum BPA levels than non-PCOS women 
[66]. According to a recent meta-analysis, PCOS patients had 
significantly higher BPA levels than those of control groups 
(standardized mean difference, 2.437; 95% CI, 1.265–3.609, 
P<0.001) [67]. These results suggest a role of BPA in the de-
velopment and/or pathogenesis of PCOS.

BPA may act on ERs to mimic actions like estrogen and 
may bind to membrane receptors to cause harmful effects 
even at pico- and nanomolar concentrations. Rutkowska and 
Diamanti-Kandarakis [68] summarized the molecular effect 
of BPA on PCOS as altering ovarian steroidogenesis, aggra-
vating hyperandrogenism state, altering oocyte development 
and folliculogenesis, and worsening metabolic parameters 
such as insulin resistance, obesity, oxidative stress, and in-
flammation.

2. Phthalates
PCOS patients have significantly lower urinary concentrations 
of monobenzyl phthalate (mBzP), and low urine concentra-
tions of mBzP and MBP increase the likelihood of PCOS 
(OR, 0.14–0.25; P<0.05). This result only showed that PCOS 
patients may differ from controls in their environmental 
contaminant profile but failed to show a positive correla-
tion between phthalate and PCOS [69]. In order to verify the 
impact of antenatal exposure to phthalates on the develop-
ment of PCOS in the descendants, a study in the context 
of the Western Australian Pregnancy Cohort (Raine) Study 
assessed the most common phthalate metabolites in 3,000 

pregnant women. This study showed antenatal exposure to 
phthalates had some protective effects on the development 
of PCOS which implicated long-term effects of phthalates 
on reproduction [70]. In contrast to these results, one study 
suggested that gestational exposure to some phthalates (di-
butyl phthalate and DEHP) results in polycystic ovaries and 
hormonal profiles similar to PCOS [71]. To summarize, only 
limited and contradictory results are available regarding the 
effect of phthalates on PCOS.

3. Parabens and triclosan
In a cross-sectional study in Chinese infertile women, patients 
with PCOS exhibited significantly higher TCS concentrations 
than those in control women (median of TCS (IQR), μg/g 
creatinine: 1.49 (0.68–3.80) vs. 1.06 (0.52–3.02), P=0.0407). 
Compared to the lowest tertile, the highest tertile of TCS 
concentration was associated with an increased odds of 
PCOS (OR, 1.99; 95% CI, 1.05–3.79) [72]. In contrast, a case-
control study exploring the association between the urinary 
concentration of personal care products and PCOS found no 
significant differences in TCS detection rate or the total con-
centration of analytes [73].

Infertility and/or subfertility

Female infertility is a complex disorder that can be caused 
by anatomic, genetic, environmental, and endocrine factors. 
The comprehension of npECD mechanisms of action, as well 
as the presumed risks deriving from the exposure to these 
compounds, may be crucial to improve women’s fertility.

1. Bisphenol A
Numerous studies have investigated the effect of BPA on 
women infertility. BPA is associated with women infertility 
by affecting the morphology and functions of the oviduct, 
uterus, and ovary [74]. Furthermore, BPA affects the hypo-
thalamus-pituitary-ovarian function by altering the secretion 
of gonadotropin-releasing hormones in the hypothalamus 
and promoting pituitary proliferation [75]. The Shanghai 
Birth Cohort Study investigated the impact of BPA exposure 
on fecundability in healthy women. Each one-unit increase 
in urinary concentrations of BPA was associated with a 13% 
reduction in fecundability (fecundability OR, 0.87; 95% CI, 
0.78–0.98) and a 23% increase in the odds of infertility 
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(OR, 1.23; 95% CI, 1.00–1.50). In addition, these associa-
tions were strengthened among women over 30 years of age 
[76].

Recently, because of the potential harmful effects of BPA, 
many countries replaced BPA with the analogs bisphenol S 
(BPS) and bisphenol F (BPF). The products containing these 
analogs are known as ‘BPA-free products’. However, several 
in vitro and in vivo studies demonstrated that BPS and BPF 
also exert the same endocrine disrupting effects as BPA [77]. 
Regarding oocyte maturation, both BPA and BPS caused 
significant spindle abnormalities and chromosome misalign-
ment, even at very low doses [78]. Both epidemiological and 
experimental evidence demonstrates that all bisphenol af-
fects female infertility and/or subfertility.

2. Phthalates
The in vitro/vivo effects of phthalates on various reproduc-
tive organs have been extensively studied [20,21,48,79]. The 
relevance of these results to humans is still controversial. In 
women with infertility, urinary phthalates were found associ-
ated with decreased antral follicle count, which may lead to 
decreased fecundity [80]. In contrast, another study in wom-
en with a history of infertility did not show any difference in 
the concentrations of urinary phthalate metabolites [81]. A 
systematic review summarizing the evidence of the associa-
tions between common npEDCs and fecundability, and be-
tween phthalate exposure and time to pregnancy (TTP), only 
reported equivocal associations [82]. The studies on the ef-
fects of phthalates on fertility yielded heterogeneous results. 
These inconsistencies may be related to study designs and to 
the characteristics of the examined populations.

3. Parabens and triclosan
The Longitudinal Investigation of Fertility and the Environ-
ment (LIFE) study, which included 501 couples of reproduc-
tive age recruited in Michigan and Texas from 2005 and 
2009, showed that exposure to high levels of methyl para-
ben and ethyl paraben was associated with reduced TTP [83]. 
According to LIFE study, exposure to parabens with longer 
TTP has been suggested. However, no effect of TCS on fe-
cundability has been demonstrated [82].

Conclusion

The majority of the available data strengthen the evidence of 

reproductive health-related impact of npEDCs and we have 
summarized the published results about human on Table 1. 
Several animal studies and in vitro studies have shown that 
exposure to npEDCs can alter reproductive functions. How-
ever, the exact mechanisms by which npEDCs cause physi-
ological, cellular, and molecular changes in women’s repro-
ductive health are not clear. Adverse effects can be caused 
by low-dose exposure and characterized by a non-linear dose 
response. Notably, these effects are not limited to the female 
reproductive age and can occur throughout the lifespan or 
through the generation. Recommendations should be made 
in order to reduce human exposure to npEDCs and to pro-
tect future generations from steadily increasing reproductive 
health risks.
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