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Abstract: As opposed to adults, high-density lipoprotein (HDL) is the main cholesterol carrying
lipoprotein in fetal circulation. The major HDL receptor, scavenger receptor class B type I (SR-BI),
contributes to local cholesterol homeostasis. Arterial endothelial cells (ECA) from human placenta
are enriched with cholesterol compared to venous endothelial cells (ECV). Moreover, umbilical
venous and arterial plasma cholesterol levels differ markedly. We tested the hypothesis that the
uptake of HDL-cholesteryl esters differs between ECA and ECV because of the differential expression
of SR-BI. We aimed to identify the key regulators underlying these differences and the functional
consequences. Immunohistochemistry was used for visualization of SR-BI in situ. ECA and ECV
were isolated from the chorionic plate of human placenta and used for RT-qPCR, Western Blot, and
HDL uptake assays with 3H- and 125I-labeled HDL. DNA was extracted for the methylation profiling
of the SR-BI promoter. SR-BI regulation was studied by exposing ECA and ECV to differential oxygen
concentrations or shear stress. Our results show elevated SR-BI expression and protein abundance
in ECA compared to ECV in situ and in vitro. Immunohistochemistry demonstrated that SR-BI is
mainly expressed on the apical side of placental endothelial cells in situ, allowing interaction with
mature HDL circulating in the fetal blood. This was functionally linked to a higher increase of
selective cholesterol ester uptake from fetal HDL in ECA than in ECV, and resulted in increased
cholesterol availability in ECA. SR-BI expression on ECV tended to decrease with shear stress, which,
together with heterogeneous immunostaining, suggests that SR-BI expression is locally regulated
in the placental vasculature. In addition, hypomethylation of several CpG sites within the SR-BI
promoter region might contribute to differential expression of SR-BI between chorionic arteries and
veins. Therefore, SR-BI contributes to a local cholesterol homeostasis in ECA and ECV of the human
feto-placental vasculature.
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1. Introduction

Fetal development depends highly on the bioavailability of cholesterol. As a struc-
tural membrane component, cholesterol affects the content of other lipids within the
membrane [1,2], regulates the propagation of signal transduction events [3,4], serves as
a precursor for steroid hormone synthesis [5], and is essential for the activation of sonic
hedgehog homolog [6,7], one of the signals governing morphogenesis.

The fetus may cover its own cholesterol demand either by endogenous cholesterol
synthesis or through exogenous cholesterol supplies. However, de novo cholesterol syn-
thesis in the fetus [8] is not sufficient and, therefore, maternal cholesterol is required as
an additional source. Maternal cholesterol is transported across the placenta [9,10] to
the fetal blood. The placenta takes up cholesterol delivered within lipoproteins through
receptor-mediated and receptor-independent transport mechanisms [11,12].

As opposed to adults, in fetal circulation, high-density lipoprotein (HDL) is the main
cholesterol carrying lipoprotein. It differs from adult HDL by its higher proportion of
apolipoprotein (Apo)E [13], but lower proportion of ApoA1 [14]. We demonstrated that
ApoE of fetal HDL regulates antioxidative enzymes in human placental endothelial cells
(ECs) [14,15]. This effect requires the interaction of HDL with distinct receptors on ECs.

Scavenger receptor class B type I (SR-BI) is the major HDL receptor expressed on the
surface of various cell types, including ECs. SR-BI mediates HDL-dependent signaling in
ECs [16] by binding a variety of ligands, including native and oxidized lipoproteins [17,18].
The receptor localizes to specialized plasma membrane compartments, i.e., caveolae, and is
best known for its role in facilitating the uptake of cholesteryl esters (CE) from HDL into
steroidogenic cells [19–21]. Of note, several studies have demonstrated differences in SR-BI
gene expression between arteries and veins [22–24].

Since SR-BI is expressed on the maternal-fetal interface in human first trimester and
term villous trophoblasts [25], it is likely involved in the trans-placental transfer of maternal
cholesterol to the developing embryo. Cholesterol from maternal circulation is taken up
by trophoblasts on their apical side and is effluxed on the basolateral side to the villous
stroma [11]. Further steps of cholesterol transport across the placenta have remained
elusive. Cholesterol levels in the mother do not directly correlate with those in the fetus, at
least in the second half of gestation [26,27].

Currently, the mechanisms of cholesterol homeostasis in the fetus and the feto-placental
vasculature are poorly understood. At the feto-placental interface, the ATP-binding cassette
transporters ABCA1 and ABCG1 are involved in the efflux of cholesterol by a two-step
mechanism. Although SR-BI operates in a bidirectional manner [28], it is not involved in
cholesterol efflux despite its presence in human placental endothelial cells [29,30]. However,
because of its location on placental endothelial cells, SR-BI is one promising candidate in
balancing fetal and feto-placental cholesterol content. Maternal hypercholesterolemia may
alter fetal cholesterol homeostasis and is associated with the accumulation of fatty streaks
in the fetal vascular system [26,27], thereby imposing a higher risk for the development of
atherosclerotic lesions later on in the offspring’s life [31]. This underpins the necessity to
study cholesterol transporters at the feto-maternal interface, as they might be interesting
targets for early (e.g., nutritional) interventions to improve long-term offspring health.

In the present study, we tested the hypothesis that SR-BI is expressed on the feto-
placental endothelium and differentially between human placental arterial (ECA) and
venous endothelial cells (ECV). We investigated both HDL association and CE uptake
by these cells as a physiological consequence of the different SR-BI expression in these
cells. Furthermore, we aimed to test transcriptional regulators which might explain the
differential SR-BI levels between ECA and ECV. As atherosclerotic lesions are located in
regions of low wall shear stress [32], we further hypothesized that shear stress modulates
SR-BI expression and, hence, represents a regulator in the feto-placental vascular system.
To our knowledge, this is the first study comparing SR-BI mediated cholesterol uptake into
the ECs of arteries and veins within the same human organ.
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2. Results
2.1. SR-BI Protein Is Elevated in ECA Compared to ECV

Immunohistochemistry of a representative cross section from placental tissue demon-
strated a clear difference in staining intensity for SR-BI between endothelial cells lining an
artery and a vein within the same placental villus (Figure 1A). A more detailed analysis
along the entire vascular tree showed a high diversity of SR-BI localization with focal
staining in both segments of the vascular tree and in the capillaries of the microvascula-
ture. In order to quantify these expression differences observed in situ, SR-BI mRNA and
protein levels were measured in primary ECA and ECV cells isolated from human term
placenta after their culture under identical conditions. RT-qPCR demonstrated 20% more
(p = 0.001) SR-BI transcripts in ECA than ECV (Figure 1B). These results were paralleled by
74% higher (p < 0.001) SR-BI protein levels in ECA compared to ECV (Figure 1C,D). Fetal
liver was used as the positive control for SR-BI expression. The observed differences in
SR-BI abundance were especially pronounced between vascular pairs of matched arterial
and venous endothelial cells, but also apparent between randomly selected ECA and ECV
(data not shown).
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thelium of villous arteries (yellow framed detail picture) but not on the endothelium of villous veins 
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protein in ECA and ECV from three different placentae. β-Actin was used as the loading control,. 

Figure 1. (A) Immune fluorescence staining against SR-BI in a term placental stem villus. SR-BI (green)
was found on the syncytiotrophoblast (white arrows, overview picture) and on the endothelium
of villous arteries (yellow framed detail picture) but not on the endothelium of villous veins (blue
framed detail picture). Placental tissue was double-stained against Desmin (red) to visualize villous
structures. Scale bars: 80 µm. (B) qRT-PCR demonstrated higher SR-BI mRNA expression in
ECA compared to ECV (n = 6 each, mean ± SD, t-test). (C) Representative Western Blot of SR-BI
protein in ECA and ECV from three different placentae. β-Actin was used as the loading control.
(D) Densitometric quantification of SR-BI relative to β-Actin as detected by Western Blot in paired
ECA and ECV (n = 6), fetal liver served as a positive control for SR-BI detection. ECA showed higher
SR-BI protein abundance compared to their respective venous counterparts (mean ± SD, one-way
ANOVA), * p < 0.05, **** p < 0.0001.
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2.2. SR-BI Is Predominantly Expressed on the Apical Side of Placental Endothelial Cells

Immunohistochemistry demonstrated that SR-BI is predominantly expressed on the
apical side of placental endothelial cells in situ, allowing interaction with mature HDL
circulating in the fetal blood (Figure 2A). In addition, a weak staining was detectable in the
cytoplasm, whereas the basal side of the endothelial cells was devoid of the SR-BI protein.
The cryosection was also immunolabelled for the classical endothelial cell marker von
Willebrand factor (Figure 2B) to define the area of the endothelium. The granular staining
of the cells indicates the typical endothelial-specific structure. An IgG negative control did
not show any specific staining (Figure 2C).
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Figure 2. (A) Immunohistochemical localization of SR-BI on placental vessels. SR-BI staining (red)
is strong on the apical side of the endothelium, whereas in the cytoplasm only a weak signal is
detectable. SR-BI is not present on the basal side. (B) von Willebrand factor marked EC layer. (C) IgG
negative control; Bar: 20 µm.

2.3. SR-BI Promoter Methylation Differs between ECA and ECV

The stability of the SR-BI expression differences in ECA and ECV (despite their iso-
lation and culture under the same culture conditions for up to 10 passages) prompted us
to test the hypothesis that the expression differences are the result of an epigenetic effect.
To this end, we studied DNA methylation across the SCARB-1 gene promoter using DNA
methylation arrays in paired isolations of ECA and ECV from nine individual donors.
DNA methylation is a covalent modification of DNA involving the addition of a methyl
(-CH3) group to a cytosine, generally in the context of a Cytosine-phosphate-Guanine
(CpG) dinucleotide, by a specific set of enzymes [33]. The role of DNA methylation in gene
regulation and chromatin structure is context dependent [34], with an increase in DNA
methylation at and around CpG Islands (regions of high CG density in promoter regions of
genes) associated with gene silencing [35]. Importantly, DNA methylation is extensively
remodeled during embryogenesis and differentiation, and therefore plays a role in cell
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identity [36]. Both cell populations were equally hypomethylated at the CpG Island within
the putative gene promoter (Figure 3A). In contrast, two regions, one directly upstream
of the promoter and another in the gene body, showed variation between the two cell
types, with several CpG sites showing hypomethylation specifically in ECV as compared
to ECA. In total, 98 CpG sites were investigated, of which 20 were differentially methylated
between ECA and ECV (Figure 3B,C). The functional significance of these regions is unclear;
however, the overall methylation pattern hints towards a promoter-enhancer 3D loop, and
the differences in methylation, and therefore SCARB-1 transcription, might contribute to
the differences in the SR-BI levels observed between ECA and ECV.
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Figure 3. (A) Schematic SCARB1 promoter region structure and related differential CpG methylation
pattern between ECA and ECV (n = 9, paired). The heatmap uses β-values as the measure of DNA
methylation. A total of 98 CpGs were investigated. (B) Venn diagram representing differentially
regulated CpG islets between ECA and ECV. (C) Differentially methylated CpG islets between ECA
and ECV; of 98 investigated islets, 20 were significantly different between ECA and ECV. Of these 20,
only one CpG islets was hypermethylated in ECV compared to ECA. In the remaining 19 CpGs,
methylation was higher in ECA than ECV. In addition to the degrees of methylation (β-values) of
ECA (red line) and ECV (blue line), the difference ∆A-V is given as well as white bars. Statistical
significance was calculated using M-values instead of β-values, as these are more robust [37]; two-
way ANOVA with Sidak’s post hoc test to adjust for multiple comparisons was used, * p < 0.05,
*** p < 0.001, **** p < 0.0001.
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2.4. GATA3 Transcription Factor Might Contribute to Differential SR-BI Expression

We further investigated the expression of the transcription factor GATA3 in ECA
and ECV. Several binding sites for GATA3 have been identified in the SCARB-1 promoter
region using in silico analysis (http://www.cbrc.jp/research/db/TFSEARCH.html (TESS—
Transcription Element Search System) accessed on 30 January 2022. In addition, microarray
data from our group comparing gene expression between ECA and ECV (Gomes L. and
Desoye G., unpublished) showed higher GATA3 expression in ECA than ECV. Of note,
GATA3 action is known to be crucial to endothelial cell function [38–40]. We therefore
speculated that the GATA3 transcription factor is likely involved in the regulation of SR-BI.
Eventually, RT-qPCR showed that GATA3 mRNA was indeed higher expressed in ECA than
ECV (Figure S1A), but at the protein level this difference was not significant (Figure S1B,C).

2.5. LXR Transcription Is Not Involved in SR-BI Regulation between Vascular Beds

In addition to GATA3, 60 transcription factors possibly involved in the regulation
of SR-BI expression were identified by an analysis of the SCARB1 gene promotor region.
It is hardly possible to investigate each candidate, but we selected genes based on their
possible involvement in placental cholesterol homeostasis. Since LXR is a main regulator
of SREBP-1c transcriptional activity, the LXR-SREBP-1c pathway might regulate SR-B1
expression. To study the role of SR-B1 in LXR-mediated effects we tested the effect of LXR
agonist TO901317 on the cells. Neither on a mRNA level using qRT-PCR (data not shown),
nor on a protein level using Western Blot (Figure S1D–F), could we observe an effect on
SR-BI regulation upon LXR agonist treatment.

2.6. PDZ Domain-Containing Protein PDZK1 Is Equally Expressed in ECA and ECV

Additionally, PDZK1, an adaptor protein binding to SR-BI, was investigated. PDZK1
mediates lipid uptake and SR-BI signaling [41,42]. Although not critical to SR-BI abun-
dance or subcellular localization in endothelial cells, PDZK1 stabilizes SR-BI in the plasma
membrane [43] and contributes to its function. Evidence of PDZK1 abundance on pla-
cental endothelium has not been tested in the past, to the best of our knowledge, leading
us to speculate that PDZK1 on placental endothelium might be involved in the regula-
tion of SR-BI stability and function. While RT-qPCR revealed higher levels of PDZK1 in
ECV compared to ECA (Figure S1G), these differences were not confirmed on a protein
level (Figure S1H,J).

2.7. Neither Oxygen nor Shear Stress Regulate SR-BI Protein in Primary Placental
Endothelial Cells

In situ, placental ECA and ECV are exposed to different levels of oxygen (higher
oxygen levels in ECV than ECA), which may have accounted for the expression differ-
ences. In order to test this, both cell types were cultured under 1, 5, 12, and 21% oxygen
and SR-B1 mRNA levels were assessed. The results confirmed the higher SR-B1 mRNA
levels in ECA than ECV, which were virtually unaffected by changes in ambient oxygen
tension (Figure S2A).

Besides oxygen, shear stress is also different between arteries and veins. The blood
pressure in the umbilical artery (53 mmHg) is significantly higher as compared to the
corresponding vein (20 mmHg) [44]. Therefore, we hypothesized that differences in shear
stress between arteries and veins may result in differential SR-BI expression. However, we
were unable to demonstrate any differences in SR-BI protein abundance as measured by
Western Blot between ECA and ECV in response to shear stress (Figure S2B).

2.8. Selective HDL CE-Uptake Is Impaired in ECV Compared to ECA

We next tested whether differential SR-BI expression affects cell association of HDL
(binding, internalization, and degradation) and CE-uptake of ECA and ECV. HDL3 binds
to SR-BI via its Apo-AI moiety and, subsequently, becomes also partly internalized and
degraded [17,45,46].

http://www.cbrc.jp/research/db/TFSEARCH.html
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The cell association studies showed that cell-associated HDL3 was 20 ± 6% higher on
ECA compared to ECV; this effect was independent of acceptor concentration (Figure 4A).
More than twice as much HDL-CE was selectively taken up by ECA compared to ECV.
Remarkably, the addition of BLT-1 inhibited CE-uptake in ECA almost to the level of ECV.
BLT-1 showed no effect in ECV, suggesting that SR-BI-mediated HDL-CE uptake does not
play a significant role in ECV (Figure 4B). This finding strongly argues for additional SR-BI
independent pathways capable for selective CE-uptake. The differences in cell association
and uptake of HDL3 between ECA and ECV parallel the differential SR-BI levels found in
whole cell lysates.
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ECV (solid blue line) at 37 ◦C was investigated and showed a higher binding of HDL to ECA than
ECV. Unspecific binding (dashed lines) at 37 ◦C in excess of unlabeled HDL is also shown. (B) A total
of 10 ug/mL of 3H-labelled HDL3 were offered to ECA and ECV (n = 3) in the presence or absence of
the SR-BI inhibitor BLT-1. Selective uptake in ECA was increased compared to ECV, and this increase
dropped upon treatment with BLT-1. Nevertheless, a residual selective uptake of HDL occurred in
ECA. Two-way ANOVA with Sidak’s post-hoc test for multiple comparisons was used, *** p < 0.001.

3. Discussion

Maternal lipoproteins have been studied extensively during human pregnancy [47],
but little data are available about the role of fetal lipoproteins and their role at the feto-
placental interface. The key finding of the present study is that endothelial cells from
chorionic arteries of the human placenta selectively take up more CE from fetal HDL than
their venous counterparts because of an elevated SR-BI receptor expression and effectivity.

The differences between arterial and venous endothelial cells have been studied primarily
in relation to arterial-venous vasculogenesis and angiogenesis, and a range of molecules and
transcription factors involved in these processes have been identified [24,48,49]. We have
established expression differences of classical arterial-venous genes between ECA and ECV
in previous studies [23]. However, a functional and regulatory description of endothelial
cells related to lipid homeostasis has remained elusive. To the best of our knowledge, this
is the first study clearly demonstrating a functional distinction resulting from different
protein levels of the HDL-receptor SR-BI between ECA and ECV from the same human
organ and vascular loop.

One plausible explanation for expression differences between the vascular beds is
a distinct local environment of endothelial cells in arteries and veins. The variability in
SR-BI expression along the vasculature within the same placenta reflects local variation
within the respective microenvironment. Its importance was shown by several studies,
but these mostly focused on its role in angiogenesis and tumor progression [50]. However,
micro-environmental regulation of SR-BI expression by cytokines in atheromas has also
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been demonstrated, affecting reverse cholesterol transport from macrophage-derived foam
cells [51].

In the present study, we demonstrated heterogeneous histological staining of SR-BI
protein along the vascular tree, and the difference in SR-BI expression was substantiated by
quantitative in vitro measurements. The difference between ECA and ECV was stable for
up to 10 cell passages. Therefore, and because of the similarity between in situ and in vitro
results, we can exclude a cell culture-mediated effect on SR-BI expression differences.
We suggest that the observed differences between ECA and ECV are intrinsic to each
specific cell type, even though cell culture conditions cannot perfectly mimic the in vivo
microenvironment of the respective vascular niche.

Given the stability of differential SR-BI expression in ECA and ECV in long-term cul-
tures, as observed here, it is tempting to speculate about underlying epigenetic mechanisms,
such as a DNA methylation, specifically silencing the SR-BI promoter. While analyzing
the DNA methylation pattern of the SR-BI promoter region, as well as upstream and
downstream regions, we observed distinct changes in the methylation of CpGs between
ECA and ECV. In both ECA and ECV, the promoter region itself was hypomethylated,
i.e., accessible to transcription factors, but no differential methylation of CpGs between
ECA and ECV was found. In contrast, defined alterations in methylation at downstream
intronic and exonic regions were apparent between ECA and ECV, but their potential role
in the associated differential gene expression remains unclear. Methylation changes in such
regions, known as ‘distal elements’ or ‘enhancers’, are commonly associated with altered
gene expression [52–54]; a direct relationship between the two observations could only be
fully explored by detailed functional testing in vitro using reporter-based approaches.

Alternative mechanisms underlying gene expression differences are manifold and
include changes of other epigenetic marks such as histone modification profile or epi-
genetic regulation of a transcription factor upstream of SR-BI. In silico analysis of the
SR-BI promoter sequence identified binding sites for 60 known transcription factors includ-
ing GATA3 and LXR. Although we observed lower GATA3 mRNA levels in ECV, these
differences were reciprocated, but not significant, on a protein level. Therefore, lower
GATA3 in ECV might contribute to lower SR-BI in this vascular niche, but this could not be
demonstrated conclusively.

From previous studies we knew that, similar to GATA3, LXR expression is also higher
in ECA compared to ECV [55]; we therefore tested if SR-BI was responsive to LXR ago-
nist TO901317 treatment, which is known to induce other HDL receptors such as ABCA1.
However, in neither ECA nor ECV did SR-BI mRNA or protein levels change upon ago-
nist stimulation. Therefore, LXR action apparently does not regulate SR-BI in placental
endothelium, as it has been shown in other studies before [56].

Furthermore, miRNAs have the potential to regulate target gene expression. A small
number of studies have convincingly demonstrated that certain miRNAs target SR-BI
expression, thereby modifying cholesterol uptake and reverse cholesterol transport [57–59].
This is an important issue for further research but clearly outside the scope of this study.

As a key adapter protein, PDZK1 might regulate SR-BI action in a post-translational
manner. We indeed observed elevated PDZK1 mRNA levels in ECV; however, this was
not confirmed on protein level. Given the differences observed in ECA and ECV with
regard to the selective uptake of CE -HDL by SR-BI, this difference nevertheless might be
of functional relevance.

In addition to transcription factors, we studied (micro-) environmental conditions,
which might affect SR-BI regulation. In situ endothelial cells of the arterial and venous
segment of any vasculature are exposed to different oxygen tensions and a varying extent of
shear stress. In the human placenta, the venous branch of the vasculature transports oxygen
enriched (pO2 ~ 35 mmHg) blood and nutrients to the fetus. The arterial branch transports
blood and waste products back from the fetus to the placenta and, therefore, is low in
oxygen (pO2 ~ 20 mmHg) [60,61]. However, and in contrast to our assumption, different
oxygen conditions did not alter SR-BI mRNA expression levels. Although transcripts do not
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necessarily represent functional protein, these data make it unlikely that SR-BI is regulated
by oxygen in placental chorionic vessels.

Physiological differences in shear stress between arteries and veins are the result
of pulsatile blood flow throughout the vasculature generated by the cardiac beat of the
fetus [62]. The relationship between local mechanical forces and HDL-cholesterol have
been described previously [63]. Independent of the usage of the same shear stress (data not
shown) or shear stress adapted to correspond to the physiological situation in arteries and
veins, we did not observe significant changes in SR-BI protein abundance upon shear stress
exposure. Therefore, laminar shear stress does not seem to affect endothelial SR-BI levels.

Strikingly, the higher SR-BI expression in ECA resulted in a higher selective CE-uptake
in ECA versus ECV, which is a direct functional consequence. Of note, exposure of the
cells to BLT-1, a potent inhibitor of CE-uptake [64], blocked uptake by 50% exclusively in
ECA, even though there was SR-BI expression in both cell types. Thus, SR-BI independent
mechanisms apparently contribute to selective CE-uptake in ECA and ECV, perhaps similar
to those identified in murine macrophages [65]. There are possible candidates which might
facilitate CE uptake in addition to SR-BI. The cubilin/megalin complex has been identified
as an additional HDL receptor in many tissues; however, its affinity for HDL is lower than
that of SR-BI [66], but two studies have demonstrated that neither cubilin nor megalin
is present on placental endothelium [67,68]. Therefore, these receptors are unlikely to
contribute to CE uptake from HDL in placental endothelial cells. As fetal HDL is enriched
in ApoE [69], a particular ApoE receptor, such as LRP8 (LDL receptor related protein 8),
might contribute to this difference. LRP8 protein in ECA and ECV was not differently
expressed between the two vascular beds (data not shown), making it a less likely candidate.
Despite contradictory data on its involvement in HDL metabolism [70,71], we also studied
CD36 protein levels between ECA and ECV (data not shown), but did not observe any
difference between the two cell types.

The higher cholesterol uptake from the arterial blood coming from the fetus as com-
pared to the venous blood leaving the placenta has various physiological implications. ECA
contain about 1.6-fold more cholesterol than their counterparts [55], and the present data
implicate that SR-BI levels are rather regulated in response to these differences. Moreover,
the uptake and sequestration of cholesterol from modified lipoproteins in fetal circulation
may be a mechanism to protect the placental vascular system. It is noteworthy that, so
far, no atherosclerosis or deposition of atherosclerotic plaques have been described in the
feto-placental vasculature [72], although they were found in a variety of fetal aortas [26,27],
and also in the maternal vessels of the placental bed [73]. A possible explanation is the
efficient mechanisms exerted to maintain local cholesterol homeostasis at the feto-placental
interface. SR-BI may very well be part of these mechanisms, but other transporters and
enzymes such as ABCA1, ABCG1, and PLTP [29,30,55] have also been shown to contribute
to this tightly regulated balance of cellular cholesterol. Of relevance, all these proteins are
expressed higher in ECA compared to ECV in the human placenta.

Higher placental SR-BI expression in ECAs may also result in enhanced uptake of
cholesterol, which is a potent LXR activator and, hence, regulate LXR target genes, too.
The higher cholesterol content and higher LXR expression in ECA than ECV [55] strongly
supports this suggestion and allows us to conclude another paracrine function from our
results: SR-BI takes up fetal HDL-derived cholesterol/oxysterols, which in turn regulate
a range of LXR-target genes. In this way, the fetus could regulate specific functions (e.g.,
cholesterol efflux) in its own tissue, placenta. This concept would also help explain the
higher levels of ABCA1, ABCG1, and PLTP in ECA than ECV. Furthermore, since SR-BI is
also a multiligand receptor for oxidized LDL, acetylated LDL, and small unilamellar vesi-
cles, its increased expression on ECA may exhibit a clearing function. Metabolic derivatives
present in placental arteries may jeopardize the integrity of the endothelial cell layer. In this
scenario, fetal HDL may represent a feed-back defense system, a notion supported by our
previous finding that it regulates metallothioneins, the enzymes involved in antioxidative
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defense [15]. Moreover, HDL can counteract the disorganization of membrane lipids in
damaged/dysfunctional endothelium in an SR-BI dependent manner [74].

In summary, our study clearly demonstrates that SR-BI levels in placental ECA and
ECV are closely associated with the cellular capacity to selectively take up CE from HDL,
therefore influencing cholesterol homoeostasis. Nevertheless, SR-BI does not appear to be
solely responsible for CE uptake, as SR-BI inhibitor treatment did not completely abrogate
CE uptake. Which factors regulate differential SR-BI levels in the placental vasculature, and
which other HDL receptors might contribute to cellular cholesterol homeostasis, remains a
subject of future studies.

4. Materials and Methods
4.1. Materials

Antibodies for ß-Actin, von Willebrand factor (vWF), GAPDH, and PDZK1 were pur-
chased from Abcam (Cambridge, UK). Goat-anti-rabbit and goat-anti-mouse negative con-
trol antibodies were obtained from Biorad (Hercules, CA, USA). SR-BI was detected using
a sequence specific SR-BI antibody purchased from Abcam (Cambridge, UK). For double-
fluorescence immunohistochemistry monoclonal mouse-anti-human Desmin, mouse IgG1,
and normal rabbit immunoglobulin fraction were obtained from Dako (Glostrup, Denmark).
Goat-anti-mouse CyTM3 and donkey-anti-rabbit CyTM2 were purchased from Jackson
Immunoresearch, Dianova (Hamburg, Germany). The polyclonal rabbit-anti-human SR-BI
was obtained from Abcam (Cambridge, UK). Primers for SR-BI and the ribosomal protein
L30 gene were designed using Primer3 software (http://frodo.wi.mit.edu/ (accessed on
19 October 2012; newer version available https://bioinfo.ut.ee/primer3/)) and were pur-
chased from Ingenetix (Vienna, Austria). All primers were chosen to span exons to avoid
the amplification of traces of contaminating genomic DNA.

4.2. Immunohistochemistry

Cryosections (5 µm) of placental term tissue were air-dried for at least 4 h and stored
frozen at −20 ◦C. Prior to immunostaining, tissue sections were fixed in acetone for 5 min
and rehydrated with phosphate buffered saline (PBS). The antibodies and respective IgG
controls were diluted in antibody diluent (Dako, Glostrup, Denmark). On control slides,
the primary antiserum was replaced by either mouse- or rabbit-IgG fraction (Dako), used
in the same concentration as the respective antibodies, or by antibody diluent.

4.3. Double-Fluorescence Microscopy

Placental tissue sections were immune-labelled against Desmin (Dako, 2.5 µg/mL,
mouse anti-human, monoclonal) for 30 min at room temperature. After washing in PBS,
the slides were incubated with CyTM3 (Jackson Immunoresearch, Dianova, Hamburg,
Germany, 14 µg/mL, goat-anti-mouse polyclonal) for 30 min, washed again in PBS and
exposed to SR-BI (Abcam, Cambridge, UK, 10 µg/mL, rabbit anti-human, polyclonal).
Subsequent washing was followed by incubation with CyTM2 (Jackson Immunoresearch,
15 µg/mL, donkey-anti-rabbit, polyclonal) for 30 min. The slides were washed again in
PBS, mounted in Mowiol (Hoechst, Frankfurt, Germany), and examined using a Zeiss
Axiophot microscope (Oberkochen, Germany).

4.4. Light Microscopy

Slides were immune-labelled using the UltraVision LP Detection System (Thermo Scientific,
Fremont, CA, USA) according to the manufacturer’s instructions. SR-BI (Novus Biologicals,
Littleton, USA, 2 µg/mL, rabbit anti-human, polyclonal) or vWF (Dako, 0.725 µg/mL,
immunoglobulin fraction, rabbit anti-human, polyclonal) were applied for 30 min at room
temperature. After three washings in PBS-T, slides were incubated with primary antibody
enhancer for 10 min, followed by HRP-Polymer for 15 min. The slides were washed
again three times in PBS-T, and immune-labelling was visualized by a 5 min exposure to
3-amino-9-ethylcarbacole (ECA, all from UltraVision kit, Thermo Scientific). The slides
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were counterstained with Mayer’s hemalum (Merck, Darmstadt, Germany) and after
washing in distilled water mounted with Kaiser’s glycerol gelatin (Merck).

4.5. Isolation of Human Feto-Placental Endothelial Cells from Arteries and Veins

Feto-placental arteries and veins of the chorionic plate were isolated, as previously
described (Lang et al.). In brief, arteries and veins of the chorionic plate suitable for
isolation (with respect to vessel size and potential branching points) were identified and
dissected. Excess surrounding tissue was removed and vessels were washed briefly in
cold PBS. Thereafter, vessels were cannulated and fixed onto cannulas using surgical
strings. Cannulated vessels were rinsed using a trypsin-DNase I-digest solution which
dissolves endothelial cells from the extracellular matrix. ECs were pelleted, washed,
and resuspended in Endothelial Basal Medium (EMB, Clonetics, Cambrex, Walkersville,
MD, USA) supplemented with 5% pregnant serum and several growth factors (EGM-MV
BulletKit, Clonetics). Cells were plated on gelatin-coated 12-well plates and allowed to
attach and grow to confluent monolayers before the first sub-passage. Informed consents
from all mothers donating placentae for this study were obtained. The isolation protocol is
approved by the local ethics board of the Medical University of Graz (29-319 ex16/17).

4.6. Cell Culture Experiments

Cells were cultured in endothelial basal medium (EBM, Lonza Clonetics, Cambrex,
Walkersville, MD, USA) supplemented with 5% FCS and suitable growth factors (EGM-MV
BulletKit, Lonza Clonetics). Only ECA and ECV between passages 5 and 10 were used in
the experiments. To determine SR-BI expression levels, cells were seeded on gelatin-coated
12-well plates (105 cells/well) and grown to 90% confluence for 48 h. Prior to isolation of
protein or RNA the cells were washed with ice cold HBSS (1x, Gibco).

For TO901317 treatment, cells were grown into confluent monolayers in complete
endothelial basal medium (Promocell, Heidelberg, Germany) and incubated with either
TO901317 at 2 uM final concentration or an appropriate vehicle control (DMSO) for 24 h at
37 ◦C and 21% oxygen.

To measure the influence of different oxygen concentrations on SR-BI expression levels,
3.5 × 105 cells were seeded in 25 cm2 flasks and cultured for 6 h and 72 h under 1%, 5%,
12%, and 21% oxygen in a hypoxia bench (BioSpherix, New York, NY, USA).

4.7. Simulation of Shear Stress

For shear stress experiments, HEPES-buffered solution containing 10 mg/mL bovine
serum albumin (BSA) to enhance viscosity was used. Shear stress was applied on an
orbital shaker (Heidolph Unimax 1010, IL, USA) for 2 h and 4 h at 37 ◦C, respectively. This
technique induces similar changes in the alignment and the shape of the cells, that are
described with the cone-plate viscometer [75]. The mean shear stress (F), to which the cells
were exposed, was calculated according to the following equation:

F = ηS2rπf / ∆h

η refers to the dynamic viscosity, S to the area of the well, f to the frequency of
shaker-rotation, r to the radius of each dish, and h to the height of liquid. Due to the
limitations of the technique used, shear stress could not be calculated properly for the
entire dish. Thus, shear stress was calculated for cells at the outer edge of the dish. To
determine SR-BI expression after shear stress stimulation, cells were seeded on 6-well
plastic dishes (2 × 105 cells/well) and grown over night to reach 70–80% confluence. Cells
were washed with HBSS and exposed to shear stress (F ≈ 33 and 16 dyn/cm2 for ECA and
ECV, respectively) in HBSS + 1% BSA for 2 h and 4 h at 37 ◦C, respectively. Thereafter, cells
were washed and lysed. SR-BI was detected by immunoblot analyses, as described below.
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4.8. Immunoblot Analyses

Sample lysates (10 µg/mL protein) were separated on 10% SDS gels (PreciseTM Protein
Gels, Pierce, Rockford, IL, USA) and transferred to nitrocellulose membranes (Biorad,
Vienna, Austria). The membranes were stained with Ponceau S (Sigma, Aldrich, St. Louis,
MO, USA) to control the blotting efficiency, blocked with 5% non-fat dry milk (BioRad), and
immune-probed against SR-BI (1:1000) or PDZK1 (1:1000) over night, or against ß-Actin
as loading control (1:25.000 to 1:30.000) for 45 min, prior to several washing steps and
incubation with secondary antibody goat-anti-rabbit IgG (1:500–1:1000). Immunoreactive
proteins were visualized with ECL chemiluminescence detection reagents (Amersham).
Blots were scanned for optical density using the Alpha EaseFC software (Alpha Innotech,
CA, USA).

4.9. Quantitative RT-PCR

RNA was extracted from tissues and isolated cells with TRI-REAGENT (Molecular
Research Center, Cincinnati, OH, USA). RNA concentration and purity was measured in a
BioPhotometer (Eppendorf, Hamburg, Germany). For RT-qPCR, 2 µg RNA was reverse-
transcribed using a SuperScript TMII Reverse Transcriptase (Invitrogen, Carlsbad, CA, USA).
Taqman probes specific to human SR-BI (Hs00194092_A1) and RPL30 (Hs00265497_A1)
were obtained from Applied Biosystems (ThermoScientific, Waltham, MA, USA). The
expression level of the mRNA was normalized to the relative ratio of the expression of
RPL30. The ∆∆CT method was used to calculate the relative SR-BI expression with RLP30
as the endogenous control gene.

4.10. Genome-Scale DNA Methylation Analysis: Data Acquisition and Processing

DNA (1 µg) isolated from 9 ECA and 9 ECV cell populations was bisulphite converted
using the MethylEasy TM bisulphite modification kit (Human Genetic Signatures, Sydney,
Australia), according to the manufacturer’s instructions. Conversion efficiency was as-
sessed by bisulphite-specific PCR. Hybridization of bisulphite-treated samples to Illumina
Infinium Human Methylation450 (HM450) Beadchips was performed at the Australian
Genome Research Facility (AGRF, Melbourne, Australia). Raw data files were exported
from Genome Studio (Illumina, San Diego, CA, USA) into the R statistical environment
(http://cran.r-project.org/index.html accessed on 30 January 2022). Infinium HM450 data
was normalized using the SWAN method [76] from the minfi package available from
Bioconductor 35. M-values were calculated after removing probes on the sex chromo-
somes to eliminate any potential gender bias and any poor performing probes, defined
as those with a detection p-value cut-off > 0.05 for all samples. β-values were derived
from intensities as defined by the ratio of methylated to unmethylated probes given by
β = M / (U + M + 100) and were used as a measure of effect size.

4.11. HDL-Isolation and Labelling

Fetal blood was collected from the umbilical vein after delivery from 10 uncompli-
cated pregnancies. High density lipoprotein (HDL) was isolated from pooled plasma by
discontinuous ultracentrifugation as previously described [77].

After measuring protein concentration using the Bradford method, HDL3 protein was
iodinated with 125I-Na (NEN, Vienna, Austria) using N-Br-succinimide as the coupling
agent [78]. This procedure resulted in specific activities between 50 and 100 d.p.m.ng−1

protein with less than 3% lipid-associated activity. All 125I-HDL-preparations were con-
trolled by SDS/PAGE to ensure that the preparations were free of radiolytic or oxidative
damage. HDL3 lipid moiety was labelled with cholesteryl-1,2,6,7-3H-palmitate (3H-CE,
NEN, Vienna, Austria), as previously described [79].

4.12. HDL Lipid-Uptake

To determine association of HDL with the cells as a total of cell surface-bound, inter-
nalized and degraded HDL3, ECA, and ECV were incubated with serum-free Endothelial
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Basal Medium (EBM, Lonza), and increasing amounts of 125I-labeled HDL3 (5, 10, 20 µg
protein/mL) were added. Selective CE-uptake of HDL was measured as previously de-
scribed [80]. BLT-1 potently blocks CE-uptake by SR-BI [64]. Therefore, in parallel, exper-
iments in which the SR-BI inhibitor BLT-1 (10 µM) was added together with HDL were
carried out as described above.

4.13. Statistical Analysis

The results are presented as mean ± standard error of the mean. After testing for
normal distribution (Kolmogorow-Smirnow-Test), either the Student’s t-test or Mann-
Whitney test was used to determine significance levels of the differences. If two or more
groups were compared, ordinary one-way or two-way ANOVA was applied as appropriate.
GraphPad Prism v8.0 was used for calculations and preparation of graphs. p < 0.05 was
accepted as statistically significant.
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