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ABSTRACT

Background: Synthetic data may provide a solution to researchers who wish to generate and share data in sup-

port of precision healthcare. Recent advances in data synthesis enable the creation and analysis of synthetic

derivatives as if they were the original data; this process has significant advantages over data deidentification.

Objectives: To assess a big-data platform with data-synthesizing capabilities (MDClone Ltd., Beer Sheva, Israel)

for its ability to produce data that can be used for research purposes while obviating privacy and confidentiality

concerns.

Methods: We explored three use cases and tested the robustness of synthetic data by comparing the results of

analyses using synthetic derivatives to analyses using the original data using traditional statistics, machine

learning approaches, and spatial representations of the data. We designed these use cases with the purpose of

conducting analyses at the observation level (Use Case 1), patient cohorts (Use Case 2), and population-level

data (Use Case 3).

Results: For each use case, the results of the analyses were sufficiently statistically similar (P>0.05) between

the synthetic derivative and the real data to draw the same conclusions.

Discussion and conclusion: This article presents the results of each use case and outlines key considerations

for the use of synthetic data, examining their role in clinical research for faster insights and improved data shar-

ing in support of precision healthcare.

Key words: synthetic data, protected health information, precision health care, electronic health records and systems, data

analysis
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BACKGROUND AND SIGNIFICANCE

Large and comprehensive data sets are required to generate evidence

in support of precision healthcare.1,2 However, current privacy and

confidentiality controls surrounding clinical data which contain pro-

tected health information (PHI), such as the Common Rule3 and the

HIPAA Privacy Rule,4 pose significant barriers to research using

clinical data sets.5 We are at an inflection point regarding the avail-

ability of large data sets and require new approaches to addressing

the protection of data privacy while rapidly advancing insights from

health data.6

Ideally, synthetic data are nearly identical to original PHI data

and can be analyzed as if they were original data but without any

privacy concerns. Not only is there significant potential to protect

patient privacy through analysis of data as a synthetic derivative,7

but synthetic derivatives of data can enable data sharing and acceler-

ate discovery. Once real patient data are synthesized, the resulting

data set no longer contains data on individual patients but rather is

a collection of observations which maintain the statistical properties

of the original data set. Since the data set no longer contains data on

real patients, synthetic derivatives can be shared between researchers

at different institutions. Further, time-to-insight can be shorter with

the use of synthetic data derivatives due to reduced regulatory over-

sight. Since the data do not contain PHI, use of these data is not clas-

sified as human subjects research.

Data synthesis platforms are technologies that go beyond deiden-

tification methods to produce data that can be used for research pur-

poses and which obviate privacy and confidentiality concerns. Our

institution partnered with MDClone (Beer Sheva, Israel) to evaluate

their technology platform by developing and conducting three use

cases. Each set of investigators conducted their research by analyz-

ing real patient data and then repeating their analyses using syn-

thetic data generated from the MDClone data synthesis platform.

Collectively, we tested the robustness of the results using traditional

statistics, machine learning approaches, and spatial representations

of the data. Here, we present the results of these analyses and de-

scribe the strengths and limitations of using synthetic data for re-

search.

METHODS

Current state-of-the-art approaches for the generation of synthetic

clinical data can be broadly classified as:

• Statistical simulation: where statistical models or profiles of nor-

mal human physiology and/or disease states are created based

upon “real-world” data. Subsequently, these models or profiles

are then used to create simulated patients or populations, consist-

ing of “avatars” that “generate” clinical data consistent with the

conditions and constraints of such models or profiles. As such,

the ensuing simulated patients and their data are generally con-

sistent with population-level norms and “look and feel” like

“real-world” data;8–10 and
• Computational derivation: where a computational model of

“real-world” data is produced on-demand, which can, in turn,

be used to produce novel data in a multi-dimensional space (eg

features) that adhere to the quantitative distributions and co-

variance of the original source data. When using these types of

models, data content and statistical features are a function of the

input data set. This process can be repeated multiple times using

the same source data and generating multiple derivative synthetic

data sets. Further, such computationally derived synthetic data

sets do not share mutual information with source data, eliminat-

ing reidentification potential.1,11

Of the above classifications, MDClone can be best described as

using a computational derivation approach. Of note, the treatment

of extreme values is handled by MDClone’s synthetic data engine to

ensure that outlying individuals in the original data set will not be

identifiable in the synthetic data derivative.

The MDClone data synthesis system includes three major com-

ponents: a data lake, a query tool, and a synthetic data generator.

The data lake can be used to integrate an arbitrary set of structured,

semistructured, and unstructured data for subsequent analyses. Po-

tential clinical data sources include, but are not limited to: inpatient

and outpatient visits, medications, surgeries and procedures, labora-

tory tests, and demographic information. All data which are loaded

in the data lake are stored with time stamps that are used to create a

medical life story for each patient.

Events and attributes describing an event are identified by the re-

searcher in the query tool according to the research question of in-

terest. The reference, or index, event (ie a breast cancer diagnosis)

defines the study population and is an anchor in the data set which

provides the reference time stamp for all other events of interest (ie

the first medication prescribed after the diagnosis of breast cancer).

Properties of an event such as medication may include the medica-

tion name, dosage, or date dispensed, and determine the definition

of the event (ie dosage greater than 750 mg/day). Commonly used

hierarchies, such as those for discharge codes and medications, are

employed to make identifying events more intuitive.

The MDClone synthetic data generator transforms real patient

data into a synthetic derivative which is statistically similar to the

real patient data (Figure 1). The synthetic patient data are stored

longitudinally based on the timestamp of each patient event.

MDClone’s synthetic data generation pipeline consists of the follow-

ing stages:

LAY SUMMARY

Synthetic data enable data generation and sharing in support of research and precision healthcare. We demonstrated the

creation and analysis of synthetic derivatives and validated the findings against original data. We used traditional statistics,

machine learning approaches, and spatial representations of the data. For each use case, the results of the analyses were

sufficiently similar—and statistically nonsignificant—between the synthetic derivative and the original data to draw the same

conclusions. We outlined key considerations for the use of synthetic data, examining their role in clinical research for faster

insights in support of precision healthcare.
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Cohort identification: In the first stage the user implements the

inclusion and exclusion criteria for the study using various data

filtration capabilities of the query tool such as “deceased males

who were diagnosed with prostate cancer after January 1, 2010,

before the age of 50.” Based on the criteria defined by the user,

the cohort data are selected from the data lake.

Feature selection: After selecting the cohort, the next step is to se-

lect the features to be extracted for each patient in the cohort.

This is achieved by using the query tool to select all the various

attributes for each patient that will be needed to conduct the

analysis. The user can also apply basic mathematical functions

on the features including, but not limited to: max, median, vari-

ance, count, sum, etc. to form more advanced queries. The user

can also define a more complex function, involving several prop-

erties (eg calculate a body mass index as the ratio of the first

weight recorded after the diagnosis divided by the square of the

first height recorded after the diagnosis). At the end of this stage,

the user has a matrix of desired features from the data lake for

patients selected in the cohort.

Data synthesis: The synthetic data generation is the most pivotal

step in the pipeline. In this step, statistical models are created

based on groups of similar patients using a variation of a kernel

density estimation of the multivariate probability density (Figure

1). These models are then used to generate a synthetic cohort in a

manner which preserves both the univariate and multivariate dis-

tributions of the underlying feature matrix created by the user at

the end of the previous step. At the same time, irreversibility with

respect to individual patients is maintained, since there is no cor-

respondence between any members of the two cohorts.

Summary analysis and report: In the last stage, the MDClone sys-

tem provides the user with an interface to visualize and validate

the final output of the data synthesis module. It also generates a

summary report at the end of the pipeline which shows a com-

parison between the real and synthetic data sets. The comparison

report includes all pairwise correlations (real values versus syn-

thetic data values for each feature) as well as a comparison of the

statistical distributions of each feature in each data set.

MDClone’s platform is a combination of an internal web appli-

cation server, a batch process server, and a Hadoop cluster. The

Hadoop cluster stores the organization’s data in the data lake. This

architecture enables data processing tasks to be broken down into

smaller tasks that can be performed in parallel, thus allowing faster

analytics on data which can contain billions of records. End users re-

main isolated from the original contents of the data lake and can

query synthetic data derivatives from it via a virtualization server.

We designed use cases with the purpose of conducting analyses

at the observation level (Use Case 1), with patient cohorts (Use Case

2), and population-level data (Use Case 3). We solicited these use

cases from individuals already engaged in the use of our Research

Data Core and who were working with the Clinical and Transla-

tional Science Award (CTSA)-funded Institute of Clinical and Trans-

lational Sciences (ICTS) in order to represent use cases across the

translational spectrum.

All use case analyses were completed twice: first, using real pa-

tient data as extracted from the source systems, and second, using a

platform-generated synthetic data set. These results allowed us to

compare the results of analyses using MDClone’s data transforma-

tions to results from data extracted directly from the source systems.

All statistical analyses on the original and synthetic data sets were

done outside of the tool itself.

Use Case 1: pediatric trauma
This use case was primarily a proof-of-concept for integrating retro-

spective clinical data with high-resolution data collected from pa-

tient bedside monitors. Clinical data included the Pediatric Risk of

Mortality III (PRISM III),12 a measure used to predict the risk of

mortality in critically ill children, and length of stay was obtained

from a query of the St. Louis Children’s Hospital (SLCH), Virtual

PICU Systems (VPS, LLC) Pediatric Intensive Care Unit (PICU) reg-

istry (www.myvps.org/vps-picu, last accessed November 14, 2020).

High-resolution data including physiologic and alarm data from pa-

tient bedside monitors were extracted from the SLCH BedMaster

high-resolution data repository (Excel Medical, Jupiter, FL, USA).

Participants included in the analysis were pediatric trauma patients

admitted to the PICU at SLCH from June 2014 through April 2018.

Bedside monitor alarm data were captured using Alarm Navigator

(Excel Medical, Jupiter, FL, USA), a system which archives data

from the bedside monitoring system. Bedside alarm features in-

Figure 1. Data synthesis process.
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cluded date, time, duration, severity, and standard description of

alarms.

The focus of this use case was proof-of-concept testing whether

high-resolution data could be loaded and generated from within the

MDClone environment. Six features (PRISM score, PICU length of

stay, count of alarms, count of alarms per length of stay, count of

critical alarms, and count of critical alarms per length of stay) were

used. The majority of data comprised continuous measurements

(mortality prediction score, length of hospital stay, count of alarms

per participant) and alarm severity was used to generate the “count

of critical alarms” feature which had four levels (system, advisory,

warning, crisis).

Four hundred and ten participants with 597 399 alarm events

were included in the analysis. There were no missing data for this

use case as all data elements were populated by the data collec-

tion systems while the patients were under investigation. Wil-

coxon rank-sum tests were used to assess the differences in

distributions between real and synthetic data. In addition, the re-

lationship between PRISM III scores and number of alarms over

PICU length of stay was assessed using Spearman rank correla-

tion coefficients.

Use Case 2: sepsis prediction
Sepsis is the dysregulated host response to infection that can result

in life-threatening organ dysfunction. Over 1.7 million Americans

develop sepsis every year and sepsis contributes to over a third of all

in-hospital mortality cases.13,14 The ability to predict sepsis prior to

onset would enable providers to take precautions or more closely

monitor potentially septic patients so timely intervention could take

place. To that end, we developed machine learning models to predict

sepsis among general ward patients 6 h prior to onset. The goal of

this use case was to evaluate if synthetic data could be used to train

and develop predictive machine learning models which can be ap-

plied to real patients.

Electronic health record (EHR) data were collected from 2012 to

2017. Of 61 364 total inpatient encounters, we excluded those less

than 12 h in duration, and those meeting the following criteria: sep-

sis was present on admission, no visit diagnosis codes were entered,

insufficient vital sign data were obtained, or patients were admitted

to the obstetrics and gynecology or psychiatric service. Features for

predictive modeling included patient demographics, laboratory, and

microbiological data. Sepsis cases (n¼643) were identified using the

common interpretation of the Sepsis-2 criteria which comprised the

systemic inflammatory response syndrome criteria and the suspicion

of infection criteria.15 Nonsepsis cases (n¼1286) were sampled at a

ratio of 1:2.

One hundred and sixty-nine features were included in the analy-

sis that was either numerical or binary (categorical variables were

transformed into one-hot binary vectors), such that the maximum

cardinality for any categorical was technically 2, but would have

been 4 for race (white, black, unknown, other).

Demographic characteristics of the cases and noncases were

compared between real and synthetic data sets using Pearson’s chi-

squared test (categorical), and Mann–Whitney’s rank-sum test

(continuous). The sepsis logistic regression prediction model with

L2-regularization was evaluated on training, 5-fold cross-

validation, and 20% held-out test set for accuracy, precision, re-

call, F1-sore, and area under receiver operating curve (AUROC). A

synthetic data set was generated based on the feature matrix. The

model was trained and evaluated on the synthetic data set, the

results of which were compared against a model trained and evalu-

ated on real patient data. Also, we evaluated the model built on

synthetic data with a real patient held-out test set to explore if

models or conclusions drawn from synthetic data could be applica-

ble to real patients.

Use Case 3: public health dashboard
The purpose of the public health dashboard was to display clinical

data by zip code in order to make the data actionable for stakehold-

ers, such as public health and medical practitioners, researchers, and

community members. It is often the case that community and civic

organizations request clinical data in order to inform their public

health promotion efforts in the community. In these situations, it is

challenging to put in place the appropriate data sharing agreements

in order to share real data and to maintain appropriate patient confi-

dentiality. If synthetic data derivatives can be validly used for these

types of data visualizations, doing so would also enable users to

download the data from the dashboard to conduct their own analy-

ses as the data would not contain PHI.

For these analyses, we calculated rates of chlamydia by year, us-

ing data from patients who tested positive for chlamydia in one of

four emergency departments in our hospital system. We extracted

data according to chlamydia diagnoses (binary) by year of the en-

counter (categorical) and zip code of patient residence (categorical).

We additionally extracted the age of the patient (continuous) and

patient sex and race (categorical).

Prior to data synthesis, we linked United States Census data by

zip code to our EHR data to obtain measures of socioeconomic sta-

tus as well as population counts to use as the denominator for the

calculation of rates. Here we present unadjusted rates of infection

per 100 000 persons and compare our findings between the real pa-

tient data and the synthetic data. In the future, our public health

dashboard functionality will allow users to visualize rates of infec-

tions overall as well as to sort the data by year of diagnosis, patient

demographics (ie age, gender, and race), and zip code level charac-

teristics (ie percent below poverty). To demonstrate how well the

synthetic data represented the real patient data graphically, we used

Tableau 10.5 software to generate a map of the catchment area

showing rates of chlamydia by zip code for a given year.

RESULTS

Use Case 1: pediatric trauma
The MDClone synthetic data process generated 401 participants,

compared to 410 from the real data. It is important to note that syn-

thetic data, unlike common methods which retain a one-to-one ratio

between original and deidentified data sets, can produce any number

of patients. MDClone’s synthetic data engine produces a similar,

but not necessarily identical, number of synthetic patients as in the

original data set. Practically, this approach censors outliers for

which there is insufficient signal in the original data to enable the

generation of synthetic data. Of note, this is yet another layer of pri-

vacy protection, as sometimes the exact number of patients meeting

an inclusion criteria, or the comparison between the number of

patients meeting two slightly different inclusion criteria, may cause

a privacy breach. We observed that the maximum values were gen-

erally lower among the variables in the synthetic data compared to

the real data. However, the distributions of these variables did not

differ between the real and synthetic data (all P¼0.9, Table 1).
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In our real as well as our synthetic data, there was a low positive

correlation between PRISM III scores and number of alarms experi-

enced during the patient’s PICU stay (Spearman r¼0.34 for both).

The comparison between real and synthetic data show similar pat-

terns and correlation coefficients (Figure 2). Figure 2A represents a

slightly different distribution of data as compared to Figure 2B. This

difference is due to the data synthesis process, which depends upon

a sufficient number of data points—which differs according to co-

hort size and requested features, in a particular position—in order

to be carried out. If outliers are rare and thus cannot be synthesized

in the resulting data set, these observations are censored in order to

maintain data privacy.

Use Case 2: sepsis prediction
For the sepsis cases, time of sepsis onset served as the index time.

For the nonsepsis cases, if the patient was admitted for greater than

24 h, the index time was the midpoint between admission and dis-

charge. Otherwise, the index time was designated as 12 h into ad-

mission. Features were constructed from data 6 to 24 h prior to the

index time. Features (n¼169) used for prediction included: patient

demographics, lab results, vital signs, and admission characteristics.

Longitudinal data were converted into sets of unitary statistical val-

ues (eg mean, standard deviation, last, etc.). Lab results were con-

verted into sets of binary abnormal flags (eg low, high, or critical

lactate). The resulting feature matrix was used in the MDClone plat-

form to generate a synthetic data set. Demographic data comparing

real and synthetic data sets are displayed in Table 2. We made these

comparisons using a chi-squared test for categorical variables and

Kolmogorov–Smirnov test for continuous variables. The distribution

of demographic variables was similar between real and synthetic

sepsis populations and between real and synthetic nonsepsis popula-

tions.

Next, we evaluated if models trained on synthetic data and

tested on real data would perform equivalently to models trained on

real data and tested on real data (as well as models trained on syn-

thetic data and tested on synthetic data). Performance metrics for all

models were similar, as shown in Table 3.

Use Case 3: public health dashboard
Cases of chlamydia corresponded to patients who were predomi-

nantly female with an average age of 23 years (Table 4). Across all

years of observation, rates of chlamydia ranged from 80 to 105 cases

per 100 000 population. We see from Table 4 that the average age,

gender distribution, and chlamydia rates are consistent between the

real patient data and the synthetic data. The number of chlamydia

cases per 100 000 population per year did not differ significantly be-

tween the real and synthetic data sets (data not shown).

A graphical comparison of chlamydia rates in the year 2014, be-

tween the real and synthetic data, is shown in Figure 3. Zip codes

with higher rates of infection are shaded darker blue, while lower

Table 1. Five-figure distributions for PRISM III score, PICU length of stay and alarm data

Real data Synthetic data

(N¼ 410) (N¼ 401)

Min 25th 50th 75th 90th Max Min 25th 50th 75th 90th Max P*

Prism III score 0 0 2 4 10.5 46 0 0 2 4 10 38 .93

Number of alarms 1 76 229 809 4840 17 688 6 80 236 792 4775 15 229 .99

ICU length of stay 0.1 0.7 1.3 3.4 10.6 73.3 0.2 0.7 1.3 3.1 9.5 34.3 .96

Number of alarms/ICU length of stay 2.9 70.6 168.5 422.6 737.0 2474.0 5.4 70.7 169.0 419.8 732.9 1496.2 .97

*Wilcoxon Rank Sum test comparing real versus synthetic data distributions.

Figure 2. Alarms/PICU length of stay by PRISM III score: real (A) and synthetic (B) data.
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rates of infection are indicated by lighter shades of blue. Each geo-

graphic unit is labeled with its respective zip code and chlamydia

rate for that year, and the results are not clinically or statistically dis-

tinguishable from each another (all P>0.05). In fact, the rate differ-

ences and 95% confidence intervals for each year, comparing real to

synthetic data sets, are as follows: 2010 (0); 2011 (�3.4, �14.5

to 7.8); 2012 (�4.3, �17.4 to 8.8); 2013 (�0.7, �13.3 to 11.9);

2014 (�2.9, �16.2 to 10.4); and 2015 (2.1, �9.3 to 13.5).

DISCUSSION

Overall, we demonstrated that high-resolution alarm, clinical, and

geographic data can be combined and successfully extracted and an-

alyzed using the MDClone platform. We used distinct data sets and

methodologies for each use case in order to evaluate the reliability

of the data synthesis platform to yield data sets with the same or

similar statistical output as the real data sets. In each use case, the

results of the analyses were sufficiently similar (P>0.05) between

the synthetic derivative and the real data to draw the same conclu-

Table 3. Performance metrics of sepsis prediction models

Training set Real Synthetic Synthetic

Testing set Real Synthetic Real

Train Accuracy 0.845 0.869 0.852

Precision 0.803 0.840 0.812

Recall 0.704 0.758 0.719

F1 0.750 0.797 0.763

AUROC 0.809 0.842 0.818

5-fold cross-validation Accuracy 0.795 0.802 0.799

Precision 0.712 0.73 0.723

Recall 0.637 0.67 0.639

F1 0.672 0.69 0.678

AUROC 0.855 0.86 0.847

Test Accuracy 0.834 0.833 0.834

Precision 0.811 0.759 0.829

Recall 0.677 0.678 0.654

F1 0.738 0.716 0.731

AUROC 0.887 0.885 0.892

Table 4. Characteristics (mean, SD, or N, %) of patients and rates of chlamydia (per 100 000 persons) by year: real versus synthetic data

Real Synthetic

Year N Rate Age (years) Female N Rate Age (years) Female

2010 456 78.5 22.5 (5.2) 316 (69.3) 475 78.5 22.5 (5.1) 328 (69.1)

2011 475 83.6 22.8 (6.2) 321 (67.6) 475 80.2 22.6 (5.5) 321 (67.6)

2012 541 105.5 23.2 (5.7) 368 (68.0) 525 101.2 23.1 (5.6) 358 (68.2)

2013 469 92.2 23.2 (6.2) 292 (62.3) 475 91.5 23.3 (6.3) 297 (62.5)

2014 459 96.3 23.4 (5.5) 266 (58.0) 450 93.3 23.4 (5.5) 260 (57.8)

2015 505 86.6 23.4 (5.7) 289 (57.2) 525 88.7 23.3 (5.7) 297 (56.6)

Figure 3. Chlamydia rates (per 100 000 persons) by zip code: real (left) versus synthetic (right) data, 2014. *Darker color indicates a higher rate.
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sions according to the subject matter experts consulted for each use

case. In several instances, the results were exactly the same, and

rarely were there statistically significant differences between data

sets. Parity among performance metrics across the different train-

test combinations in the sepsis use case suggests that synthetic data

can be used to construct prediction models for use on real patients.

There were no missing data in Use Case 1 or meaningful missing-

ness in Use Case 3 which allowed for a comprehensive data set to be

analyzed in each of these scenarios. The only challenge faced in this

regard for the sepsis use case (Use Case 2) was converting longitudi-

nal data into a format that could be used to generate synthetic data.

Low sample size, high sparsity, high dimensionality, and highly ir-

regular distributions can all affect the data synthesis process as well

as the interpretability of real data.

The challenges of building meaningful cohorts and protecting

privacy are interconnected and cannot be separated for the type of

next-generation research we conducted.7–10,16,17 Many current

data-anonymization techniques rely on data manipulation concepts

such as aggregation (associating a higher category to some of the

features in order to generalize them), subsampling from a larger

population in order to achieve the final desired population size, and

adding noise to the data set. However, the usefulness of the data set

resulting from the above techniques is questionable, and they are

not usually safeguarded against reidentification. Other approaches

build generative models from the original data in order to imitate its

statistical characteristics, allowing for advanced data analysis with-

out compromising individuals’ privacy. However, these algorithms

often require assumptions about the specific shapes of the original

distributions, which could in fact be very complex or nonparamet-

ric.

MDClone’s synthetic data engine is based on a different ap-

proach that does not focus on camouflaging individual patients.

With MDClone, models are created based on groups of similar

patients. These models are used to create new “patients,” and the

resulting distinction between the synthetic population and the origi-

nal true population assures irreversibility. The process is on-

demand, and cohorts can be altered (ie new features added) and

data can be changed (ie adding or replacing variables) easily, which

provides the benefit of faster research cycles. In this way, synthetic

data generation enables repeated queries of the data, as synthetic

patients are not original patients masked by noise.

In contrast, the differential privacy approach adds noise to the

data to ensure privacy, and an adequate threshold for such noise

remains unknown. There may be an ideal amount of noise added for

a single query, yet querying the data multiple times may result in in-

sufficient privacy protections. Further, MDClone is not susceptible

to a model inversion attack as described by Veale et al.;16 the syn-

thetic data derivative does not contain a one-to-one ratio between

the training set B and the members of B0, which is created from a

model that is not based on a specific member of B.

A recently published paper outlines an additional five use cases

for the application of MDClone-generated synthetic data derivatives

to research questions, including an exploration of how the genera-

tion of several MDClone data derivatives from the same query per-

forms satisfactorily over multiple iterations.16 Our study adds to the

growing literature of synthetic data validation in the following

ways: (1) providing a demonstration of generating synthetic data

derivatives from high-fidelity data, (2) deployment of machine learn-

ing approaches designed to test the fit-for-purpose of using synthetic

data as the training data for prediction models, and (3) determining

the utility of synthetic data for geospatial analyses.

Other commercial systems and approaches to synthetic data gen-

eration9,10,17,18 may depend on demographics most accurately rep-

resenting the use case and the current knowledge available. Thus,

novel insights may be limited by the typical outcomes observed

given the demographics of the cohort as well as by prespecified rela-

tionships between variables which dictate their inclusion or exclu-

sion in the resulting data set.9 Therefore, other commercial systems

may not be flexible with respect to diverse use cases nor allow for

clinical discovery.10

Alternative methods of synthetic data generation tend to fall

short of preserving complex nonlinear relations and handling the

“messy” nature of real-world clinical data. Of note, MDClone does

not use the common kernel density estimation approach in isolation,

as kernel density estimation alone would not provide the required

outcome from a privacy standpoint. The utility of synthetic data for

predictive modeling in healthcare should continue to be explored

and a comparison of approaches will help the research community

define which approaches are fit-for-purpose with respect to particu-

lar use cases. For relatively rare conditions, one site may not have

sufficient data to train a predictive model, yet a consortium of insti-

tutions contributing synthetic data might have sufficient numbers of

patients to make meaningful inferences.

For these analyses, we used a P-value threshold of .05 to main-

tain simplicity of presenting results from multiple use cases. We ac-

knowledge that such thresholds would (and should) vary by use case

and specifically by the amount of error a researcher is willing to tol-

erate given the context of the research question.

A key enabling feature for the construction of reliable synthetic

data is choosing a large yet finite list of columns. It would not be

possible to synthesize the entire EHR as a one-time process, as there

are many more features than patients. Thus, choosing a list of fea-

tures to be used in the analysis—where the number of features may

be large but still much smaller than the number of patients in the co-

hort—enables the creation of reliable synthetic data.

CONCLUSIONS

We conclude that the potential for leveraging synthetic data for the

conduct of research is great; its use empowers researchers to produce

valid results, over a short period of time, while protecting patient

privacy. It is expected that the analysis of synthetic data will acceler-

ate the conduct of data-driven research studies as protocols will not

be required to be IRB-reviewed since the research is not classified as

that of human subjects and the data do not contain PHI. Further, we

anticipate that generating synthetic data derivatives for research will

reduce barriers to data sharing, which have traditionally included

concerns about data privacy and ownership.

In addition to the use cases presented herein, other applications

of synthetic data include the ability to conduct studies of varied

designs (ie case–control) as well as assessments of patient safety and

care quality. Future directions for this work include developing and

validating clinical risk prediction models, sharing data across insti-

tutions and countries, enabling open competitions for data mining,

and evaluating drug responsiveness.1

CLINICAL RELEVANCE STATEMENT

Data synthesis platforms like MDClone are expected to dramatically enhance

the research community’s ability to use clinical data for faster insights and im-

proved data sharing in support of precision healthcare.
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