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In recent years, the automotive field has been changed by the accelerated rise of new

technologies. Specifically, autonomous driving has revolutionized the car manufacturer’s

approach to design the advanced systems compliant to vehicle environments. As a

result, there is a growing demand for the development of intelligent technology in order to

make modern vehicles safer and smarter. The impact of such technologies has led to the

development of the so-called Advanced Driver Assistance Systems (ADAS), suitable to

maintain control of the vehicle in order to avoid potentially dangerous situations while

driving. Several studies confirmed that an inadequate driver’s physiological condition

could compromise the ability to drive safely. For this reason, assessing the car driver’s

physiological status has become one of the primary targets of the automotive research

and development. Although a large number of efforts has been made by researchers to

design safety-assessment applications based on the detection of physiological signals,

embedding them into a car environment represents a challenging task. These mentioned

implications triggered the development of this study in which we proposed an innovative

pipeline, that through a combined less invasive Neuro-Visual approach, is able to

reconstruct the car driver’s physiological status. Specifically, the proposed contribution

refers to the sampling and processing of the driver PhotoPlethysmoGraphic (PPG) signal.

A parallel enhanced low frame-rate motion magnification algorithm is used to reconstruct

such features of the driver’s PhotoPlethysmoGraphic (PPG) data when that signal is

no longer available from the native embedded sensor platform. A parallel monitoring

of the driver’s blood pressure levels from the PPG signal as well as the driver’s eyes

dynamics completes the reconstruction of the driver’s physiological status. The proposed

pipeline has been tested in one of the major investigated automotive scenarios i.e., the

detection and monitoring of pedestrians while driving (pedestrian tracking). The collected

performance results confirmed the effectiveness of the proposed approach.

Keywords: driver drowsiness monitoring, deep learning, pedestrian tracking, adas, photoplethysmographic

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2021.667008
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2021.667008&domain=pdf&date_stamp=2021-07-30
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:francesco.rundo@st.com
https://doi.org/10.3389/fninf.2021.667008
https://www.frontiersin.org/articles/10.3389/fninf.2021.667008/full


Rundo et al. Deep NeuroVision Embedded ADAS

1. INTRODUCTION

Drowsiness is a symptom related to a lack of awareness which
affects concentration, reaction time, and most seriously, safety
(Schmidt, 1989; Rundo et al., 2019c). In the last few years,
researchers discovered the mechanisms for which the level of
attention is strongly correlated to the cardiac activity (Schmidt,
1989; Kurian et al., 2014; Rundo et al., 2019c).

The main functions of the heart are regulated by the
Autonomic Nervous System (ANS). Specifically, the sympathetic
and the parasympathetic nervous system, the two branches of
ANS, are responsible for regulating many cardiac mechanisms,
which are reflected in the attentional state of a subject (Schmidt,
1989). As stated previously, physiological signals represent a
relevant data source to assess a subject’s physiological condition
(Kurian et al., 2014; Dastjerdi et al., 2017; Rundo et al.,
2019d). The study of physiological signals have received much
attention from the scientific community of the automotive
industry (Kurian et al., 2014; Dastjerdi et al., 2017; Rundo et al.,
2019d). Specifically, the growing proliferation of non-invasive
medical devices to collect physiological parameters has led to
the development of advanced new tools to be integrated into
vehicle-environment. In this context, PhotoPlethysmoGraphic
(PPG) signal has been proposed as a valid solution to analyze
a subject’s physiological status (Kurian et al., 2014; Dastjerdi
et al., 2017; Rundo et al., 2019c,d). With the recent advances
in safety awareness systems, the car manufacturers have spent
a lot of efforts to develop innovative ADAS architectures based
on PPG signal processing (Kurian et al., 2014; Rundo et al.,
2019c). PPG is a convenient and simple physiological signal
that provides information about the cardiac activity of a subject
(Rundo et al., 2019d) and, therefore, the drowsiness status of
a subject as well as pathologies which may indirectly have
an impact on the subject’s guidance1. In this work, we also
focused on the use of the PPG signal for monitoring the
subject’s blood pressure. Several studies have pointed out that
a robust driving risk assessment system leverages the so-called
“driver fatigue condition” (which combines drowsiness and
blood pressure monitoring) to perform a robust risk estimation
(Husodo et al., 2018).

In this regard, the authors investigated promising solutions
based on the use of a sensor framework to determine the level
of driving safety through the driver’s drowsiness assessment as
well as the correlated blood pressure analysis (Littler et al., 1973;
Husodo et al., 2018; Hui and Kan, 2019). Current solutions
propose the use of wearable sensors or embedded devices
equipped with such sensors in order to detect the first signs of
fatigue2 (i.e., a significant and progressive lowering of the body
temperature, the heart rate, etc.). Therefore, they require the use
of invasive methodologies for the car driver that are often not
feasible in automotive applications (Littler et al., 1973; Husodo
et al., 2018; Hui and Kan, 2019).

1https://www.who.int/gho/ncd/risk_factors/blood_pressure_prevalence_text/en/
2https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/

ersosynthesis2015-fatigue25_en.pdf

Several reports have highlighted that cardiovascular diseases
could have a major impact on the health of a subject, affecting
also the level of attention (Wu et al., 2015). In order to gather
information about users’ health conditions (and specifically the
“car driver” users), major interventions have been made for
monitoring and analyzing the systolic and diastolic pressure of
both healthy and hypertensive subjects through physiological
signals. Preliminary studies have confirmed that there is a strong
correlation between cardiovascular risk, drowsiness estimation,
pressure level quantification, and physiological PPG signal
(Littler et al., 1973; Schmidt, 1989; Kurian et al., 2014; Wu
et al., 2015; Dastjerdi et al., 2017; Husodo et al., 2018; Hui
and Kan, 2019; Rundo et al., 2019c,d). Inspired by the recent
research studies, we defined the proposed work, providing
an effective solution to overcome the limitations of the PPG
acquisition. Due to the high sensibility of the PPG signal to
Motion Artifacts (MA) generated with the body movements,
ad-hoc sensing device combined with an innovative processing
workflow was used (Dastjerdi et al., 2017; Rundo et al.,
2019d). Therefore, it is not always easy to use methods
based on PPG sampling and processing. In automotive field,
the sensors of the PPG signal are usually embedded in the
driver’s steering in order to detect the needed physiological
data (from the car driver hand placed on the steering) for
drowsiness monitoring.

In Kurian et al. (2014) and Rundo et al. (2019c), the
authors of these contribution have developed and patented an
application that allows to detect the PPG waveforms of the
driver from his/her hand placed in the car steering. Anyway,
it is needed that the car-driver applies the hand in the PPG
sensing devices arranged in the steering wheel; otherwise, the
PPG signal cannot be collected (Kurian et al., 2014; Rundo et al.,
2019c,d). Similarly, it would be advantageous to have a non-
invasive system for monitoring the driver’s blood pressure from
PPG signal without having to wear such medical devices. In
order to address the aforementioned issues, the authors propose
an innovative pipeline for estimating some features of the PPG
signal of any subject without the use of invasive devices. This
paper presents an efficient Deep Learning pipeline designed
to perform a non-invasive PPG features reconstruction using
an innovative low frame-rate Motion Magnification algorithm
(Wu et al., 2012). Moreover, we developed a proper Application
System Framework (ASF) to assess both the driver drowsiness
trough the usage of PPG signal features and the correlated
blood pressure level, providing a robust evaluation of the
driving safety.

The authors have a lot investigated thementioned issue related
to the car driver drowsiness monitoring as reported in Rundo
et al. (2020a), Rundo et al. (2020b), Battiato et al. (2020), and
Rundo et al. (2020c). They performed in-depth studies in relation
to the robustness and performance of the delivered solutions.
This paper is arranged into five sections. In section 2, the
PPG based theory was introduced with a special focus to the
physical principle that characterizes its formation. In section 3,
we presented the used PPG sensing device. In section 4, the main
scientific literature contributions are reported and discussed. In
section 5, the whole proposed pipeline is described while in
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section 6 both the experiments and validation results are reported
and discussed.

2. THE PPG SIGNAL: UNDERLYING
PHYSICAL PHENOMENA

PhotoPlethysmoGraphy is a non-invasive method for measuring
blood flow in the cardiovascular circulatory system (Dastjerdi
et al., 2017). More specifically, PPG is a physiological signal
generally obtained through a combined optical-to-electric
sensing system able to transduce the blood flow dynamic into
electrical waveforms (Dastjerdi et al., 2017; Vinciguerra et al.,
2019).

Through the mentioned optical sampling methods, we are
able to collect the PPG signal by illuminating the region of
interest of the subject’s skin with a Light Emitting Diode (LED).
The used LED is coupled with a photo-sensing device that is
able to capture the part of emitted light (photons), which is
not absorbed by the subject blood flow (Back-Scattered signal;
Vinciguerra et al., 2019). In particular, the photo-sensing device
captures the part of reflected LEDs emitted light which is not
absorbed mainly by the oxygenated hemoglobin (HbO2) and
in residual form by the non-oxygenated (Hb) present in the
subject’s blood (Conoci et al., 2018; Vinciguerra et al., 2019). An
electrical transduction circuit of the optical signal will complete
the typical PPG signal acquisition pipeline. In Figure 1, the
overall representation of the PPG pattern formation is reported.
It shows the physical phenomenon underlying the formation of
the PPG signal. Through the action of the ANS the heart rate of
the subject is regulated (Schmidt, 1989). This regulation produces
an impact in the arterial blood flow of the i.e., in the back-
scattering data linked to the dynamics of HbO2 andHb (Schmidt,
1989; Kurian et al., 2014; Rundo et al., 2019c,d). This collected
data will be properly electrically transduced and processed by
means of an automotive grade microprocessor, described in the
next paragraphs.

3. THE PROPOSED PPG SENSING SYSTEM

Different hardware architectures have been proposed in order
to sample the PPG signal (Agrò et al., 2014; Liu et al., 2016;
Conoci et al., 2018; Vinciguerra et al., 2019). The authors
proposed the use of an hardware architecture based on the
employment of a photo-multiplier silicon device called SiPM
(SiliconPhotoMultiplier) (Mazzillo et al., 2009, 2018; Liu et al.,
2016; Vinciguerra et al., 2017; Rundo et al., 2018a).

The designed sensing device is composed by two OSRAM
LED emitters (SMD package) emitting at 850 nm. These leds are
then used as optical light sources with a SiPM device (detector)
which has a total area of 4.0 × 4.5 mm2 and 4,871 square
microcells with 60 µm of the pitch. The proposed SiPM device
has a geometrical fill factor of 67.4% and is packaged in a
surface mount housing (SMD) of 5.1 × 5.1 mm2 total area.
More details about the used hardware in Conoci et al. (2018),
Agrò et al. (2014), Liu et al. (2016), and Mazzillo et al. (2009).
Furthermore, to sample the PPG optical signal [through the

embedded 12-bit Analogic to Digital Converter (ADC)] and to
handle the implemented filtering and stabilization algorithms,
the SPC5x 32-bit Chorus microcontroller was used (Vinciguerra
et al., 2017; Mazzillo et al., 2018; Rundo et al., 2018a). Figure 2
shows the proposed designed PPG sensing hardware platform.
The so sampled PPG raw signal comprises a pulsatile (“AC”)
physiological signal, which is correlated to cardiac-synchronous
changes in the blood volume, superimposed with a slowly
varying (“DC”) component containing lower frequency sub-
signals, which is correlated to respiration, thermoregulation,
and so on (Vinciguerra et al., 2017; Mazzillo et al., 2018;
Rundo et al., 2018a). Usually, the sampled raw PPG signal
contains various types of noise: electronic, motion artifacts,
micro-movements due to breathing and so on (Mazzillo et al.,
2009, 2018; Liu et al., 2016; Vinciguerra et al., 2017; Rundo
et al., 2018a). For this reason, it is needed to filter the raw
PPG signal to obtain only the “AC” part of our interest (as
it is directly correlated with the subject’s heart activity) de-
noised from the various kinds of noise. Figure 3A shows an
instance of raw noised PPG signal sampled from the hand
of a recruited subject. To achieve this purpose, a raw PPG
signal filtering pipeline was implemented by authors. More in
detail, in the aforementioned pipeline a Butterworth bandpass
filter in the 0.5–10 Hz range was used. The authors also
implemented an innovative, robust stabilization, and de-noising
pipeline (motion artifacts, micro-breathing movements, etc.)
called PPG-PRS (Choi et al., 2016; Rundo et al., 2018a, 2021). In
Figure 3B, we reported a detail of the so filtered PPG waveforms.
As shown in Figure 3B, a filtered steady-stable PPG signal is
obtained by the deep pipeline proposed by the authors and called
PPG-PRS (PPG Pattern Recognition System) (Choi et al., 2016;
Rundo et al., 2018a, 2021). The so generated signal contains
PPG waveforms which are compliant with the standard for
this type of signal (Vinciguerra et al., 2017; Mazzillo et al.,
2018).

The PPG-PRS technique is based on the use of a bio-inspired
“reaction-diffusion” mathematical model that characterizes
the two phases of cardiac activity (specifically it has been
hypothesized that the diastolic phase is combined with
a “reaction” dynamic and systolic to a phenomenon of
“diffusion”). Through a cross-correlation analysis between
the sampled PPG signal (filtered in the range 0.5–10 Hz)
and the standard compliant PPG signal generated by the
aforementioned reaction-diffusion mathematical model,
the authors are able to recognize the waveforms of the
PPG signal which are compliant with the standard and
consequently discard those affected by noise or artifacts.
Further implementation details of the PPG-PRS stabilization
and de-noising pipeline can be found in Rundo et al. (2018a,
2021).

As introduced in the previous sections, in order to make
a non-invasive sampling of the driver’s PPG signal, the PPG
sensing devices were embedded in the car steering in different
positions, specifically, those where statistically the driver places
the hands while driving. In this way, each time the driver also
places a single hand in the steering part in which the PPG
sensing device was embedded, the described signal formation
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FIGURE 1 | The PPG signal formation diagram.

FIGURE 2 | The proposed PPG Sensing Probe.

mechanism will start working and the raw data will be sampled
and then subsequently processed accordingly. In Figure 4,
the overall scheme of the proposed PPG sampling pipeline
is shown.

4. RELATED WORKS

Over the last decade, several researchers have investigated
the issue that concern the evaluation of the driver’s
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FIGURE 3 | (A) Sampled raw PPG time-series. (B) Detail of the filtered PPG signal.

status with the physiological signals (Choi et al., 2016).
Typically, these solutions are computationally expensive and
invasive (Vavrinskỳ et al., 2010). Moreover, the continuous
monitoring of physiological parameters during car driving
requires high-performance systems (both hardware and
software) to ensure high levels of safety while driving

(Vavrinskỳ et al., 2010; Choi et al., 2016; Rundo et al., 2018a,
2021).

In this context, the PPG signal is the easiest to acquire among
all the physiological signals that can be sampled by the driver
(Vavrinskỳ et al., 2010; Choi et al., 2016). By simply allocating
sensing devices (LED + SiPM) in the car steering wheel, the raw
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FIGURE 4 | The overall scheme of the proposed PPG sensing device embedded in the car steering.

PPG signal of the driver can be easily sampled using the physical
mechanism described in the previous paragraphs. The sampled
PPG signal is post-processed by the microcontroller devices
placed on the car (ADAS framework) to monitor drowsiness
(Vavrinskỳ et al., 2010; Choi et al., 2016; Koh et al., 2017). In
the other hand, to obtain the ElectroCardioGraphic (ECG) signal
of the car driver, at least three contact-points would be required
(Einthoven triangle; Rundo et al., 2018a). Therefore, the use of
the PPG signal is preferred.

Another reliable source of data (which can be sampled in
a non-invasive way) is the visual information referring to the
driver’s face and related facial expressions that seems to be
correlated to the level of attention (Vural et al., 2007). For these
reasons, many visio-based and physio-based solutions have been
designed and implemented. In Koh et al. (2017), the authors
analyzed the pattern of Heart Rate Variability (HRV) to monitor
the drowsiness of the car driver. The HRV is a simple indicator
suitable to measure the variation in the time interval between
consecutive heartbeats (in milliseconds; Vavrinskỳ et al., 2010;
Choi et al., 2016; Koh et al., 2017; Rundo et al., 2021). Several
studies confirmed the correlation between a subject’s attention
level and the dynamic of related HRV, specifically with the
analysis of such indicators extracted from the HRV called HF
(High-Frequency power), LF (Low-Frequency power), and the
LF/ HF ratio (Vural et al., 2007; Lee et al., 2011, 2019; Choi et al.,
2017; Koh et al., 2017; Deng and Wu, 2019).

In Lee et al. (2019), a Convolutional Neural Network was
used to classify drowsy/wakeful status. The CNN was fed by
analyzing three types of recurrence plots (RPs) derived from
the R-R intervals. The authors found that the simultaneous use
of ECG and PPG signal (needed to collect the HRV) inevitably
introduced a non negligible noise and artifacts. Another solution
related to assess car-driver fatigue is reported in Choi et al.
(2017) in which the authors proposed a system to measure the
car driver’s emotional and physiological status coming from a
wearable device placed on the wrist. As well as previous work, a
pre-processing pipeline was developed in order to extract such
valid time-series from the acquired signals. The so extracted

features were classified by using a Support Vector Machine
method. The results confirmed the effectiveness of the proposed
solution in detecting and distinguishing the driver’s physiological
status. In Lee et al. (2011), the researchers proposed an innovative
method to detect driver drowsiness combining Computer Vision
and Image Processing approaches. Specifically, they evaluated the
PPG signal waveform in order to record changes from awake
to a drowsy state. At this stage, they detect the eye region
through the use of template matching in combination with a
Genetic algorithm to analyze the eye’s behavior. In order to
derive the final classification, PPG drowsy signals are evaluated
with eye motion behavior to provide more robust and effective
results. Deng and Wu (2019) proposed a novel approach, called
DriCare, to estimate driver drowsiness by using a face-tracking
algorithm. The authors designed a new method to individuate 68
key points in facial regions with the aim of evaluating drivers’
fatigue status. Another promising work that investigates the
problem of assessing car driver’s fatigue state is Jabbar et al.
(2020) in which the authors developed a Convolutional Neural
Networks to classify drowsiness status. Specifically, the authors
used facial landmarks as input data for their proposed model.
The main contribution of their work is the development of a
deep learning-based system that can be easily integrated into a
car environment. As introduced in this scientific contribution,
several studies investigated the driving safety assessment, in
addition to the detection of the level of car driver attention
as well as to monitor driver blood pressure. In the scientific
literature many approaches deals with the arterial stiffness or
the estimation of blood pressure with the advantage of Deep
Learning (DL)methods and PPG signal based analysis. InMonte-
Moreno (2011), the authors used a photoplethysmography sensor
in order to estimate the diastolic and systolic blood pressure
in a non-invasive way. In particular, the PPG waveform was
used to gather the features used as input data in a various
machine learning algorithm to be able to estimate the systolic
(SBP) and diastolic (DBP) blood pressure and the blood glucose
level (BGL). The results confirmed that Random Forest achieved
better prediction estimation confirming the relationship between
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FIGURE 5 | The overall scheme of the proposed Vison2PPG Reconstruction pipeline.

the shape of PPG waveform and blood pressure level. The
effectiveness of Machine Learning (ML)-based techniques have
been furtherly confirmed by experimental results that showed
the relationship there is among the PPG waveform, blood
pressure and glucose levels. Slapničar et al. (2019) investigated
the problem of detecting Blood Pressure (BP) using an ML-based
architecture. The authors fed a novel spectro-temporal Deep
Neural Network (DNN) with the PPG and its first and second
derivative to be able to overcome limitations that concern the
cuff-based devices. The ability to compute dependency between
PPG waveforms and blood pressure and the effectiveness of the
proposed model was confirmed by means of leave-one subject-
out experiments. In Alty et al. (2007), a pipeline to predict arterial
stiffness (an indicator correlated to subject blood pressure)
was proposed by the authors. Moreover, with the purpose of
examining cardiovascular disease they performed classification
of subjects into high and low aortic pulse wave velocity (PWV)
classes. The collected results confirmed the effectiveness of the
proposed Support Vector Machine (SVM) based solution. In
Rundo et al. (2018b), a novel approach was described by the
authors in order to estimate cardiovascular disease risk by means
blood pressure. The method reported in Rundo et al. (2018b)
measures the subject blood pressure by analyzing the correlated
PPG signal. In Huynh et al. (2018), the authors used the averaging
Impedance Plethysmography (IPG) for the detection of Pulse
Transit Time (PTT) in order to estimate the blood pressure.

The tests showed that the estimation of blood pressure (BP)
achieved interesting results (RMSE: 8.47 ± 0.91 and 5.02 ± 0.73
mmHg for systolic and diastolic levels, respectively). On the other
hand, the previous approaches needs the use of invasive medical
devices and sometimes require the need to sample the ECG
signal in addition to the PPG and therefore impracticable in the
automotive application.

5. METHODS AND MATERIALS

5.1. The Driving Safety Assessment
Through Physiological Driver Analysis
Recent studies have highlighted the need to assess the car driver’s
physiological state in order to create highly safety automotive-
grade applications. As previously reported, the PPG is a less-
invasive signal suitable to provide useful information about the
physiological condition of the driver. In fact, the main limitation
of the existing solutions consists in the integration of sensors
inside the vehicle to acquire the physiological signals. Most
of the solutions propose a PPG signal sampling methodology
based on the usage of such sensors placed on the car steering
wheel. However, this implies that the driver has to maintain an
unnatural behavior i.e., the hands constantly over the sensors.
Moreover, if these sensors no longer work while driving,
the classic pipelines would not be able to collect the signal,
representing a serious risk during the real-time safety assessment

Frontiers in Neuroinformatics | www.frontiersin.org 7 July 2021 | Volume 15 | Article 667008

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Rundo et al. Deep NeuroVision Embedded ADAS

FIGURE 6 | A filtered compliant PPG waveform with a detail of such extreme

points m1, m2, m3, m4.

(Kurian et al., 2014; Rundo et al., 2018b, 2021). In Figure 4, we
schematized the PPG sampling pipeline embedding the sensors
placed on the steering wheel.

With this regard, we designed an innovative pipeline which
combines an enhanced version of the Motion Magnification
analysis and Deep Learning approach for a non-invasive
processing of the car driver PPG signal. As a result, the proposed
approach is able to overcome the aforementioned critical
issues. More specifically, we developed an innovative module
called Vision2PPG Reconstruction Pipeline that reconstructs the
features of the driver’s PPG signal from a visual data. Through
the use of a video-camera placed on the car dashboard, we
recorded the driver’s face, tracking the facial movements over
the frames. Finally, by ad-hoc processing of these visual data we
developed ad-hoc algorithm to reconstruct such features of the
car driver’s PPG signal even in absence of native sensing data.
The use of Deep Architectures properly trained will complete the
proposed pipeline.

5.2. The Vision2PPG Reconstruction
Pipeline
In this section, we go through the details of the developed
Vision2PPG pipeline. The proposed pipeline consists of a
PPG sensing device designed to perform a preliminary system
calibration and a camera device that captures the dynamic of
the driver’s frontal face. The collected data have been used
to extract facial descriptors (landmarks). The designed module
is based on Computer Vision techniques which cover specific
requirements regarding the automotive certification ASIL-x
(Dastjerdi et al., 2017; Vinciguerra et al., 2019). A deep learning
algorithm (embedded in an ASIL-B microcontroller as firmware)
completes the proposed pipeline by correlating the subject’s face
descriptors with the corresponding PPG waveforms. The overall
flowchart of the proposed Vision2PPG pipeline is shown in
Figure 5. A detailed description of the pipeline will be reported
in the following paragraphs. As PPG sensors, we implemented
the sensing system design described in the previous section.
The designed four PPG sensing probes will be embedded in
the driver’s steering wheel equidistant from each other. The

designed LEDs will emit at the wavelength of 850 nm (near
infrared). The first phase of the proposed pipeline is the training-
calibration task. The training-calibration phase includes a
learning stage in which the pipeline determines the correlation
between visual time-dynamic of the segmented face descriptors
(landmarks) with the associated PPG features. This module was
designed to collect enough data to characterize the car driver
drowsiness as well as the correlated blood pressure level. At this
stage, the raw PPG signal is firstly sampled by using the designed
coupled LED-SiPM sensing probes (Mazzillo et al., 2018; Rundo
et al., 2018a). We also applied the PPG-PRS (means PPG Pattern
Recognition System) algorithm to the so collected raw PPG signal
in order to obtain a compliant filtered PPG time-series (Rundo
et al., 2018a, 2021).

The PPG-PRS preliminary filters the raw PPG signal cutting
off artifacts and noise through the use of a Butterworth
bandpass filter in the range 0.5–10 Hz. Moreover, a study
of the first and second derivatives of the filtered PPG signal
was implemented in the PPG-PRS algorithm. This analysis
allows to detect the minimum and maximum extreme points
of each selected compliant PPG waveform. Finally, by means
of a second order dynamic and Reaction-Diffusion system,
which emulates the physiological phenomenon of the PPG
signal formation, the PPG-PRS algorithm is able to stabilize
the sampled PPG signal. The configuration of the PPG-PRS
algorithm is exactly the one reported in the scientific contribution
(Rundo et al., 2018a). In Figure 6, we depicted an instance of a
filtered PPG compliant waveform, identifying the corresponding
extreme points m1,m2,m3,m4. The second part of the proposed
Vision2Physio reconstruction pipeline is composed by the
enhanced motion magnification module. More in detail, we
performed the PPG sampling simultaneously with the recording
of a video sequence of the subject’s frontal face by using a
low frame-rate camera device under normal light conditions.
Specifically, we used a device with a max resolution of 2.3
Mpx and 50 fps as framerate. Several studies have demonstrated
that the face of a subject performs visual micro-movements
closely related to the cardiac pumping activity (systolic and
diastolic phase; Oh et al., 2018). The PPG signal (as a cardiac-
related signal) is strongly correlated to the aforementioned
micro-movements (Balakrishnan et al., 2013). In order to make
these micro-movements visible at naked eyes, some authors
have designed innovative motion magnification techniques
which require a video-camera devices with high frame-rate (on
average, frame rate ranging from 10 Kfps up; Rubinstein et al.,
2013). Motion Magnification refers to amplifying facial micro-
movements in order to reveal the flow of blood (Balakrishnan
et al., 2013; Rubinstein et al., 2013; Oh et al., 2018). However, the
method originally proposed for motion magnification showed
an evident issue in relation to automotive applications as it
requires, as mentioned, the need for a high frame-rate video
device (of the order of Kfps). This constraint is not easily covered
in automotive field mainly for reasons of costs and sustainability
of the underlying hardware. For this reason, by extending a
previous version already implemented, the authors propose
in this contribution a different motion magnification method
which addresses the mentioned issues. The preliminar version
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of the proposed enhanced motion magnification algorithm was
reported by the authors in Trenta et al. (2019). With this regard,
we firstly developed a method to process video frames depicting
face sequences of the car driver in order to preliminary identify
significant landmarks or descriptors on the subject’s face. The
proposed pipeline is shown in Figure 7.

In order to detect the aforementioned landmarks, the
approach implemented in Kazemi and Sullivan (2014) was used.
This algorithm locates the (x, y) coordinates of 68 facial points
(landmarks) describing the facial structures (i.e., mouth, eyes,
nose, etc.) on a subject’s face image. The approach is based on
the usage of a pre-trained learning model (Kazemi and Sullivan,
2014). Themain advantage of this algorithm consists in obtaining
near real-time high-quality landmarks recognition and tracking
even with a low frame-rates video. More details in Kazemi and
Sullivan (2014). In our previous solution reported in Trenta et al.
(2019). both the hardware PPG signal sensing system and the
landmarks detection algorithm were quite different. The PPG
sensing system used green LEDs. Furthermore, although Kazami
and Sullivan’s algorithm was used to retrieve the landmarks of
the driver’s face, the number of used landmarks were significantly
lower than the total number (68 descriptors), specifically, there
were only two (landmarks adjacent to the eyes). For the
reconstruction of the PPG features from the visual subject’s face
frames, a deep classifier based on LSTM was used. However,
this model only reconstructed the minimum points of each PPG
waveform. The setup reported in Trenta et al. (2019) allowed us to
prove that the motionmagnificationmodel we proposed was able
to achieve optimal performance in the automotive field. However,
the pipeline described in Trenta et al. (2019) was implemented
in a prototype system by National Instruments that required
data buffering and therefore the overall system response time
was significantly slowed down. Furthermore, considering that
the pipeline used only two car driver landmarks adjacent to the
eyes, in certain scenarios this visual data could be no longer
available (for instance a scenario in which the driver wearing
sunglasses) and therefore the pipeline would be no longer
applicable. These limitations have been largely overcome in the
motion magnification pipeline herein proposed. Formally, we
have defined the reconstruction of landmarks dynamics bymeans
of Kazemi and Sullivan based function ψKS(.). If we indicate with
Itk (x, y) the captured M × N gray-level (or luminance gray-level
channel in case of color camera device) video frame of the car’s
driver at the instant tk, the i − th dynamic landmark ℓi(tk, xl, yl)
is reconstructed as follow:

ℓi(tk, xli, yli ) = ψKS(Itk (x, y)); k = 1..Nf ; i = 1..NL (1)

where ℓi(tk, xli, yli) represents the pixel intensity variation of
the i-th landmark identified at the space position (xli, yli) on
the frame while Nf represents the number of captured frames
and NL represents the number of identified landmarks (i.e.,
68 as per Kazemi et al. based algorithm). Therefore, in the
proposed pipeline the whole set of landmarks was used making
the proposed method more robust than the version reported in
Trenta et al. (2019). We did a test in a scenario where the driver
is wearing sunglasses. While the Trenta et al. (2019) method is no

longer applicable, our approach continues to work by presenting
overlapping performances (see experimental results session for
more details). Furthermore, it must be said that the Trenta et al.
(2019) method is not applicable to the reconstruction of the
driver’s pressure level (see next paragraphs) due to the reduced
number of landmarks. Moreover, the usage of a PPG sensing
device emitting at near-infrared spectrum allowed to have a
native PPG signal more detailed than that obtained using green
light (as in Trenta et al., 2019) and that is for some specific
characteristics implicit in the physiological process of the signal
formation (Schmidt, 1989; Kurian et al., 2014; Dastjerdi et al.,
2017; Conoci et al., 2018; Rundo et al., 2019d; Vinciguerra et al.,
2019).

Once the representative landmark dynamics of the driver
have been identified, we proceed analysing the so collected
descriptors time-series ℓi(tk, xli, yli) in order to correlate their
intensity temporal dynamics with the underlying cardiac activity.
The proposed method does not require high frame-rate camera
devices as for the method to which it is inspired (Littler et al.,
1973). It requires a normal commercial vision device having a
framerate in the range ≥40 fps. To model the aforementioned
relationship between face landmarks and the cardiac activity
of the analyzed driver, the authors propose two deep learning
frameworks: one based on the usage of Deep Long Short-Term
Memory (D-LSTM) architectures and the other one based on
the usage of 1D Temporal Deep Dilated Convolution Neural
Network (1D-TDCNN) network. Moreover, in order to improve
the robustness of the proposed safety assessment pipeline, we
introduce a classical Deep Convolutional Neural Network (D-
CNN) for car driver’s eyes tracking to be correlated with level of
attention or drowsiness. In the following sections, some details of
the proposed framework will be outlined.

5.3. The Deep Learning Framework
As described in the previous section, the proposed Deep Learning
framework consisted of two parts: (i) a deep architecture (D-
LSTM or 1D-TDCNN) employed to classify driver’s PPG signal
or in case it is no longer available, the driver landmarks dynamics
ℓi(tk, xli, yli) retrieved from the Vision2PPG Reconstruction
pipeline, (ii) a Depp CNN used to perform eyes-based visual
classification of the car-driver drowsiness. In the following
subsections, the authors proceed to the scientific description of
each block of the proposed Deep Learning pipeline.

5.3.1. The Car Driver Landmarks Deep Classifier
As introduced, we propose two deep learning basic solutions
to correctly classify the driver visual landmarks and correlate
them with such PPG features (specifically: the extreme points
of the PPG signal). The first setup uses ad-hoc Deep Long
Short-TermMemory (D-LSTM) framework. In particular, our D-
LSTM network is based on Vanilla architecture, firstly proposed
by Hochreiter and Schmidhuber (1997). As mentioned, the
authors have already used such LSTM-based architecture to
address similar automotive application with respect to what it is
herein described (Trenta et al., 2019). Moreover, vanilla D-LSTM
architectures have been largely employed in the automotive
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FIGURE 7 | The proposed enhanced Motion Magnification pipeline.

FIGURE 8 | A prototype of the LSTM cell.

field (Monte-Moreno, 2011; Koh et al., 2017; Vinciguerra
et al., 2017). We remark that in this contribution, the authors
significantly improved the approach previously described in
Trenta et al. (2019). Specifically, the proposed approach allows
to better reconstruct the PPG signal (more extreme points) and
consequently improves the performance in terms of drowsiness
classification. Furthermore, the proposed approach allows to

estimate the corresponding level of blood pressure. In the
next paragraphs, more details about the performance and
benchmarking of the proposed approach. Let’s introduce the
designed deep platform. The proposed D-LSTM architecture
is composed of one input layer, two hidden layers and one
output layer. In order to significantly improve the classification
performance, the input layer was designed with 64 input units
and, consequently, the two hidden layers with 64 and 128 cells,
respectively. Finally, the output layer, that consists in 1 cell, will
provide the predicted PPG samples that will be used to determine
the extreme points m1,m2,m3,m4. In Figure 8, we reported the
basic unit structure of the used D-LSTM. The mathematical
model which represents the learning model of the cell is reported
as follow:

ft = σ (Wf •
[
ht−1, xt

]
+ bf (2)

it = σ (Wi • [ht−1, xt]+ bi (3)

C̃t = tanh (WC • [ht−1, xt]+ bC) (4)

Ct = ft ∗ Ct−1 + it ∗ C̃t (5)

ot = σ (Wo • [ht−1, xt]+ bo (6)

ht = ot ∗ tanh (Ct) (7)
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From Figure 8, it is clear that given xt as input vector, the
previous output cell ht−1 as well as the previous cell memory
Ct−1, the current cell output ht and the current cell memory
Ct , are suitable to determine what information the D-LSTM has
to be stored. Equations (4)–(7) allows to model the behavior
of the proposed D-LSTM. In order to improve the overall
performance, a batch normalization and dropout layer have
been added to the output of each LSTM layer. Our model was
trained with an initial learning rate of 10−3, a batch size set
to 512 and with the maximum number of training epochs set
to 200. During the training-calibration phase of each recruited
driver subject, the suggested Deep LSTM is able to learn the
correlation there is among the selected facial landmark time-
series ℓi(tk, xli, yli) and the corresponding sampled PPG signal.
The designed Deep LSTM pipeline will produce in output
the predicted PPG waveforms from which the extreme points
m1,m2,m3,m4 will be detected as reported in Figure 6. After
several tests we found that not all the identified landmarks are
correlated with the subject’s cardiac activity and then in order to
obtain acceptable performances, in terms of reconstruction of the
PPG signal features, only a subset of landmarks can be processed.
Furthermore, thanks to the implemented D-LSTM architecture
we have verified that a more simple composite landmarks signal
can be used for addressing the needed PPG reconstruction task.
Specifically, we perform the following computation:

µℓ (tk) =
1

NL

NL∑

j=1

ℓj

(
tk, xl j, ylj

)
∀ tk (8)

The so computed (properly normalized) signal µℓ(tk) will be
given as input of the designed D-LSTM. Consequently, the
architecture will be trained to find the correlation between
the input signal µℓ(tk) and the corresponding PPG signal.
Figure 9 shows the overall scheme of the proposed D-LSTM.
Basically, the extreme points m1,m2,m3,m4 for each predicted
PPG waveforms (see Figure 6 for more details) are computed by
performing the same analysis applied by thementioned PPG-PRS
algorithm (Rundo et al., 2018b) i.e., by analyzing the first and
second derivative of the D-LSTM estimated PPG signal.

The second analyzed deep architecture that we have
implemented to correlate the visual features and the
corresponding PPG signal, is based on the use of a temporal
deep architecture. Specifically, ad-hoc 1D Temporal Deep
dilated Convolutional Neural Network (1D-TDCNN) has
been developed (Zhao et al., 2019). The main building block
consists of a dilated causal convolution layer that operates
over the time steps of each sequence (Zhao et al., 2019). The
proposed 1D-TDCNN includes multiple residual blocks, each
containing two sets of dilated causal convolution layers with
the same dilation factor, followed by normalization, ReLU
activation, and spatial dropout layers. Furthermore, a 1 × 1
convolution is applied to adapt the number of channels between
the input and output. Specifically, we implemented a 1D-
TDCNN composed of 25 blocks with a downstream SoftMax
layer. Each of the deep blocks comprise a dilated convolution
layer with 3 × 3 kernel filters, a spatial dropout layer, another

dilated convolution layer, a ReLU layer, and a final spatial
dropout. The dilation factor size starts of a factor equal to
2 and it will be increased for each block till the value of 16.
As for LSTM based solutions, the so-designed 1D-TDCNN
output represents predicted extreme points of the PPG signal.
The following Figure 10 shows the proposed 1D-TDCNN
based solution.

To validate the effectiveness of the proposed Deep pipelines
in reconstructing such features of the original PPG signal, we
computed the Fast Fourier Transform (FFT) of a signal obtained
through the difference between the PPG reconstructed minimum
points (Trenta et al., 2019). As described in the introductory part
of this contribution, the HRV monitoring is one of the classic
structured physiological method for determining the drowsiness
level of a subject. As widely confirmed in scientific literature,
the HRV can be computed performing a proper Fast Fourier
Transform (FFT) of a differential physiological signal obtained
from ECG i.e., by means of the distance R-Peak to R-Peak as
well as from PPG through the distance of the minimum points
of two consecutives waveforms (Lee et al., 2011; Rundo et al.,
2018b; Trenta et al., 2019). Therefore, a well robust measurement
of HRV of a subject (car driver in our application) can be
obtained by computing the FFT spectrum of the PPG based
physiological differential signal. In case of the PPG signal is
unavailable the predicted PPG minimum points reconstructed
by Vision2PPG block will be used. Once the HRV is computed,
by means of classical analysis based on the usage of the HF
(High-Frequency power), LF (Low-Frequency power) and the
LF/ HF ratio, the drowsiness of a subject is easily detected and
monitored (Lee et al., 2011, 2019; Choi et al., 2017; Deng and
Wu, 2019). More details about the performance validation of
the proposed deep pipelines will be reported in the experimental
results section.

As soon as the proposed Deep architecture -both D-LSTM
either 1D-TDCNN- has learned the correlation there is among
the driver’s facial landmarks and extreme points of the relative
PPG signal, the training-calibration phase will be dropped, and
therefore the system will work feed-forward. The calibration
phase of the whole described pipeline requires a 15/20 s of
PPG signal (the proposed sensing device is able to execute an
acquisition at 1 KHz) with the relative visual frames (acquired at
50 fps) and it will be needed to perform only at once. Obviously,
this system will be enabled by the driver hardware control
unit whenever the physiological signal of the driver will not
be detected for some reasons by the PPG sensors embedded in
the car’s steering. Therefore, compared to the previous approach
proposed by the authors in the contributions (Rundo et al.,
2018a,b, 2019d; Trenta et al., 2019), the method herein described
allows to reconstruct more discriminating PPG features (the four
extremal points of the PPGwaveform against only theminimums
of the previous version). Furthermore, the Vision2PPG pipeline
with the downstream classifier is much more robust than in
scenarios where some visual landmarks are no longer available.
By using a 1D TDCNN, the long-range temporal dependencies
of the PPG signal are better treated allowing an effective changes
detection in the state of attention induced by the autonomic
nervous system of the driver. In addition, the proposed pipeline
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FIGURE 9 | The proposed D-LSTM pipeline for PPG features estimation. The corresponding extreme points are highlighted with black circle and “x” symbol in the

predicted PPG waveforms (red signal).

FIGURE 10 | The proposed 1D-TDCNN pipeline for PPG features estimation. The corresponding extreme points are highlighted with black circle and “x” symbol in the

predicted PPG waveforms (red signal).

provides features that allow to also obtain a less invasive and cuff-
less assessment of the driver’s pressure level not possible in the
solutions previously proposed in Trenta et al. (2019).

5.3.2. The Car Driver Eye’s Tracking Trough Deep

CNN Pipeline
In order to have a simultaneous safety monitoring pipeline
without technology overlap with the previously described blocks,
the authors implemented a further assisted pipeline based on
the usage of ad-hoc Deep Convolutional Neural Network (D-
CNN). The proposed 2D D-CNN network is quite simple and

includes three convolutional layers each of which has a ReLU
activation layer (with batch-normalization), such 2 × 2 max
pooling layers except for the last convolutional layer. The first
convolutional layer performs 32 operations with 3 × 3 kernel
filters, where the second and the third shows 64 and 128 kernel
filters of 3 × 3, respectively. A stack of densely connected layers
and Softmax complete the proposed D-CNN pipeline in order
to perform two classes classification of the input visual data
i.e., drowsy/wakeful status of the analyzed driver. Fine-tuning is
done for 100 epochs using Adam optimizer and cross entropy
as loss function. To carry out the experiments, we also set the
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learning rate to 0.001 and the batch size to 32. In Figure 11,
the proposed D-CNN architecture. The input visual frame of the
D-CNN is a patch depicting a single eye (77 × 77 resolution),
which we segment from the driver’s face using the algorithm
proposed in Viola and Jones (2001). This algorithm does not
require an annotated images dataset to work and can it be easily
carried on embedded hardware architectures while maintaining
remarkable performance both in segmentation and in execution
speed. More details in Viola and Jones (2001). The proposed
full D-CNN has been designed in order to get it portable to
such embedded hardware solution ASIL-B certified i.e., STA1295
Accordo5 MCU3 as described in this work. Specifically, the D-
CNN (as well as the previous D-LSTM/1D-TDCNN pipelines)
will be hosted in the STA1295 Accordo5 embedded automotive
grade DUAL ARM A7 which includes a 3D-GFX accelerator cell
suitable for this kind of processing (Rundo et al., 2019a). In
Figure 12, we reported a scheme of the overall platform. All input
data (PPG samples and visual frames) will be properly stored
in such buffers allocated in the EMI memory of the STA1295
MCU platform.

5.4. The Car-Driver Blood Pressure
Estimation Pipeline
The application described in this section regards the monitoring
of the driver blood pressure as strongly correlated to the driving
safety and driver attention level. We propose a novel solution
for measuring blood pressure from such features of the PPG
signal as well as from the corresponding facial video frames of
the subject by using the proposed Vision2PPG reconstruction
pipeline (in case the PPG signal unavailability). We remark that
our proposed blood pressure estimation pipeline works both
in the scenario in which the PPG is unavailable and in the
case in which the physiological signal was correctly sampled by
the sensing probe. As described, by means of the Vision2PPG
pipeline, we will obtain the extreme points of the subject’s
PPG signal. From these predicted data, by means of a suitably
configured Shallow Neural Network (Rundo et al., 2019c), the
authors are able to discriminate normal blood pressure subjects
from those who had pressure values beyond the norm. The
blood pressure estimation pipeline has been designed in order
to be ported as firmware running in the STA1295 Accordo5
embedded automotive processor. Once the set of characteristic
extreme points of the PPG waveforms have been collected (by
means of the Vision2PPG reconstruction pipeline or from native
PPG signal), we are able to characterize the subject’s cardiac
activity (systole, dicrotic, and diastole phases) on which the level
depends the blood pressure (Rundo et al., 2018b). Let’s formalize
this application. In Figure 6, we have reported an instance of
compliant PPG waveform with highlighted extreme points mx.
For each pair of PPG waveforms PPGj, PPGj+1 we define the
following indicators:

ϕ = [m
j
1,m

j
2, m

j
3,m

j
4, dx

j
i, dy

j
i,mAIJ]∀ j = 1..(NPPG
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m
j
i = (x

m
j
i
, y

m
j
i
) ,∀ j = 1..(NPPG

− 1) ; i = 1, 2, 3, 4 (10)

dx
j
i = x

m
j+1
i

− x
m
j
i
, ∀ j = 1..(NPPG

− 1) ; i = 1, 2, 3, 4 (11)

dy
j
i = y

m
j+1
i

− y
m
j
i
∀ j = 1..(NPPG

− 1) ; i = 1, 2, 3, 4 (12)

mAIj = ((y
m
j
3
− y

m
j
1
)− y

m
j
4
)/(y

m
j
3
− y

m
j
1
) (13)

where mAIJ is a modified version of the so-called Augmentation
Index, usually computed for measuring the arterial stiffness
(Vavrinskỳ et al., 2010) while NPPG represents the number of
estimated PPG waveforms. The other indicators reported in the
Equations (9)–(12) are able to characterize cardiac cycles and,
therefore, the relative blood pressure level. The input of the
above-mentioned Shallow Neural Network (SNN) is represented
by the elements of the vector ϕ. The SNN is a Fully Connected
Multi-Layers Network with two hidden layers of 500 and 300
neurons and a binary output. It was designed with the target
of learning the correlation there is among the so computed
input elements in ϕ and the associated diastolic and systolic
blood pressure values. Furthermore, the aforementioned SNN
was trained with the Scaled Conjugate Gradient backpropagation
(SCG) algorithm (Rundo et al., 2019c). As output, the SNN
framework will produce a value that may be treated like a
discriminating flag able to differentiate the subject showing
normal pressure values (0) with respect to the hypertensive or
hypotensive subject (1). Specifically, we calibrate the system in
order to detect if the subject has a pressure level that is on average
15% higher or lower than a reference value. The set 120/80,
which indicates 120 mmHg for systolic pressure and 80 mmHg
for diastolic pressure, has been considered normal blood pressure
values (as confirmed by the team of physiologists who assisted
us in this study). On the other hand, higher or significantly
lower (15%) values are considered anomalous. It should be noted
that the proposed system is able to monitor and discriminate
even different pressure levels (with respect to the classic 120/80
mmHg) requiring a different and adequate calibration. This is to
cover the cases of moderate hypotension/hypertension affected
subjects who physiologically present a normal blood pressure
level a little different from 120/80 mmHg. For these subjects,
the pipeline calibration phase will refer to different reference
pressure values. In any case, during the calibration phase of
the Vision2PPG recognition system, the training of the SNN
block will be performed in order to correlate the blood pressure
(reference value and current value) and PPG levels of the subject
preparing to drive. The proposed pipeline has been tested and
validated in one of the most interesting automotive scenario: the
pedestrian tracking system.

5.5. The Deep Network With Criss-Cross
Attention for Pedestrian Tracking System
The tracking of pedestrians while driving is certainly one of
the most important aspects in the field of safety automotive
requirements. The detection and subsequent monitoring of
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FIGURE 11 | (A) The proposed D-CNN architecture. (B) Some instances of D-CNN input visual data.

FIGURE 12 | The STA1295A Accordo5 platform hosting the D-LSTM Vison2PPG Reconstruction pipeline as well as D-CNN architecture.

pedestrians in the driving scene allows the automatic driver
assistance system to continuously validate if the driving dynamics
and the level of attention are compatible with the presence of
pedestrians in the scene. Many authors have investigated this
relevant issue by analyzing the advantages inherent in the use of
deep learning architectures (Tian et al., 2015; Song et al., 2018;
Jeon et al., 2019; Bhola et al., 2020). The authors investigated
several interesting object detection and tracking architecture
backbones to be adapted to pedestrian tracking. Specifically,
the researchers found that deep learning systems embedding
attention mechanisms significantly increase the performance in
classification and segmentation of the underlying backbones. For
these reasons, we found it useful to implement an innovative
network that included the recent self-attention context through
the use of Criss-Cross layers (Huang et al., 2019). More in detail,
for each source image/feature pixel, an innovative Criss-Cross

attention module computes the contextual information of all
the correlated pixels on its Criss-Cross path. This attention pre-
processing combined with further recurrent operations allow
the Criss-Cross method to leverage the full-image dependencies
during the learning session of the deep network (Huang et al.,
2019). Let us formalize the attention processing embedded in
the Criss-Cross layer. Given a local feature map H ∈ RC×W×H

where C is the original number of channels while W × H
represents the spatial size of the generated feature map trough
a Deep Convolutional Network. The Criss-Cross layer applies
two preliminary 1 × 1 convolutional layers on H in order to

generate two feature maps F1 and F2, which belong to RC
′×W×H

and in which C’ represents the reduced number of channels due
to dimension reduction with respect to original (C). Let define an
Affinity function suitable to generate the Attention-Map AM ∈

R(H+W−1)×(W×H). The affinity operation is so defined. For each

Frontiers in Neuroinformatics | www.frontiersin.org 14 July 2021 | Volume 15 | Article 667008

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Rundo et al. Deep NeuroVision Embedded ADAS

position u in the spatial dimension of F1, we extract a vector
F1,u ∈ RC. Similarly, we define the set �u ∈ R(H+W−1)×C by
extracting feature vectors from F2 at the same position u, so that,

�i,u ∈ RC
′

is the i-th element of �u. Taking into account the
above operations, we can define the introduced Affinity operation
as follows:

δAi,u = F1,u�
T
i,u (14)

where δAi,u ∈ D is the affinity potential i.e. the degree of correlation
between features F1,u and �i,u, for each i = [1,...,H + W - 1], and
D ∈ R(H+W−1)×(W×H). Then, we apply a softmax layer on D
over the channel dimension to calculate the attention map AM .
Finally, another convolutional layer with 1 × 1 kernel will be
applied on the feature map H to generate the re-mapped feature
ϑ ∈ RC×W×H to be used for spatial adaptation. At each position
u in the spatial dimension of ϑ , we can define a vector ϑu ∈ RC

and a set8u ∈ R(H+W−1)×C. The set8u is a collection of feature
vectors in ϑ having the same row or column with position u. At
the end, the final contextual information will be obtained by an
Aggregation operation defined as follows:

H′
u =

H+W−1∑

i=0

Ai,u
M8i,u +Hu (15)

where H′
u is a feature vector in H′ ∈ RC×W×H at position u

while Ai,u
M is a scalar value at channel i and position u in AM .

The so defined contextual information H′
u is then added to the

given local feature H to augment the pixel-wise representation
and aggregating context information according to the spatial
attention map AM . These feature representations achieve mutual
gains and are more robust for semantic segmentation. Anyway,
the criss-cross attention module is able to capture contextual
information in horizontal and vertical directions but the
connections between one pixel and its around is not processed.
To overcome this issue, the authors firstly introduced the Criss-
Cross methodology proposed a Recurrent Criss-Cross processing
in which classic Criss-Cross operations can be unrolled into R
loops. We defined R = 2 for our purpose as suggested by the
original description (Huang et al., 2019).

The proposed Criss-Cross layer has been embedded in
the Mask-R-CNN architecture used as pedestrian detection,
segmentation and tracking. The architecture of Mask-R-CNN
has been descripted in He et al. (2017). The Mask-R-CNN
architecture extends previous detection and segmentation similar
solutions such as Fast-R-CNN or Faster R-CNN by adding
a branch-pipeline for predicting an object mask in parallel
with the existing pipeline for bounding box recognition (He
et al., 2017). One of the main parts of the Mask-R-CNN
architecture is the Deep convolutional network used for the
feature maps extraction. For this purpose, different backbones
have been tested in the scientific literature (He et al., 2017,
2020). We denote the used backbone architecture using the
nomenclature network-depth-features (He et al., 2017, 2020).
In this proposed work, we used the Mask-R-CNN with a
backbone based on a 2D ResNet-101 (He et al., 2017, 2020) in
which we embedded, in the last block, a layer of self attention

based on the aforementioned Criss-Cross methodology. The
following Figure 13 shows the overall scheme of the proposed
Criss-Cross enhanced Mask-R-CNN and some instances of the
detected and segmented pedestrians both with red bounding-
boxes and without. This architecture performed very well as
we reached a test-set performance mIoU of 0.695 over CamVid
dataset which is in line with the performance of other more
complex architectures (He et al., 2017, 2020). Obviously, it is
reiterated that the target of the work herein described in this
manuscript is not to propose an architecture that outperforms the
others in relation to the detection, tracking and segmentation of
pedestrians but rather a system that detects the level of driving
safety in risky scenarios. This proposed enhanced Criss-Cross
architecture has been used as it presents an excellent trade-
off between segmentation performance and complexity for an
embedded system (as mentioned, this pipeline is being ported
over the STA1295MCU system). Furthermore, theMask-R-CNN
also allows us to obtain the bounding-box of the pedestrian which
we will need to determine the distance from the driver’s car.
Quite simply, the height and width of the segmentation bounding
box of each segmented pedestrian will be determined. Only
bounding-boxes that have at least one of the two dimensions
greater than two heuristically fixed thresholds (L1 and L2,
respectively for length and width) will be considered salient
pedestrians, i.e., pedestrians thatmust be considered by the driver
when choosing the driving dynamics. The other pedestrians will
be considered non salient and therefore not involved in safety
level assessment. This so computed distance assessment will be
used in the next block of the proposed pipeline.

5.6. The Driving Safety Monitoring System
We proposed an innovative pipeline for monitoring the car
driving safety by means of visual and physiological data analysis.
Specifically, the designed pipeline is able to combine the driver’s
physiological and visual data sampled in ad-hoc implemented
sensing framework embedded in the car. We developed a system
that was non-invasive for the driver, addressing the classic
critical issues based on the usage of such physiological bio-signal
difficulty to sample in a vehicle (ECG or EEG) or which require
such sensors to be worn by the driver. For these reasons we have
implemented a solution based on the usage of less-invasive car
driver’s PPG signal processing.When that PPG signal is no longer
available for some reason, a parallel pipeline based on the usage of
car driver visual data will be able to reconstruct specific features
of the missed driver’s PPG signal. From these estimated features
we can reconstruct the level of driving safety by monitoring the
driver’s fatigue level i.e., a degree of attention through the analysis
of Heart Rate Variability (HRV) and tracing the correlated blood
pressure dynamics. Moreover, in order to increase the robustness
of the proposed approach, a further visual driver face processing
has been implemented trough ad-hocD-CNN which will provide
a classification of the car driver attention.

The proposed application use-case is mainly aimed at driving
in risky conditions, for instance, in scenarios in which one or
more pedestrians are moving in the driving scene. By means of a
modified Mask-R-CNN network with an attention layer through
Criss-Cross methodology, we are able to detect and segment
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FIGURE 13 | The proposed Pedestrian Tracking System based on Criss-Cross enhanced Mask-R-CNN.

FIGURE 14 | The overall scheme of the proposed solution with a detail of the designed Driving Safety Detection System.
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pedestrians in different configurations. Furthermore, we are able
to obtain bounding-box segmentation and tracking which will
allow us to estimate the distance of the pedestrian from the
car. A comprehensive scheme of the proposed driving safety
estimation architecture is showed in Figure 14. In this scheme
is highlighted a block called Driving Safety Detection System
(DSDS) which will process the outputs obtained by each of the
previously described pipelines, specifically, the assessment of the
driver’s attention level (HRV analysis), the driver’s blood pressure
level (SNN output), the classification of the driver attention level
performed by the implemented D-CNN and the distance of the
detected and segmented pedestrians from the car. In detail, the
DSDS will trigger an acoustic alert-signal, with different intensity
according to the risk level, if one of the following setup will
come true:

• High Risk Level (Alert-Signal with High intensity) HRV shows
low attention level AND (the SNN output shows abnormal
blood pressure OR D-CNN shows low attention level) AND
the Mask-R-CNN identifies such salient pedestrians;

• Medium-Low Risk Level (Alert-Signal with Medium-Low
intensity) HRV shows low attention level OR D-CNN shows
low attention level AND the Mask-R-CNN identifies such
salient pedestrians;

The acoustic signal is managed by the STA1295A Accordo5
Audio sub-system which will host the DSDS software
implementation (see Figure 12). The system will therefore
provide an assessment of the driving safety in the analyzed
use-case: pedestrian tracking. All the developed sub-systems of
the proposed pipeline are ongoing to be ported over the STA1295
Accordo5 Dual ARM Cortex MCUs platform.

5.7. Dataset
Under the supervision of physiologists, a dataset of selected
and monitored subjects was collected. More in details, for
each recruited subject we performed an acquisition of the PPG
signal simultaneously with systolic and diastolic blood pressure
measurements and contextually with a session of face video-
recording. All data collections were conducted by inducing
in both subjects such states of high attention and states of
low attention that the physiologists who supervised the clinical
study properly induced. More in details, for each recruited
subject the EGG signal was sampled as well as the EEG
time-series from which the physiologist analyze the dynamic:
alpha waves representative of low attention status or beta
waves representative of medium-high attention level (Guo and
Markoni, 2019; Rundo et al., 2019b). Participants were recruited
after signing the informed consent form provided by the Ethical
Committee CT1 (authorization n.113/2018/PO). The dataset
(further recruitments with respect to the work described in
Rundo et al., 2018b, 2019b) is composed of 71 subjects (males
and females, min age: 20 years, max age: 75 years) splitted into
45 subjects having a less or equal to 120/80 mmHg and 26
subjects having a blood pressure higher than 120/80 mmHg both
in physiological and pathological state.

To carry out our experiments, we paid attention to the subjects
with an arterial pressure greater or lower than 15% in average

with respect to normal values (configured during the training-
calibration phase of the Vision2PPG reconstruction pipeline for
each subject). In case of hypotensive or hypertensive subjects,
we have adjusted the reference blood pressure accordingly. The
overall study was carried out in accordance with the protocol
of the Declaration of Helsinki. For each subject, the blood
pressure measurements were certified by means of a medical
sphygmomanometer device. The PPG was sampled by the
proposed sensing device at 1 kHz frequency. For retrieving
visual data, we have used a commercial color camera device
having max resolution of 2.3 Mpx and 50 fps as frame-rate. The
collected minimum pressure value is around 98/70, while the
maximum pressure value is 158/90. Each measurement session
lasts 10 min, 5 of which in a state of high attention and 5 in
a state of low attention. The level of adequate attention has
been induced by performing mathematical calculations, reading
anecdotes or by viewing representative driving scenarios where
high driver attention is required (car overtaking, changing lane,
braking, etc.). During this phase the subjects’ EEG signal was
sampled, confirming the presence of beta waves (Rundo et al.,
2019b). Similarly, for low attention measurement sessions in
which subjects were asked to relax, close their eyes for a few
moments, listen slowmusic that induces states of relaxation, thus
inducing a decrease in heart rate and the simultaneous presence
of typical visual expressions showing drop in attention such as the
decrease in the frequency of eye blinking. Only when the EEG
showed the dynamic of alpha waves, the data (PPG and visual)
were acquired so as to have certainty of the low attention state
of the analyzed subject. Same approach for high attention states
corresponding to beta waves. We divided the dataset as follows:
70% of the data has been used for the training while the remaining
30% for validation (15%) and testing (15%). We have run our
experiments as well as training and testing of the proposed
deep learning architectures in MATLAB full toolboxes rel. 2019b
environment running in a server having an Intel 16-Cores and
NVIDIA GeForce RTX 2080 GPU.

6. RESULTS

In order to validate the proposed composed approach we have
tested each of the proposed blocks i.e., the PPG-basedHRVdriver
drowsiness detection as well as the driver blood pressure level
estimation and finally the visual drowsiness estimation based on
D-CNN processing and the pedestrian detection, segmentation
and tracking. About the proposed PPG based HRV based
drowsiness detection pipeline, the following Table 1 reports the
overall testing accuracy of the approach as well as accuracy for
each classified class.

A description of the hardware and software system
implemented to obtain these performances is reported. Four
PPG sensing probes have been embedded in the car steering
with the characteristics described in the introductory section of
this paper having near infrared emission LEDs at 850 nm. In
addition, a camera with characteristics of 50 fps and a maximum
resolution of 2.3 Mpx has been mounted in the base of the
steering wheel and directed to sample the driver’s face. As
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TABLE 1 | Car driver HRV drowsiness monitoring performance.

Method Overall accuracy (%) Class 1 drowsy driver accuracy (%) Class 2 driver accuracy (%)

Proposed LSTM 95.07 95.77 94.36

Proposed 1D-TDCNN 95.67 96.33 94.78

Trenta et al. (2019) with

LSTM

94.43 95.10 93.77

Rundo et al. (2019c) 93.66 95.77 91.54

MLP 87.94 87.55 88.33

SVM 88.05 86.98 89.11

ResNet-50 93.90 93.85 93.95

TABLE 2 | Car driver’s face Landmarks detection methods: Robustness comparison.

Method Overall accuracy car driver NS (%) Overall accuracy car driver WS (%) Class 2 accuracy car Driver WE (%)

Trenta et al. (2019) with

LSTM

94.43 0.00 70.16

Proposed 1D-TCNN 95.67 92.31 93.98

(NS, normal scenario; WS, wearing sunglasses; WE, wearing eyeglasses).

TABLE 3 | Blood pressure (BP) performance.

Method Overall accuracy (%) Class 1 normal BP accuracy (%) Class 2 abnormal BP accuracy (%)

Proposed 90.14 88.88 92.30

Rundo et al. (2019a) 88.73 91.11 84.61

Trenta et al. (2019) with

LSTM

<50 <50 < 50

MLP 89.47 87.62 91.33

SVM 82.24 81.98 82.05

ResNet-50 90,01 89.02 91.01

described in the Vision2PPG reconstruction section, the vision
system has been calibrated to reconstruct the PPG features
processed as per Equations (9)–(13). The driver’s PPG signal
data sampled by the sensing probes will be then converted by
the analog-to-digital converters (ADCs) embedded in the SPC5x
Chorus MCU used to acquire and pre-process the raw PPG
signal from the sensors. Furthermore, the so collected raw PPG
signal will be stabilized and filtered in the range 0.5–10 Hz by
means of the previously introduced PPG-PRS pipeline running
as firmware in the mentioned embedded MCU. The visual
frames of the Vision2PPG block will instead be stored in the
DRAM of the embedded system based on STA1295A Accordo5
MCU in which the landmarks detection system based on the
Kazemi and Sullivan approach is running. Therefore, the results
reported in Table 1 were obtained by creating an application
use-case lasting 45 minutes of acquisition of different scenarios,
specifically ones in which the PPG signal was available (the driver
placed the hand over the PPG probes embedding on the steering)
and another ones in which this PPG signal was no longer
available and therefore the Vision2PPG reconstruction block
start the reconstruction of the PPG features. The PPG signal is

sampled at a frequency of 1 Khz. The used ADCs embedded
in the SPC5x CHORUS have a resolution of 12 bits. The set
of PPG features have been reconstructed by Vision2PPG block
through the usage of both D-LSTM (three layers of 64,64,128
cells trained with an initial learning rate of 10-3, a batch size set
to 512 and with the maximum number of training epochs set
to 200) and 1D-TCNN architectures (25 blocks -convolutions,
normalization layer, spatial dropout, ReLU, residual block-,
kernel 3 × 3, dilated convolutional with factor starting from
2 to 16, mini Batch Size of 1; initial learning rate equal to
0.001; and a Dropout Factor rated of 0.1). A comparison with
similar approaches based on different methodologies have been
reported in Table 1. More specifically, we have compared our
architecture with our previous solution described in Rundo et al.
(2019c) and Trenta et al. (2019) as well with an approach based
on the usage of Support Vector Machine (SVM), Multi-layer
Perceptron (MLP having an hidden layer of 600 neurons and
trained with a more performer Levenberg-Marquardt algorithm)
and finally with a ResNet-50, arranging the input landmarks in a
224 × 224 matrix. As highlighted from the reported benchmark
comparison results, the method we propose and based on the

Frontiers in Neuroinformatics | www.frontiersin.org 18 July 2021 | Volume 15 | Article 667008

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Rundo et al. Deep NeuroVision Embedded ADAS

use of deep 1D-TCNN network outperforms the others not only
in terms of accuracy but rather in robustness as can also be
seen from Table 2. Specifically, the method we propose presents
a noteworthy advantages in terms of robustness compared to
the previous version (Trenta et al., 2019) in real scenarios in
which the driver wears sunglasses or eyeglasses (highly probable
scenarios). Furthermore, in terms of computational complexity
and therefore implementation costs, our solution based on
1D-TDCNN networks shows a lower complexity than the
architectures that show comparable performances: ResNet-50
has a size of 98 Mb against the 42 Mb of our 1D-TDCNN.
This aspect is very important considering that this solution
must be applied in the automotive field over the embedded
platforms mentioned in the previous sections, confirming an
undoubted advantage in terms of sustainability costs with greater
performance in terms of accuracy. The accuracy reported in
Table 1 was obtained by analyzing the HRV associated with the
features of the PPG signal thus processed, by analyzing the HF,
LF, and HF/LF ratio indicators (see section 5.3.1). We remark
that most significant advantage of the proposed method is non-
invasiveness in that it does not require the driver to wear any
sensor nor does it requires the driver necessarily places the hand
on the part of the steering in which the PPG sensors are housed.
Similarly, in the same dataset, we validated the reconstruction of
the driver’s blood pressure level through the SNN network. For
this testing session, we used the same aforementioned hardware
setup of the PPG sensing probes. The collected PPG features
(both native from sensors and reconstructed from Vision2PPG
block) will be fed to the implemented SNN Fully Connected
Multi-Layers Network having 64 neurons as input layer joined
with two hidden layers of 500 and 300 neurons and a binary
output. The network was trained with Scaled Conjugate Gradient
backpropagation (SCG) algorithm and compared with other
methodologies such as MLP, SVM, ResNet-50, and previous
method described in Trenta et al. (2019). The validation scenario
consists in constantly monitoring the subject’s blood pressure
level (by means of a digital blood pressure detection device
embedded in the driver’s arm) and detecting the classification
reconstructed by our SNN output system (output in the range
0–0.5 means pressure within the norm while values above 0.5
indicate abnormal blood pressure of the driver). Once again, an
examination of the benchmark comparison values reported in
Table 3 confirms the evident advantages of the proposed pipeline
as it not only outperforms in accuracy our previous solution
reported in Rundo et al. (2019a) and the other methodologies
tested but, in terms of complexity is significantly lower than a
solution based on deep learning (ResNet-50). Furthermore, the
pipeline herein described allows to overcome the raised limit of
the previous version reported in Trenta et al. (2019) which had
no significant accuracy in the classification of the subject’s blood
pressure level.

A comparison with another approach (Rundo et al., 2019c)
is reported. As evident from comparison data reported in
Table 1, the proposed method performs very well (both by
using the D-LSTM and 1D-TDCNN backbone) in that it shows
overall accuracy and accuracy for each classified class slightly
greater to the compared methods. The significant advantage

FIGURE 15 | For the proposed D-CNN performance diagrams: (A) Training

and testing accuracy (B) training and testing loss.

of the proposed method is non-invasiveness in that it does
not require the driver to wear any sensor nor does it requires
the driver necessarily places his/her hand on the part of the
steering in which the PPG signal sensors are housed. Similarly,
in the same dataset, we validated the reconstruction of the
driver’s blood pressure level through the SNN network trained
with the features extracted from PPG signal (or from the
Vision2PPG reconstruction block). Also, in this case we have
compared our method with others reported in the literature
(Rundo et al., 2019a). From Table 3, the performance of the
proposed method is very promising as we are able to classify
normal-pressure subjects (with an accuracy of 88.88% with
respect to 91.11% showed by similar PPG based pipeline; Rundo
et al., 2019a) from those who instead have a pressure level
out of range (accuracy of 92.30%) with an overall accuracy
of 90.14% relatively outperforming with respect to the similar
methods based on PPG signal sampling. We tested the D-
CNN based pipeline for tracking and classifying the visual
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features extracted from the driver’s face during the measurement
sessions. Also in this case we have obtained an accuracy about
of 90% in the testing dataset confirming the robustness of the
proposed approach. In Figure 15, we show the loss and accuracy
related to the D-CNN learning and testing phase. Although
the target of this proposal is not the detection, tracking and
segmentation of pedestrians in the driving scene, we have still
validated the deep architecture we have developed by including
a Self Attention layer based on Criss-Cross processing in the
Mask-R-CNN network with ResNet-101 as the backbone. As
explained, that enhanced Mask-R-CNN was used as simple
application use-case for checking driving safety by mean of
the proposed pipeline. As introduced in the previous section,
we obtained in the testing phase a performance mIoU of
0.695 over CamVid dataset which outperforms other similarly
complex architectures described in the literature (He et al., 2017,
2020).

7. CONCLUSIONS AND DISCUSSION

In this study, we addressed the mentioned issue regarding the
estimation of driving safety by using a non-invasive and robust
methodology. Contrary to existing approaches, our proposed
method does not require contact with the driver or the necessity
to wear PPG sensors to collect the physiological signal. The
advantages of non-invasiveness are however accompanied by
overlapping (and sometimes even higher) performances than
those obtained by the classic methods which, however, require
the use of invasive sensing devices. The proposed multi-modal
approach that involves the use of visual and physiological
data and to correlate to each other (by means of Vision2PPG
reconstruction system) allows to obtain high fault tolerance
performance. The experimental results allow to be confident
about the applicability of the proposed Vison2Physio approach
in different scientific applications. The implemented pipeline is
ongoing to be ported to SPC5 Chorus based platform (PPG
sensing and processing) while the deep learning architectures
will be ported in the STA1295A Accordo5 embedded automotive
platform in which two ARM Cortex A7 and 3D GFX accelerator
hardware are able to host the developed software as firmware.
The embedded Operating System used for both applications is
ad-hoc YOCTO Linux distribution released for this specific kind
of application. The use-case analyzed in this proposal concerns
the intelligent tracking of pedestrians in a safe driving scenario.
However, the implemented approach can be successfully used
in several other automotive use cases. For instance, we have
implemented a safe driving application in which, through a deep
architecture based on Fully Convolutional Neural Network with
Self Attention, we are able to classify the level of risk of the driving
scenario and at the same time the driver drowsiness through
the PPG-based monitoring pipeline herein described (Rundo
et al., 2020a). Another automotive issue we have addressed
is the robust identification of the car driver. Through ad-
hoc intelligent pipeline based on the usage of PPG signal and
deep network, we have designed the so called “physiological

fingerprint” of the driver used for an effective identification
(Rundo et al., 2020d). Therefore the proposed method can
be generalized and applied in various automotive scenarios in
which it is necessary to characterize the level of attention of
the driver or in all the use-cases that deal with driving safety.
As future development, we plan to collect more data with the
aim of improving the effectiveness of the proposed approach.
Specifically, we will address further application in the automotive
field with special focus to autonomous driving andADAS systems
during low-light driving scenarios both inside and outside
the car.
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