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Introduction: Oocyte quality contributes to the development of an optimal embryo and
thus a successful pregnancy. The objective of this study was to analyse the association
between oocyte cohort quality and the follicular levels of growth hormone (GH), insulin-like
growth factor 1 (IGF1), 25-hydroxy vitamin D (25OHD), thyroid-stimulating hormone
(TSH), free triiodothyronine (fT3), free thyroxine (fT4) and antithyroid antibodies, as a
function of intracytoplasmic sperm injection (ICSI) outcomes.

Material and methods: We conducted a prospective comparative pilot study from
January 2013 to December 2017. 59 ICSI cycles constituted an abnormal oocyte cohort
(n=34 cycles, in which more than 50% of oocytes presented at least one morphological
abnormality) and a normal oocyte cohort (n=25 cycles, in which 50% or less of the oocytes
presented at least one morphological abnormality). GH, IGF1, 25OHD, TSH, fT3, fT4 and
antithyroid antibodies were measured in follicular fluid.

Results: The fertilisation rate was lower in the abnormal oocyte cohort (65.5% vs. 80%,
respectively, p=0.012). Oocytes’ proportion with at least one abnormality was 79.4% in the
abnormal oocyte cohort and 29.0% in the normal oocyte cohort. The mean number of
morphological abnormalities per oocyte was significantly higher in the abnormal oocyte
cohort. The follicular levels of GH (4.98 vs. 2.75 mIU/L, respectively; p <0.01) and IGF1 (72.1
vs. 54.2 ng/mL, respectively; p=0.05) were higher in the normal oocyte cohort. There was no
association with follicular levels of TSH, fT3, fT4, antithyroid antibodies, or 25OHD.

Conclusion: Oocyte cohort quality appears to be associated with follicular levels of GH
and IGF1.

Keywords: oocyte morphological abnormality, follicular fluid, intracytoplasmic sperm injection, growth hormone,
insulin-like growth factor 1, thyroid-stimulating hormone, thyroid hormones, 25-hydroxy vitamin D
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INTRODUCTION

Gamete quality is one of the many factors involved in the success
or failure of in vitro fertilisation (IVF). With the development of
the intracytoplasmic sperm injection (ICSI), a decoronized
oocyte’s nuclear maturity and morphological structure can be
assessed precisely. Oocyte quality contributes to the development
of an optimal embryo and thus a successful pregnancy (1).
However, 10 to 60% of the oocytes obtained after controlled
ovarian stimulation (COS) for IVF present morphological
abnormalities, such as diffuse cytoplasmic granularity, refractile
bodies, vacuoles, large perivitelline space, perivitelline debris,
irregular shape, and a fragmented or large first polar body (1–5).
These morphological abnormalities are not well understood but
may be caused by intrinsic factors (such as age and genetic defects)
and/or extrinsic factors (such as the stimulation protocol, oocyte
culture conditions, and nutrition) (1). Follicular fluid (FF)
provides the microenvironment for oocyte maturation (6). It
contains hormones with pleiomorphic effects involved in
ovarian folliculogenesis, oogenesis, and steroidogenesis. Various
studies have shown that growth hormone (GH), insulin-like
growth factor 1 (IGF1), thyroid-stimulating hormone (TSH),
and thyroid hormones [THs, e.g. free triiodothyronine (fT3) and
free thyroxine (fT4)] have an influence on ovarian function. GH
has both direct and indirect (IGF1-mediated) stimulatory effects
on folliculogenesis, oocyte maturation, and steroidogenesis (7, 8).
TH improves granulosa cell proliferation (9), inhibits apoptosis of
the latter (10), and contributes to steroidogenesis by increasing the
secretion of oestradiol and progesterone by granulosa cells (11,
12). More recently, it was reported that 1-25-hydroxy vitamin D
(1-25OHD) is a factor in ovarian folliculogenesis (13, 14) and
steroidogenesis (15).

The objective of the present study was to assess the putative
association between oocyte cohort quality in an ICSI programme
and follicular levels of GH, IGF1, 25-hydroxy vitamin D
(25OHD), TSH, fT3, fT4, anti-thyroperoxidase (TPO) antibodies,
and anti-thyroglobulin (TG) antibodies, as a function of the
ICSI outcomes.
MATERIALS AND METHODS

We conducted a prospective pilot study at a reproductive
medicine centre at Amiens-Picardie University Hospital
(Amiens, France) from January 2013 to December 2017. The
study protocol was approved by the local investigational review
board (Amiens, France; reference: RCB 2011-A00634-37). All
the study participants (couples participating in an ICSI
programme, regardless of the indication) provided their
informed consent. All the women were euthyroid at the time
when their ICSI programme started. The main inclusion criteria
were first or second ICSI cycle, age under 36 (for women) or 45
(for men), and a sperm concentration greater than 5x106/mL.
Patients with stage III/IV endometriosis and/or ovarian
endometrioma were excluded. We also excluded ICSI cycles
with less than 4 mature oocytes after decoronization.
Frontiers in Endocrinology | www.frontiersin.org 2
COS and IVF Protocols
Two COS protocols were used: a gonadotropin-releasing
hormone (GnRH) long agonist protocol and a GnRH
antagonist protocol.

The long agonist protocol involved pituitary downregulation
with a GnRH agonist (triptorelin acetate: Décapeptyl®, Ipsen
Pharma, France; 0.1 mg per day for 14 days, starting in the
midluteal phase), followed by the administration of recombinant
human follicle-stimulating hormone (rFSH: Puregon®,
Organon, France, or Gonal-F®, Merck Serono SAS, France) or
human menopausal gonadotropin (HMG, Menopur®, Ferring,
France), in combination with a GnRH agonist (triptorelin
acetate: Décapeptyl®, Ipsen Pharma, France; 0.05 mg per day).

In the antagonist protocol, rFSH was administered
subcutaneously each day from day 2 of the cycle until a 14 mm
dominant follicle was detected. Cetrorelix acetate (Cetrotide®,
Merck Serono, France; 0.25 mg per day) was then administered
dailyuntil the recombinanthuman chorionic gonadotropin (rhCG)
day (Ovitrelle®, Merck Serono SAS).

The stimulation protocols and the type and dose of FSH were
chosen by the gynaecologist, as a function of the patient’s age,
body mass index (BMI), and ovarian reserve (anti-Müllerian
hormone (AMH) level, antral follicle count, and basal FSH level).

Patients were monitored clinically using transvaginal pelvic
ultrasound and assays for oestradiol, progesterone, and luteinizing
hormone. The rFSH/HMG dose level was adjusted according to the
follicular growth measured during the monitoring phase. When at
least three follicles had reached adiameter ofmore than16mm, a 250
mg dose of rhCGwas administered. Oocytes were retrieved 36 h after
hCG administration, via ultrasound-guided transvaginal
follicular aspiration.

Cumulus cells were mechanically and enzymatically decoronized
from the oocyte complexes 38 h after the rhCG administration. All
mature oocytes were used for ICSI according to standard protocols
regardless of their morphology, and fertilisation was assessed 16–18
hours after sperm injection. Themorphologywas assessed according
to the Istanbul consensus criteria [for day 2/3 embryos (16)] or
Gardner’s criteria [for blastocysts (17)]. Progestin (Utrogestan® 400
mg, Besins International, France) was used for luteal support.
Pregnancy was defined as a serum hCG level >100 IU/L 14 days
after embryo transfer.

Group Formation
After decoronization, oocyte morphology was evaluated under an
inverted microscope (Nikon® 2000TU, France) equipped with
Hoffman modulation contrast optics. The following oocyte
morphological abnormalities were assessed and counted: diffuse
cytoplasmic granularity, refractile bodies, vacuoles, sticky, or soft
oocytes, large perivitelline space, and perivitelline debris.
Depending on the proportion of their oocytes with one or more
morphological abnormalities, patients were classified into an
abnormal oocyte cohort (with more than 50% of the oocytes
presenting at least one abnormality) and a normal oocyte cohort
(with 50% or less of oocytes presenting at least one abnormality).
The 50% cut-off was chosen following the analysis of the
distribution of oocyte abnormalities in the total cohort (Figure 1).
December 2021 | Volume 12 | Article 793621

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Scheffler et al. Oocyte Quality and Follicular Hormone Levels
Preparation of Follicular Fluid Samples
Following oocyte decoronization, each patient’s remaining FF
samples were pooled. After the removal of cells by centrifugation
at 2000 g for 10 minutes, the supernatant was recovered, stored
at -20°C, and thawed immediately prior to analysis. FF samples
that were contaminated with blood were excluded.

Hormone and Antithyroid Antibody Assays
All hormone assays and antithyroid antibody screens were carried
out as a single series at the end of the study. ELISAs were used to
determine levels of TSH, fT3, fT4 (ELISA VISTA 500™, Siemens
Healthcare Diagnostics, Germany), 25OHD, anti-TPO antibodies
(CENTAURXP™, SiemensHealthcareDiagnostic, Germany), GH
and IGF1 (IMMULITE 2000XPi, Siemens Healthcare Diagnostic,
Germany). Anti-TG antibody titres were measured using an
immunoradiometric assay (Immunotech®, Beckman Coulter,
Czech Republic). The intra- and inter-assay coefficients of
variation were below 10% in all assays.

Statistical Analysis
All statistical analyses were performed with pvalue.io software
(18). Data were expressed as the median [interquartile range] or
the frequency (percentage). Intergroup differences groups were
probed with a Mann-Whitney test (for quantitative variables) or
a chi-squared test or Fisher’s exact test (for qualitative variables).
The threshold for statistical significance was set to p<0.05. As this
pilot study was exploratory, no calculation of the sample size was
carried out.
RESULTS

Characteristics of the Study Population
and ICSI Outcomes
71 ICSI cycles were included in the study. 4 endometriotic
patients were excluded as well as 8 ICSI with less than 4
mature oocytes. 59 ICSI were analysed in total. There were no
Frontiers in Endocrinology | www.frontiersin.org 3
significant differences between the normal oocyte cohort (n=34
cycles) and the abnormal oocyte cohort (n=25 cycles) with
regard to age, BMI, current smoking status, ovarian reserve,
and duration of infertility (Table 1).

There were no differences between the normal and abnormal
oocyte cohorts with regard to the ovarian response, ovarian
stimulation characteristics, and ICSI outcomes (Table 2). The
fertilisation rate was significantly lower in the abnormal oocyte
cohort than in the normal oocyte cohort (65.5% vs. 80%,
respectively, p=0.012). There were no intergroup differences in
the embryonic development rate or the ICSI outcomes.

Distribution of Oocyte Morphological
Abnormalities
Of the 520 matures oocytes analysed, 307 (59%) presented one or
more morphological abnormality. This proportion was 79.4%
(n= 246) in the abnormal oocyte cohort and 29.0% (n=61) in the
normal oocyte cohort. 217 oocytes (41.7%) had one abnormality,
80 (15.4%) had two, and 10 (1.9%) had three or more (Table 2).
Diffuse cytoplasmic granularity accounted for more than half the
abnormalities (Figure 2).

Hormonal and Antithyroid Antibodies
Assay in FF
The follicularGHlevelwas significantlyhigher in thenormal oocyte
cohort than in the abnormal oocyte cohort (4.98 vs. 2.75 mIU/L,
respectively; p <0.01); the same was true for follicular levels of IGF1
(72.1 vs. 54.2 ng/mL, respectively; p=0.05) (Table 3). The
intergroup differences in follicular levels of TSH, fT3, fT4,
25OHDandantithyroid antibodieswerenot statistically significant.
DISCUSSION

We have studied hormonal levels in FF during IVF and their
association with oocytes quality. Our results show that levels of
GH and IGF1 were higher in the normal oocyte cohort than in
FIGURE 1 | Distribution of the number of oocytes and oocyte abnormalities by patient in the oocyte cohorts.
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the abnormal oocyte cohort. At the opposite, there was no
association with follicular levels of TSH, fT3, fT4, antithyroid
antibodies, or 25OHD.

In our study, we found that the fertilisation rate was
significatively lower in the abnormal cohort group, as also
demonstrated by Setti et al.’s meta-analysis (19) and discussed
recently by Camargos et al. (20). As was also the case in Setti et al.’s
meta-analysis, wedidnot observe a significantdifference inmarkers
of embryonic development. It is noteworthy that the literature data
on other markers of oocyte quality impact are inconsistent. Some
researchers reported poor cleavage rates (21, 22), embryonic
development rates (23) and blastulation rates (24) with poor-
quality embryos (21, 25). We found much the same pregnancy
and live birth rates as in some studies (3, 26–28) but not in others
Frontiers in Endocrinology | www.frontiersin.org 4
(29, 30). These contrasting results for ICSI outcomes might be due
to interstudy differences in the assessment of oocyte abnormalities
and/or the impactof spermatozoidquality onembryodevelopment.

We found that 59% of the oocytes presented at least one
morphological abnormality. This is in line with literature reports
on COS for IVF, in which the proportion of abnormal oocytes
ranges from 10% to 64% (1–5). Our data for the proportions of
oocytes with one abnormality or two or more abnormalities were
within the ranges reported in the literature (41%-63%, and 15%-
32%, respectively) (3, 21, 31, 32). We found that proportion of
oocytes with two or more abnormalities was significantly greater
in the abnormal oocyte cohort than in the normal oocyte cohort.
The two cohorts were similar with regard to the distribution of
the types of oocyte morphological abnormality. Cytoplasmic
TABLE 2 | The ovarian response, oocyte characteristics, and ICSI outcomes as a function of the oocyte cohort quality.

Abnormal oocyte cohort
(n = 34 cycles)

Normal oocyte cohort
(n = 25 cycles)

p

COS parameters
Ovarian stimulation protocol:
- GnRH antagonist 9%91% 12%88%

- Long GnRH agonist 91% 88% 0.69
- Duration of COS (day) 11.5 [10.2; 13.0] 12.0 [10.0; 13.0] 0.66
- Total dose of rFSH/HMG (IU) 1775 [1350; 2681] 1650 [1350; 2200] 0.67
- E2 level on the hCG day (pg/ml) 2127 [1585; 2828] 2003 [1450; 2735] 0.94
Oocyte characteristics
- Number of oocytes retrieved 14.5 [9.25; 19.0] 12.0 [8.00; 15.0] 0.19
- Number of oocytes injected 7.00 [6.00; 12.0] 8.00 [6.00; 10.0] 0.98
- Proportion of matures oocytes 73.7 [59.5; 77.8] 75.0 [68.8; 83.3] 0.15
- Proportion of abnormal oocytesNumber of morphological abnormalities per oocyte: 83.3 [67.5; 92.6] 27.3 [11.1; 47.1] <0.001
- One abnormality 52.8% 25.7% <0.001
- Two abnormalities 23.9% 2.9%
- Three or more abnormalities 3.2% 0%
ICSI outcomes
- Fertilization rate 65.5 [44.7; 83.3] 80.0 [68.8; 88.9] 0.012
- “Day 2 embryo” development rate 50.0 [25.0; 88.9] 62.5 [39.6; 77.5] 0.66
- FET rate 65% 72% 0.55
- Embryo cryopreservation rate 44% 40% 0.75
- Pregnancy rate 45% 50% 0.77
- Live birth rate 32% 44% 0.41
Decem
ber 2021 | Volume 12 | Article
The data are expressed as the median [interquartile range] or the frequency (percentage).
GnRH, gonadotropin-releasing hormone; COS, control ovarian stimulation; rFSH, recombinant follicle-stimulating hormone; HMG, human menopausal gonadotropin; E2, oestradiol; hCG,
human chorionic gonadotropin; FET, fresh embryo transfer.
TABLE 1 | Characteristics of the study population, as a function of the oocyte cohort quality.

Abnormal oocyte cohort (n = 34 cycles) Normal oocyte cohort (n = 25 cycles) p

Duration of infertility (years) 3.50 [3.00; 5.00] 4.00 [3.00; 4.00] 0.85
Characteristics of the women:
- Age (years) 31.5 [29.0; 34.8] 30.0 [29.0; 34.0] 0.69
- BMI (kg/m2) 23.0 [21.2; 27.0] 21.0 [20.0; 25.0] 0.096
- Current smoker 15% 20% 0.73
- POF 5.9% 8% 1
- PCOS 35% 24% 0.35
- FSH on day 3 (IU/L) 6.05 [4.82; 6.95] 5.60 [4.40; 7.00] 0.7
- AMH (ng/mL) 3.7 [2.8; 8.60] 3.30 [2.00; 4.50] 0.4
Characteristics of the men’s sperm
- Sperm concentration (M/ml) 38.2 [16.3; 79.3] 22.9 [12.0; 59.2] 0.19
- Progressive motility (%) 35.0 [30.0; 45.0] 27.5 [15.0; 40.0] 0.07
7

The data are expressed as the median [interquartile range] or the frequency (percentage).
BMI, body mass index; POF, premature ovarian failure; PCOS, polycystic ovary syndrome; FSH, follicle-stimulating hormone; AMH, anti-Müllerian hormone.
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granulation accounted for over half of the morphological
abnormalities; this proportion is higher than those reported in
the literature, ranging from 5.4% and 24% (22, 32, 33). This high
proportion in both cohort may be due to environmental factors
as we already discussed in a previous study (34).

In our study, we observed an association between higher
follicular levels of GH and IGF1 and oocyte quality. To the best
of our knowledge, the correlation between follicular GH and
IGF1 levels and oocyte cohort morphology has not previously
been evaluated in IVF. Follicular GH and IGF1 levels appear to
be associated with oocyte maturation: one study found a positive
correlation between follicular GH and the number of oocytes
collected (35) and another study found a positive correlation
between follicular IGF1 and the number of mature oocytes (36).
However, these associations were not found in other studies (37,
38). It has also been demonstrated that follicular GH and IGF1
levels are higher in follicles containing mature oocytes than in
follicles containing atretic oocytes (39), as the density of IGF
receptors in granulosa cells (40). With regard to other IVF
parameters, some studies (41, 42) but not others (38, 43) have
Frontiers in Endocrinology | www.frontiersin.org 5
found that follicular GH and IGF1 levels were positively
correlated with the fertilisation rate. Overall, higher follicular
GH and IGF1 levels appear to be associated with better oocyte
competency in IVF. This hypothesis is also supported by the
beneficial effect of adjuvant GH treatment on IVF outcomes.
Indeed, many studies of GH treatment have reported a better
ovarian response to stimulation, greater numbers of oocytes and
embryos, and higher pregnancy and live birth rates in poor
responders (44). Furthermore, during in vitro maturation of
human oocytes, the addition of IGF1 to the culture medium is
associated with a greater number of mature oocytes (45, 46) and
a lower proportion of oocytes with morphological abnormalities
(46). However, the association that we highlight does not allow
us to conclude whether lower levels of IGF1 would be a cause or a
consequence of a poorer oocyte quality. Current knowledge on
the role of somatotropic axis on ovarian function reinforce the
hypothesis of the beneficial effect of GH and IGF1 on oocyte
competency. In humans, GH is involved in (i) initiating and
sustaining the development of primordial follicles into
preovulatory human follicles, (ii) cytoplasmic and nuclear
TABLE 3 | Follicular hormone levels and prevalence of antithyroid antibodies in the FF, as a function of oocyte cohort quality.

Abnormal oocyte cohort (n = 34 cycles) Normal oocyte cohort (n = 25 cycles) p

Somatotropic axis:
- GH (mIU/L) 2.75 [1.95; 4.24] 4.98 [2.84; 7.05] <0.01
- IGF1 (ng/mL) 54.2 [35.1; 84.6] 72.1 [62.1; 95.6] 0.05

25OHD (ng/ml)a 24.5 [18.1; 29.6] 22.8 [14.5; 33.7] 0.98
Thyroid function and immunity
- TSH (mIU/l) 1.12 [0.735; 1.73] 1.51 [0.970; 2.00] 0.3
- fT3 (pmol/l) 3.59 [3.00; 4.2] 3.75 [3.30; 4.17] 0.91
- fT4 (ng/dl) 1.09 [1.04; 1.18] 1.15 [1.05; 1.22] 0.42
- Anti-TPO antibodiesb 3.3% 17% 0.19
- Anti-TG antibodiesc 0% 17% 0.08
December 2021 | Volume 12 | Article 7
The data are expressed as the median [interquartile range] or the frequency (percentage).
GH, growth hormone; IGF1, insulin-like growth factor 1; 25OHD, 25-hydroxy vitamin D; TSH, thyroid-stimulating hormone; fT3, free triiodothyronine; fT4, free thyroxine; TPO,
thyroperoxidase; TG, thyroglobulin.
Missing data: an=7, bn=17, cn=18.
A B

FIGURE 2 | Distribution of the oocyte morphological abnormalities. (A) Normal oocyte cohort, n=61 oocytes (B) Abnormal oocyte cohort, n=246 oocytes. PV,
perivitelline; ER, endoplasmic reticulum.
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maturation in the oocyte, and (iii) cumulus cell expansion (47,
48). In addition to these direct effects on oocyte development,
adjuvant treatment with GH in IVF is associated with lower FF
levels of oxidative stress markers (49). Furthermore, systemic
and/or local IGF1 stimulates the proliferation, differentiation and
activity of granulosa cells (48). GH and IGF1 are also synergic
with gonadotropins, as they improve the ovary’s responsiveness
to FSH and LH by increasing expression levels of the cognate
receptors (50, 51). Our design study using a pool of FF for each
patient does not allow us to extrapolate the pathophysiological
impact of the somatotropic axis on FF composition and oocyte
competency for each individual follicle.

Given that the vitamin D receptor is detected in stromal,
granulosa and thecal ovarian cells (52, 53) and that the
concentration of 25OHD in FF is positively correlated with the
serum (54), we hypothesised that the FF 25OHD level would be
associatedwith oocyte cohort quality.However, we did notfind any
evidence of such a relationship. Although the possible association
with oocyte morphology has not previously been assessed, other
IVF parameters have been evaluated in the literature; there was no
difference in the number of oocytes collected (55, 56) or in the
oocyte maturation rate as a function of the follicular 25OHD level
(56). Conversely, some researchers have observed a negative
correlation between the follicular 25OHD level and the
fertilisation rate (57). It is noteworthy that supplementation with
the active formof vitaminD (i.e. 1-25OHD) increases granulosa cell
proliferation and differentiation and oocyte maturation (13, 14).

In our study population of euthyroidwomen, the follicular TSH,
fT3, fT4 and antithyroid antibody levels were similar in the normal
and abnormal oocyte cohorts. In the literature, only Cai et al.
studied the link between follicular levels of TSH/TH and IVF
parameters. They only observed a positive correlation between
follicular TSH level and embryo quality. However, oocyte
morphology was not assessed in this study (58). The fact that
TSH receptors are expressed throughout folliculogenesis (59)
suggests that this hormone has a major role in oocyte
development independently of THs, since the latter are not
synthesised locally. fT3 improves granulosa cell proliferation and
differentiation (9), and THs inhibit granulosa cell apoptosis (10).
The positive correlation between follicular and serum hormone
levels suggests the presence of passive transport into the follicular
compartment (58). However, since human granulosa cells and the
superficial epithelial cells of the ovary have been shown to express
deiodases 2 and 3 (59, 60), the correlation might indicate the
conversion of T4 to active T3 or inactive T3r. This conversion
might be influenced by follicular action TSH on deiodases.

Antithyroid antibodies are detected in about 10% of women of
childbearing age; we found a similar proportion in the present
study. The difference in the prevalence of antithyroid antibodies
between the abnormal and normal oocyte cohorts was not
statistically significant. This finding is in line with most of the
literature data; in general, no differences were observed in terms of
the number of oocytes collected (61) or [with the exception of one
study (62)] the fertilisation rate (58, 61). The follicular and serum
concentration levels of antithyroid antibodies are positively
correlated (58); this is suggestive of passive transport, and so the
Frontiers in Endocrinology | www.frontiersin.org 6
antithyroid antibodies present in the FF might simply
be “bystanders”.

One of the limitations of our study is a small population. It would
be valuable to confirm our present findings (i.e. an association
between follicular GH and IGF1 levels and oocyte cohort quality)
in a larger cohort. Studying each follicle individually could also be an
important point to investigate relationships between hormone
concentrations and each type of oocyte morphological abnormality.
Furthermore, the assessment of oocyte morphological abnormalities
in women with hormonal deficit might be informative. Indeed, we
have observed a dramatic reduction in the number of oocyte
morphological abnormalities after GH replacement therapy in
patient with GH deficiency (63). However, this type of study would
not be ethically possible in women with hypothyroidism because the
establishment of euthyroidism in pregnancy is clinically necessary.
Experiments in animal models might be informative.
CONCLUSION

This pilot cohort study is the first who evaluated the association
between FF hormone concentrations and oocyte cohort quality.
Follicular levels of GH and IGF1 were significantly higher in a
normal oocyte cohort than in an abnormal oocyte cohort.
However, we did not observe an association with follicular levels of
TSH, fT3, fT4, 25OHD, or antithyroid antibodies. The GH/IGF1
system appears to be important for oocyte development and
competency. Further characterisation of these hormones’ actions is
now necessary.
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