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Abstract: The public health burden of type 2 diabetes mellitus and Alzheimer’s disease is steadily
increasing worldwide, especially in the population of older adults. Epidemiological and clinical
studies suggest a possible shared pathophysiology between the two diseases and an increased risk of
AD in patients with type 2 diabetes mellitus. Therefore, in recent years, there has been a substantial
interest in identifying the mechanisms of action of antidiabetic drugs and their potential use in
Alzheimer’s disease. Human studies in patients with mild cognitive impairment and Alzheimer’s
disease have shown that administration of some antidiabetic medications, such as intranasal insulin,
metformin, incretins, and thiazolidinediones, can improve cognition and memory. This review aims
to examine the latest evidence on antidiabetic medications as a potential candidate for the treatment
of Alzheimer’s disease.

Keywords: amyloid beta; Alzheimer type 3 diabetes mellitus; intranasal insulin; metformin; type 2
diabetes mellitus; incretins; PPARγ agonists; thiazolidinediones

1. Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative disease that is the most
common type of dementia and is mainly characterized by decline in cognitive ability and
impaired memory, as well as changes in personality and behavior [1]. According to recent
reports, 5.8 million Americans aged 65 and older have AD today, a number projected to
rise to 13.8 million by mid-century in the USA alone [2]. The strongest genetic risk factor
for AD is APOE4 and the pathological characteristics are β amyloids [3,4]. It has been
estimated that 25% of the population are carriers of APOE4 [5].

Diabetes mellitus (DM) is one of the most prevalent chronic metabolic conditions, with
devastating complications and increased risk of premature death. In 2019, approximately
463 million individuals were affected by DM [6]. The most prevalent subtype of diabetes
is type 2 diabetes mellitus (T2DM), which is mainly characterized by high blood glucose
levels (hyperglycemia) and insulin resistance [7].

T2DM has also been associated with an increased risk of dementia [8,9], in particular,
AD by 45–90% [10,11]. The Rotterdam study was among the first to show an elevated risk
of dementia with T2DM [12]. Moreover, it has been shown that patients with T2DM have
a higher risk of amnestic mild cognitive impairment (aMCI) [13]. People who experience
cognitive impairment combined with AD, when compared to people who experience only
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cognitive impairment, appear to be affected by the DM type and related complications as
well as the antidiabetic treatment they receive [14]. Insulin resistance and hyperglycemia
as features of T2DM have a detrimental effect on cognitive abilities [15], since insulin and
insulin-like growth factor, also called somatomedin C (IGF-1), play an important role in
cognitive ability, neural function, and development [16].

Recent research shows that AD shares many common links with diseases related to
insulin resistance, such as neuroinflammation, insulin signaling disorder, oxidative stress,
advanced glycosylation end products (AGEs), mitochondrial dysfunction, and metabolic
syndrome [17]. Therefore, AD could be considered a metabolic disease caused by insulin
and IGF-1 resistance in the brain, so the term type 3 DM was proposed [18]. Type 3 diabetes
is, in essence, the failure of brain cells to respond to insulin, resulting in impairments in
synaptic function, metabolism, and the immune response. The interaction between insulin
signaling and AD or cognitive impairment can be also demonstrated by research data
showing improvements in the cognitive function of AD patients after the administration
of antidiabetic drugs such as intranasal insulin, metformin, thiazolidinediones, and in-
cretins. Based on the studies that support the concept that AD is a metabolic disease of
the brain [19–21] and the emerging evidence of a common pathophysiology between AD
and T2DM, there has been a great interest in exploring whether antidiabetic medications
currently approved for T2DM could be beneficial for AD treatment [22].

Numerous clinical studies have examined the extent of the effect that antidiabetic drugs
have on the pathological manifestations of AD [23–26], while animal studies have shown bene-
ficial effects on tau protein pathology [27,28] and β-amyloid [29,30], in neurogenesis [31], oxida-
tive stress [32], synaptic function [33], cognitive function [34–36], and in neuroinflammation [37].
Findings of the greatest clinical interest have originated from clinical trials in patients with
AD or MCI, which explored the hypothesis that antidiabetic drugs may be a neuropro-
tective treatment approach against AD. The aim of this review is to assess the efficacy of
antidiabetic drugs in AD treatment.

2. Methods
2.1. Literature Search

The PubMed/MEDLINE and Google Scholar electronic databases were searched
using the keywords “amyloid beta”, “Alzheimer type-3-diabetes”, “intranasal insulin”,
“metformin”, “type 2 diabetes mellitus”, “incretins” and “PPARγ agonists”. A systematic
search of the literature published between 2005 and 2020 was conducted, and two indepen-
dent reviewers evaluated the studies. The database search lasted from November 2019 to
February 2020.

2.2. Inclusion Criteria

The articles that were included in this review fulfil the following criteria: (a) The
subjects received treatment for AD or/and a T2DM treatment, if the expected outcome
concerned risk of cognitive decline or dementia. (b) Age of study participants > 50 years old.
(c) The type of studies included in this review were randomized clinical trials, population-
based observational or case–control studies, prospective cohort studies, as well as reviews
and meta-analyses. (d) Articles included were written in English.

2.3. Study Selection Chart

Included and excluded studies were collected following the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) flow [38] and depicted in
Figure 1 below.
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3. Results and Discussion

The main characteristics of the included studies are presented in Table 1

Table 1. Antidiabetic drugs for AD treatment in humans.

Study/Year Treatment Study Population Outcomes

1. Reger et al., 2008 [25] Intranasal insulin MCI Improvements in working memory
and cognition.

2. Reger et al., 2006 [26] Intranasal insulin AD Improvements in cognition for APOE4
negative patients.

3. Craft et al., 2012 [39] Intranasal insulin AD Improvements in cognitive and
functional ability.

4. Claxton et al., 2015 [24] Intranasal insulin AD and MCI Improvements in cognitive, verbal, and
audiovisual memory.

5. Ng et al., 2014 [40] Metformin T2DM Reduction in the risk of
cognitive impairment.

6. Hsu et al., 2011 [41] Metformin T2DM Reduction in the risk of dementia by 24%.

7. Koenig et al., 2017 [42] Metformin MCI
Positive effect on executive function, as
well as some improvements in memory

and attention.

8. Luchsinger et al., 2016 [43] Metformin MCI Significant improvement in
verbal memory.

9. Moore et al., 2013 [44] Metformin AD Increased risk of cognitive impairment.

10. Imfeld et al., 2012 [45] Metformin T2DM Increased risk of cognitive impairment.

11. Gejl et al., 2016 [46] Liraglutide AD
Moderate neuroprotective effects

expressed withimprovements in cerebral
glucose metabolism.

12. Gold et al., 2010 [47] Rosiglitazone AD No benefit was observed with
administration.

13. Watson et al., 2005 [48] Rosiglitazone AD and MCI Improvements in attention and
delayed recall.

14. Risner et al., 2006 [49] Rosiglitazone AD patients non- APOE4
carriers Improvements in ADAS-Cog.

15. Abbatecola et al., 2010 [50] Rosiglitazone T2DM Protection against cognitive impairment.

16. Hanyu et al., 2009 [51] Pioglitazone AD and DM Cognitive and metabolic improvements.

17. Sato et al., 2011 [52] Pioglitazone AD and T2DM Improvements in cognitive ability and
cerebral blood flow to the parietal lobe.

3.1. Intranasal Insulin

Insulin performs many important functions in the brain (Figure 2) related to food
intake regulation, body weight, eating habits, and energy homeostasis [53,54].

It was proposed that AD might be a metabolic disease of the brain, driven by insulin
resistance and insulin-like growth factor (IGF-1) resistance [19,20].

Several studies have shown that insulin administration in AD patients reduces the
action of kinases that promote tau protein hyperphosphorylation and enhances β-amyloid
clearance and synaptic plasticity [55,56]. In fact, an earlier study by Craft et al. [57] showed
that in the case of elevated insulin without hyperglycemia, memory was enhanced in
AD patients, thus supporting the important role of insulin in memory improvement.
Consequently, it has been hypothesized that increasing insulin function in the brain might
counterbalance AD pathology. However, peripheral administration of insulin in order to
reach the brain carries the risk of hypoglycemic events and the difficulty of passing the
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blood–brain barrier. On the other hand, intranasal insulin avoids the risk of hypoglycemia
as it bypasses the blood–brain barrier [58] and through the nasal passages reaches the
cortex and hippocampus within 15–30 min (Figure 3) [59].
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Figure 2. Insulin is a polypeptide hormone, relatively “small”, consisting of two peptide chains
(A and B) containing a total of 51 amino acids, 21 amino acids in the A chain and 30 amino acids in
the B chain. Of the 20 amino acids, it lacks the amino acids tryptophan (Try) and methionine (Met).
It has three disulfide bridges (-S-S-), of which two hold the two chains. Neither of the two chains
separately exhibits any physiological activity, and therefore the action of insulin is due to the overall
configuration of its molecule (tertiary structure) and not to its individual components’ peptides or
amino acids.
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Figure 3. Intranasal insulin administration benefits for testing the cognitive improvement on AD and
MCI patients.

In a small (n = 24) pilot study [25] that examined a 3-week intervention in patients
with MCI or early AD and compared intranasal insulin with placebo, improvements in
working memory and cognitive skills were found due to intranasal insulin. Moreover, in
a study by Craft et al. [39] chronic administration of intranasal insulin for 4 months in
104 patients with MCI or mild to moderate AD improved cognitive and functional ability,
with these changes being associated with alterations in levels of β-amyloid but also in the
CSF β-amyloid/tau protein ratio. Insulin has been shown to inhibit the deterioration of
the cerebral glucose metabolism rate in specific areas of the brain [39]. It should be noted
that in this study, intranasal insulin appeared to be an effective therapeutic approach for
patients with AD, with no side effects due to prolonged treatment (Figure 4) [39].
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Figure 4. Intranasal insulin administration therapeutic evidence is based on several mechanism such
as the reduction in β amyloid and general inflammation marker. Intranasal insulin bypasses the
blood–brain barrier, which leads to the regulation of Aβ levels and cerebral glucose metabolism rate.

Some of the clinical trials evaluated fast-acting forms of insulin while others tested
longer-acting insulin analogs. In a more recent study [60] in which researchers compared
NPH insulin to insulin detemir and placebo in adults with MCI or AD, NPH insulin
appeared to improve memory after 2 and 4 months compared to the placebo, while no
significant effects of long-acting insulin were observed compared to the placebo. In addition,
NPH insulin administration was associated with a decrease in tau-P181/β-amyloid ratio;
however, various genetic factors such as APOE4 status affected insulin levels and insulin
resistance [60].

APOE4 is the strongest genetic risk factor for AD [3], and about 25% of the popula-
tion carries at least one ε4 allele [5]. There has been an improvement following insulin
administration in the cognitive function of AD patients who were not ApoE4 carriers,
while no improvement was found in patients with APOE4; in some cases, the symptoms
of the disease worsened [25,26]. A recent study by Claxton et al. [24] examined responses
to intranasal administration of insulin detemir to MCI and AD patients, who showed
improvements in cognitive, verbal, and audiovisual memory. In this study, APOE4 played
an important role in the results, and, in contrast to the aforementioned study [25], it seemed
that the responses were regulated differently. Significant improvements in verbal memory
and peripheral insulin resistance levels in APOE4 carriers were observed after three weeks
of treatment, while no improvements were observed in ApoE4 non-carriers [24].

In an ongoing Phase II/III clinical trial with the acronym SNIFF (Study of Nasal Insulin
in the Fight Against Forgetfulness) [61], two different insulin delivery devices were used in
order to deliver 20 IU of insulin or placebo after breakfast and dinner to 240 patients with
either MCI or early AD. After one year of treatment, no statistically significant effect of
intranasal insulin on cognitive abilities was found in the main cohort of 240 patients who
used one of the two devices. Nonetheless, a group of 49 patients who used another device
exhibited a slowing of worsening in the subscale of ADAS-COG-12 and daily life activities
at one year [61]. It should be noted that in this study, the change in the insulin delivery
device in the middle of the experiment may have played an important role and may have
affected the results.

3.2. Metformin

Metformin is a biguanide that increases peripheral glucose uptake, suppresses glu-
coneogenesis in the liver, and increases insulin sensitivity in peripheral tissues (Figure 5).
Metformin is the first drug prescribed in patients with T2DM, mainly due to the beneficial
effects observed on hemoglobin A1c levels, weight, and cardiovascular mortality, as well as
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due to its safe action profile (Figure 6) [62]. Currently, clinical research data on the use of
metformin in AD are limited, and the results are inconclusive.
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Figure 5. Metformin’s mechanism and signaling. Metformin acts in the liver, reducing hepatic glucose
production by inhibiting gluconeogenesis and glycogenolysis. Metformin also acts in the muscles by
increasing insulin sensitivity and improving peripheral glucose uptake and delays the absorption of
glucose from the intestines. Metformin inhibits the mitochondrial respiratory-chain complex 1 and
the mitochondrial glycerol phosphate dehydrogenase (mGPDH) leading to a reduction in NAD+ and
ATP and to the above-described results.
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Currently, clinical research data on the use of metformin in AD are limited and
the results are inconclusive. Several studies in the last decade have shown that met-
formin may significantly improve cognitive dysfunction in patients with T2DM [63,64].
Moore et al. (2013) [44] observed an increased risk of cognitive impairment in patients with
T2DM after long-term metformin treatment. On the contrary, Ng et al. [40] reported that
metformin reduced the risk of cognitive impairment in T2DM patients, aged 55 years and
older, who were monitored for more than 4 years. In the first study [44], it is possible
that the negative results were due to vitamin B12 deficiency. According to the authors
of this study [44], vitamin B12 and calcium supplements alleviated the aforementioned
vitamin B12 deficiency and had beneficial effect on cognitive function. In a study from
Taiwan’s National Health Insurance that contains a large database of structured data about
people aged 50 years and over, some of whom (n = 25,393) were diagnosed with T2DM and
others were undiagnosed (n = 101,816), it was found that dementia prevalence increased by
2.6 times in patients with T2DM [41]. In particular, it was found that metformin reduced
dementia risk by 24% compared to patients who had not used any antidiabetic medication.
In a small randomized control trial, a significant positive effect of metformin on executive
function was found as well as some improvements in memory and attention, while there
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was no effect of metformin on CSF AD biomarkers [42]. In contrast to the above evidence,
in a case–control study of diabetic individuals (n = 7086), which assessed the risk of AD
in relation to the type of antidiabetic drugs, it was found that long-term use of metformin
caused a slight increase in AD risk, while no such effect was observed following long-term
use of sulfonylureas, thiazolidinedione, or insulin [45]. A possible explanation for this
increased risk of AD and cognitive impairment may be a vitamin B12 deficiency, often seen
after metformin use.

Based on the above evidence, there is high need to further investigate the role of
vitamin B12 deficiency. Another important issue is the route of administration, since drugs
such as metformin have been administered only via systemic routes and, as a consequence,
their action depends on their ability to cross the blood–brain barrier (but also from the
peripheral insulin levels). Given the widespread use of metformin and its effect on cognitive
functions, additional research is needed, in particular, a long-term study with adequate
sample or a meta-analysis of smaller studies in order to further elucidate its action.

3.3. Incretins

Incretins, including glucagon-1 peptide (GLP-1) and glucose-dependent insulin-releasing
polypeptide (GIP), are important metabolic hormones responsible for the expression of the
insulin gene, proliferation of ng β-cells, and lowering glucose levels by stimulating insulin
secretion mechanisms (Figure 7) [65].
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signaling pathway through G protein-coupled receptors. The cAMP signaling is divided into two
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while the independent regulates the amount of insulin granules that prepared for exocytosis.

GLP-1 is secreted by the gut in response to food intake, and its receptors (GLP-1Rs),
expressed in pancreatic β-cells, enhance insulin release in response to high glucose levels.
Following the secretion of the GLP-1, the enzyme dipeptidyl-peptidase 4 (DPP4) degrades
the GLP-1 within minutes. Therefore, GLP-1 analogs, which are resistant to the enzyme
DPP4, have been developed for clinical use, and GLP1-R receptor agonists (liraglutide,
exentin-4) have been approved for use in patients with DM [66]. GLP-1 and its receptors are
not found exclusively in the pancreas and vascular endothelium but are also expressed in
the brain and specifically in the hippocampus, hypothalamus, cerebral cortex, and olfactory
bulbs [67]. The role of incretins and incretin analogues in the brain is neuroprotective [68], as
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they enhance cell proliferation, memory, and synaptic plasticity, while reducing β-amyloid
plaques, oxidative stress, and inflammation [69–71].

Long-acting liraglutide has been shown to normalize the distribution of cell membrane
insulin receptors in a rat model with AD (APPSWE/PS1dE9), thus improving insulin
signaling disorders [72]. In addition, systematic administration of liraglutide in transgenic
mice with AD for 8 weeks prevented the underlying neurodegenerative effects observed in
AD, such as neuronal loss, memory impairment, and a decrease in synaptic plasticity in the
hippocampal region [73]. In particular, liraglutide reduced the deposition of β-amyloid
plaques by 40–50%, while a decrease was also observed in the inflammatory response based
on activated glial cells [73]. In mice that received intrahippocampal injections of β-amyloid,
it was observed that pretreatment with liraglutide before injection was a protective factor
against impairments in spatial memory and long-term potentiation (LTP) induced by
β-amyloid [74]. Additional experiments in transgenic mice have shown that liraglutide
promotes neurogenesis, has a positive effect on the cerebral microvascular system, and also
reduces tau protein hyperphosphorylation in AD [75–78]. It also appears that liraglutide has
not only preventive properties but also the ability to reverse several of the key pathological
features that appear in the final phase of AD in mice models [79]. Positive results have
also been observed in the rat model APPswe/PS1∆E9 with AD, where the long-term
administration of the analogue hormone liraglutide GIP (D-Ala2GIP) protects synaptic
plasticity and memory formation and reduces β-amyloid plaques and neuroinflammation,
while normalizing stem cell proliferation (Figure 8) [70].
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Dipeptidyl-peptidase 4 (DPP4) enzyme inhibitors are also used as an alternative
treatment. They can extend the action time of GLP-1 and GIP, thus regulating glucose in
T2DM [80]. A study by Kornelius et al. [81], found that linagliptin (a DPP4 inhibitor) can
restore the impaired insulin signaling induced byβ-amyloid in neuronal cells, indicating the
important therapeutic role that DPP4 inhibitors may play in the neurotoxicity of AD. Two
other DPP4 inhibitors, saxagliptin and vildagliptin, showed similar efficacy when given
orally to AD transgenic mice, resulting in reducedβ-amyloid deposition, improved memory,
and increased levels of hippocampal GLP-1, as well as reduced tau protein phosphorylation
and markers of inflammation [82,83]. An alternative substance is exentin-4, a long-acting
incretin GLP-1 receptor agonist, which has a neuroprotective effect in neurodegenerative
diseases such as AD and Parkinson’s disease and is fully approved for use in patients
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with T2DM [32,69]. In an in vitro study by Bomfim et al. [35], the property of β-amyloid
oligomers to attenuate axial transport was inhibited by the administration of exentin-4
(GLP-1R agonist), which appeared to improve cognitive ability by reducing the serine
phosphorylation of the insulin receptor substrate (IRS-1) in the hippocampus. The only
human study of liraglutide in AD patients [46], showed that a 6-month treatment had
moderate neuroprotective effects, mainly expressed by improvements in cerebral glucose
metabolism. In the same study, liraglutide administration had no effect on the β-amyloid
deposition of AD patients when compared to placebo patients.

Additional research is needed to clarify the role of incretins in the treatment of AD
in humans. Despite promising evidence from animal experiments, existing studies have
failed to demonstrate reversal of AD pathology in humans. More studies are necessary to
determine the exact action of incretins at each individual stage of AD, in order to define the
therapeutic window for these drugs.

3.4. Thiazolidinediones (PPARγ Agonists)

In patients with T2DM, PPARγ agonists reduce hyperglycemia, improve insulin
resistance and cholesterol levels (Figure 9) [84].
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The rationale for their use in AD patients is based on the increased expression of
PPARγ in the temporal cortex of these patients compared to the control group [85]. PPARs
have the ability, as nuclear hormone receptors, to regulate protein carbohydrate and lipid
metabolism, as well as inflammatory responses [86], making their agonists a potential
treatment for T2DM and insulin resistance in the brain [87], while the latest research
suggests that PPARγ agonists have the potential to activate pathways in the brain that are
regulated by IGF-1 [87].

A small pilot study of rosiglitazone in MCI and AD patients showed that treatment
with rosiglitazone for 6 months resulted in improved attention and delayed recall com-
pared to patients receiving a placebo [48]. In a larger study conducted shortly after by
Risner et al. [49], in which different doses of rosiglitazone (2, 4, or 8 mg) were administered
to patients with mild to moderate AD, a significant improvement in ADAS-Cog was ob-
served following administration of 8 mg rosiglitazone to APOE4-negative patients only. In
fact, APOE4-positive patients not only showed no improvement, but also, interestingly, they
exhibited a cognitive decline in lower doses of rosiglitazone [49]. The exact way in which
the APOE4 gene mediates the action of PPARγ agonists has not been adequately explored.
In another study, responses to treatment with metformin, rosiglitazone, or a combination
of the two were evaluated to determine if an improvement in insulin resistance could
explain fluctuations in cognitive performance for 36 weeks in the elderly with MCI and
T2DM [50]. The results showed that rosiglitazone in diabetic patients was more effective
than metformin in protecting against cognitive impairment [50]. In addition, a pilot study
by Sato et al. [52] on pioglitazone in patients with AD and T2DM found that administration
of 15–30 mg pioglitazone for 6 months improved cognitive capacity and cerebral blood
flow in the parietal lobe, compared with the control group. In the same study, pioglitazone
administration was shown to reduce fasting plasma insulin levels, indicating increased
insulin sensitivity [52]. Additionally, Hanyu et al. [51] found, despite the small sample
size, that pioglitazone resulted in improvements in ADAS-Cog and metabolic function in
patients with AD and TD2M. Another pilot study of the same year evaluated the safety of
administration of pioglitazone over an 18-month period in patients with AD but without
T2DM. Although treatment with pioglitazone was tolerable, the findings did not support
its efficacy in these patients [88].

Finally, in relation to clinical findings in humans, a recent meta-analysis of PPARγ
agonists in AD that included a total of nine studies showed that only pioglitazone could
provide improvement in the early stages of AD and also in stages of mild to moderate
AD [89]. In animal models, PPARγ agonists appear to improve various aspects of AD
pathology including reduced β-amyloid expression, decreased expression of inflamma-
tory genes [90], and neuroprotective activity related to calcium homeostasis in cultured
hippocampal neurons [91].

Respectively, pioglitazone in animal models with AD had a beneficial effect. More
specifically, it reduced cerebellar dysfunction [92], rescued synaptic transmission deficits,
enhanced long-term memory [89], and restored dendritic density and neuroplasticity [93].
There have been studies with negative results as well, such as that of Gold et al. (2010) [47],
in which no benefit was observed following the administration of rosiglitazone in patients
with mild to moderate AD. Moreover, thiazolidinediones modulate Wnt signaling that is
involved in Aβ-induced neurodegeneration in AD patients [94].

In summary, despite the proven benefits of thiazolidinediones in AD treatment, there
were significant side effects mainly related to rosiglitazone, which consisted of edema,
myocardial infarction, and stroke [95]. In 2010, due to these side effects, the USA and
Europe restricted rosiglitazone use for T2DM treatment [94]. The above complications, as
well as the lack of a large number of clinical trials, must be considered in order to ensure
the application of thiazolidinediones in future treatments.



Int. J. Mol. Sci. 2022, 23, 4641 12 of 17

3.5. Discussion

In the present study, we investigated the use of antidiabetic drugs for AD prevention
and treatment. Drugs such as metformin, intranasal insulin, thiazolidinediones, and
incretins have shown some beneficial effects both on humans and mice. The latest research
suggests that thiazolidinediones have the potential to activate pathways in the brain that
are regulated by IGF-1; however, rosiglitazone may pose a significant risk of adverse
events. Clinical trial findings on the use of metformin in AD are limited and controversial,
taking into consideration the possibility that vitamin B12 deficiency, often observed in
metformin use, may increase cognitive impairment and AD risk. Metformin should also
be considered in selected patients with prediabetes according to the American Diabetic
Association criteria [96]. Concerning the role of incretins and incretin analogues in the
brain, it can be safely assumed that it is in many ways neuroprotective. Although data from
animal experiments with incretins were very promising, research in humans has shown
contradictory results. Therefore, the role of incretins in AD treatment in humans needs to
be further investigated. Taking into consideration that systemic administration of insulin
is associated with an increased risk of hypoglycemia, the therapeutic use of insulin has
begun to be tested both in clinical and preclinical studies. Given its beneficial impact and
the absence of serious side effects, insulin is considered a promising therapeutic agent for
AD treatment.

Further consideration is needed in the design of AD treatments including improve-
ments in patient selection, identification of a wider range of biomarkers that adhere to the
multifactorial nature of AD, and the study of genetic factors for better understanding of
genotype–environment interaction. APOE4 is the strongest genetic risk factor for AD and is
an important modulator of the intranasal insulin effects. Further understanding of the vital
role that the APOE4 genotype plays on insulin resistance and regulation will eventually
lead to developing more individualized treatment strategies for AD patients. It should be
noted that glycemic variability and prediabetes may also be involved in other neurode-
generative diseases with neuropathological findings similar to AD, such as Progressive
Supranuclear Palsy and Corticobasal syndrome [97].

3.6. Limitations

This review study has some limitations. Due to the heterogeneity in the results of the
studies presented, it is difficult to come to robust conclusions about the role of antidiabetic
drugs in AD treatment. The design, sample size and outcome measures varied between
studies. Moreover, some studies had small sample size and short treatment duration.

4. Conclusions

AD and T2DM are two of the most pressing epidemics of recent years [98]. It seems
that antidiabetic agents may improve cognition as well as modify disease biomarkers in
MCI and AD patients. Intranasal insulin shows great promise for AD treatment and its
beneficial role is modulated by ApoE genotype status [99]. Despite the encouraging results,
there is not yet sufficient evidence to support the use of antidiabetic drugs for AD treatment,
and further studies are needed in order to confirm their therapeutic potential.
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