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Purpose. Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft tissue sarcomas. Combining Hsp90 inhibitors to
enhance endoplasmic reticulum stress with mTOR inhibition results in dramatic MPNST shrinkage in a genetically engineered
MPNSTmouse model. Ganetespib is an injectable potent small molecule inhibitor of Hsp90. Sirolimus is an oral mTOR inhibitor.
We sought to determine the safety, tolerability, and recommended dose of ganetespib and sirolimus in patients with refractory
sarcomas and assess clinical benefits in patients with unresectable/refractory MPNSTs. Patients and Methods. In this multi-
institutional, open-label, phase 1/2 study of ganetespib and sirolimus, patients ≥16 years with histologically confirmed refractory
sarcoma (phase 1) or MPNST (phase 2) were eligible. A conventional 3 + 3 dose escalation design was used for phase 1.
Pharmacokinetic and pharmacodynamic measures were evaluated. Primary objectives of phase 2 were to determine the clinical
benefit rate (CBR) of this combination in MPNSTs. Patient-reported outcomes assessed pain. Results. Twenty patients were
enrolled (10 per phase). Toxicities were manageable; most frequent non-DLTs were diarrhea, elevated liver transaminases, and
fatigue. 'e recommended dose of ganetespib was 200mg/m2 intravenously on days 1, 8, and 15 with sirolimus 4mg orally once
daily with day 1 loading dose of 12mg. In phase 1, one patient with leiomyosarcoma achieved a sustained partial response. In
phase 2, no responses were observed. 'e median number of cycles treated was 2 (1–4). Patients did not meet the criteria for
clinical benefit as defined per protocol. Pain ratings decreased or were stable. Conclusion. Despite promising preclinical rationale
and tolerability of the combination therapy, no responses were observed, and the study did not meet parameters for further
evaluation in MPNSTs. 'is trial was registered with (NCT02008877).
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1. Introduction

Malignant peripheral nerve sheath tumors (MPNSTs) are
highly aggressive soft tissue sarcomas. 'e only known cu-
rative therapy for MPNSTs is complete surgical resection with
wide negativemargins [1–5], which is often not feasible due to
location, size, and metastasis. Half of all MPNSTs develop in
patients with neurofibromatosis type 1 (NF1), a common
autosomal-dominant tumor predisposition syndrome [1, 6].
'e gene responsible for NF1 encodes for the protein neu-
rofibromin. Decreased levels of neurofibromin in NF1 lead to
dysregulated Ras and tumorigenesis. NF1 loss is also seen in
the majority of sporadic MPNST, suggesting NF1 is an im-
portant tumor suppressor in all MPNSTs [7]. Increased un-
derstanding in the pathogenesis of MPNSTs, availability of
targeted agents, and sophisticated preclinical models have
facilitated development of rational clinical trials for MPNSTs.

Mammalian target of rapamycin (mTOR) has been re-
ported to be hyperactivated in NF1-deficient tumors as a
consequence of aberrant Ras signaling [8]. Using anNF1/p53-
mutant MPNST model, the Cichowski laboratory demon-
strated that mTOR inhibitors (mTORi) suppressed tumor
growth in a potent, but cytostatic manner [9] and ultimately
became resistant to treatment. Identifying alternative strat-
egies in combination with mTORi may be beneficial. En-
doplasmic reticulum (ER) stress is induced when unfolded
proteins accumulate in the ER [10]. Oncogenic RAS also
causes ER stress [11], and when the ER stress level becomes
insurmountable, cell death ensues, suggesting agents that
enhance ER stress may be developed as anticancer agents.
Enhancing ER stress using Hsp90 inhibitors coupled with
mTORi led to tumor shrinkage in a genetically engineered
MPNST mouse model, which correlated with profound
damage to the ER and cell death [12]. 'is was only seen in
tumors treated with the combination, but not in tumors
exposed to either agent alone. Previously, no targeted agents
have been able to cause tumor regression in a genetically
engineered MPNST mouse model or human MPSNT trials.

Ganetespib is a novel injectable potent small molecule
inhibitor of Hsp90. It has a favorable safety profile, in-
cluding minimal ocular toxicity, and promising antitumor
activity in a broad-range tumor type [13]. Sirolimus is an
oral commercially available mTORi with a long safety
record and demonstrated efficacy in cancer models [14–16].
Preclinical data to support this combination in other bone
and soft tissue sarcomas provided rationale to include all
sarcomas in the phase 1 component [17–21]. Based on
strong preclinical rationale, we sought to determine
whether the combination of ganetespib with sirolimus will
be safe, tolerable, and cause tumor regression in patients
with refractory MPNSTs.

2. Materials and Methods

2.1. Patient Population. Patients aged ≥16 years with his-
tologically confirmed unresectable/refractory sarcoma
(phase 1) and MPNST (phase 2) with measurable disease per
WHO criteria [22]; Eastern Cooperative Oncology Group
performance status of 0 to 2; adequate bone marrow, liver,

and renal function; fasting serum cholesterol and tri-
glycerides ≤300mg/dL; and QTcF ≤480ms were eligible.
Patients had recovered from all prior therapy. For patients
with NF1, diagnostic criteria for NF1 were documented [23].

'e multi-institutional trial was coordinated through Sar-
coma Alliance for Research through Collaboration (SARC)
funded by the Department of Defense Clinical Trial Award.
Ganetespib was supplied by Synta Pharmaceuticals, and siro-
limus was purchased commercially and provided through the
study.'e studywas conducted after approval from institutional
review boards from all participating sites, and all patients
provided written informed consent before participating.

2.2. Study Design. Phase 1 was a standard 3 + 3 dose esca-
lation study to determine the maximum tolerated dose
(MTD) or recommended phase 2 dose (RP2D) of ganetespib
with sirolimus. In the absence of dose-limiting toxicities
(DLTs), three patients were to be treated in each dose cohort.
DLTs were defined as grade 4 hematological toxicity, any
grade ≥3 nonhematological toxicity with the exception of
grade 3 nausea and vomiting of <3 days duration, grade 3
diarrhea ≤3 days duration, grade 3 alanine aminotransferase
(ALT)/aspartate aminotransferase (AST) that returned to
≤grade 1 within 7 days of study drug interruption, grade 3
fever or infection <5 days, and any grade 3 electrolyte
imbalances that responded to oral or intravenous supple-
mentation. Any grade 2 nonhematological toxicity that
persisted for ≥7 days and is considered medically significant
or intolerable by patients and any adverse event requiring
interruption of study drug for ≥7 days or which recurred
upon drug challenge was also dose limiting. Toxicity was
graded according to National Cancer Institute Common
Terminology Criteria for Adverse Events (CTCAE) (version
4.0). 'e MTD was defined as the dose level immediately
below the dose at which ≥33% of patients in a cohort ex-
perience a DLT in first treatment cycle. A patient was
considered evaluable for MTD if at least 85% of prescribed
sirolimus dose was given unless held for toxicity.

Ganetespib was administered intravenously (IV) over one
hour on days 1, 8, and 15 of each 28-day cycle, and sirolimus
administered orally once daily continuously after day 1
loading dose. Phase 1 dose levels are summarized in Table 1.
Only one planned dose escalation with ganetespib at 200mg/
m2 was planned. 'ere were no plans to escalate beyond the
single-agent recommended doses of either agent. Patients on
phase 2 were all treated at the RP2D.'e primary objective of
the phase 2 trial was to determine the clinical benefit rate
(CBR) of ganetespib in combination with sirolimus for pa-
tients with MPNSTs defined as CR, PR, or SD ≥4 months
using WHO criteria of ganetespib in combination with
sirolimus for patients with MPNSTs. Secondary objectives
assessed changes in pharmacodynamic parameters in blood
and pain using patient-reported outcomes (PROs).

2.3. Assessments. Patients were evaluated with weekly his-
tory and physical and laboratory assessments during cycle 1
and then prior to each cycle with laboratory assessments
performed every other week during subsequent cycles. EKG
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was performed at baseline; cycle 1, day 2; and then prior to
every odd cycle. Radiographic disease evaluation for tumor
evaluation was performed at baseline and prior to odd cycles.
Patients who experienced disease progression based on
WHO criteria but felt to be receiving benefit per treating
investigator were allowed to continue on treatment as long
as they had stable disease per RECIST 1.1 criteria [24] and
had not met any other off treatment criteria.

PROs assessing pain and pain interference using two
validated scales were performed at baseline and then prior to
every odd cycle.'eNumerical Rating Scale-11 (NRS-11) [25]
assessed pain severity from 0 to 10 (4–6�moderate pain;
7–10� severe pain), and the Brief Pain Inventory (BPI) [26]
assessed the impact of pain on daily activities for which the
total score is themean of the seven items rated 0–10. Clinically,
meaningful change is ≥2 and ≥1 point, respectively [27, 28].

2.4. Pharmacodynamics (PD). Changes in PD markers in
peripheral blood mononuclear cells were performed prior to
treatment and cycle 1, day 15, 6 hours after ganetespib
administration. Western blot analyses were performed for
Akt, phospho(p)-Akt, eiF2α, p-eIF2α, p-S6, and Hsp70.
Signal intensity of the autoradiogram was quantified using
densitometry scanning and analyzed using ImageJ software
(National Institutes of Health, Bethesda, MD). 'e absor-
bance of each phosphoprotein lane was recorded, and
protein levels were determined after normalizing for levels of
corresponding total protein. Histone H3 was used as a
protein loading control.

2.5. Pharmacokinetics. Pharmacokinetics were required for all
patients treated on phase 1 portion and optional for phase 2
patients. Blood samples (3mL) each were collected on day 1
prior to treatment, and then on cycle 1, day 15 to capture steady-
state sirolimus levels. Ganetespib samples were collected at
hours 0, 1 (end of infusion), 2, 4, 6, 8, and 24. Sirolimus samples
were collected at hours 0, 1, 2, 4, and 24. Pharmacokinetic
samples for ganetespib were evaluated at Synta Pharmaceuticals
and at Cincinnati Children’s Hospital for sirolimus. Pharma-
cokinetic analysis was conducted using noncompartmental
methods using Phoenix® WinNonlin version 6.2.1 software.

2.6. Statistical Methods. Descriptive data are reported as
frequencies, proportions, means, medians, and ranges. An
evaluable patient was classified a responder (success) for the
primary endpoint if the patient achieves a PR, CR, or stable

disease at ≥4 months as defined by the WHO criteria. 'e
target CBR was 25%, and a CBR ≤5% was considered un-
interesting. Using Simon’s optimal two-stage phase II de-
sign, the first stage required 10 patients, with no further
accrual if 0 of 10 patients respond. If ≥1/10 patients respond,
accrual would continue until a total of 20 patients have been
enrolled. If ≥3/20 patients respond, this combination would
be considered to have sufficient activity. Assuming the
number of successes is binomially distributed, this design
has a one-sided alpha of 0.07 and a power of 88% for
detecting a true success probability of at least 25% versus the
null hypothesis success rate of 5% or less.

PD endpoints were analyzed using the GraphPad prism
6.0 statistical software. p values were calculated using a two-
way analysis of variance. A p value of <0.05 was considered
to indicate a statistically significant result. Data were nor-
malized to highest value within each patient group.

Due to the small number of patients that reached their
follow-up, PRO evaluations due to progressive disease, changes
in individual pain scores, and the mean overall changes from
baseline to their last PRO evaluation are described.

3. Results

Twenty patients were enrolled, 10 in each phase.'e baseline
characteristics are listed in Table 2. A heterogeneous pop-
ulation of sarcomas enrolled on phase 1, including 3 patients
with NF1-associated MPNSTs. 'e majority of patients had
metastatic disease (90%) and prior therapy including sur-
gery, chemotherapy, and radiation therapy. In phase 2, half
had NF1-associated MPNST.

3.1. Determining RP2D. 'ere were no DLTs (n � 3) on the
first dose level. At dose level 2 (n � 6, 1 patient unevaluable),
one patient of the first three enrolled in this cohort had a
DLTof grade 4 thrombocytopenia. 'ree additional patients
enrolled onto this cohort without additional DLTs to con-
firm the R2PD of ganetespib 200mg/m2 IV on days 1, 8, and
15 with sirolimus 4mg orally once daily continuous with a
cycle 1 day 1 loading dose of 12mg. All patients in phase 2
were treated at the RP2D.

3.2. Toxicities. Grade ≥3 toxicities are listed in Table 3.
Toxicities were manageable, and the most frequent non-DLT
toxicities were diarrhea, elevated liver transaminases, and
fatigue. No significant visual or cardiac toxicities were

Table 1: Phase 1 dose escalation schema.

Dose
level

Ganetespib (mg/m2), intravenously on
days 1, 8, and 15 of each 28-day cycle

Sirolimus (mg), oral Number of evaluable
patients

Loading dose, cycle 1,
day 1 only

Maintenance dose, orally once daily
continuously

− 2 100 6 2 –
− 1 150 6 2 –
1∗ 150 12 4 3
2 200 12 4 6
∗Starting dose: 1 cycle� 28 days.
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associated with either agent. Grades 1 and 2 ganetespib-
related infusion reactions were observed (n � 4), but all
patients were successfully managed with diphenhydramine
and steroids, and all patients received subsequent doses
without dose reduction. All Phase 2 patients were required to
receive premedication with diphenhydramine and steroids
prior to ganetespib infusion. Two patients in phase 2 were
removed from therapy due to toxicity. 'e first was due to
grade 4 AST which did not recover within time frame re-
quired by protocol, and the other exhibited grade 3 de-
hydration which recovered, but subsequently developed
elevated bilirubin while off treatment, and did not meet
parameters to restart therapy within time frame required by
protocol.

3.3. Pharmacokinetics. All but one patient participated in
pharmacokinetics in phase 1. One patient in DL2 was not
included in analysis due to dose reduction prior to collec-
tion. Due to sampling time inconsistencies and assay sen-
sitivity, most pharmacokinetic parameters (AUC, Cmax, Vss,
clearance) could not be reliably determined. 'e mean (SD)
sirolimus trough in dose level 1 (n � 2) was 12.1 (3.6) ng/mL
and 12.5 (8.9) ng/mL in dose level 2 (n � 5).'ese ranges are
typically considered therapeutic for sirolimus [14].'emean
(SD) ganetespib t1/2 was 6.4 (2.1) hours and 6.0 (0.9) hours.

Although complete pharmacokinetic parameters were not
able to be determined, the levels for sirolimus and half-life of
ganetespib were consistent with previous single agent and
combined study findings [29, 30].

3.4. Patient-Reported Outcomes. 'irteen subjects in the
phase 1 and 2 cohorts combined had MPNSTs and com-
pleted the prestudy pain evaluation; 10 out of 13 (77%) rated
having some degree of pain. At baseline, the mean (SD,
range) overall pain intensity, tumor pain intensity, and pain
interference score were 4.8 (3.9; 0–10), 5.1 (3.8, 0–10), and
3.9 (3.0, 0–10), respectively. Four of the 13 subjects com-
pleted both the baseline and pre-cycle 3 evaluation (one
reached pre-cycle 5). 'e other 9 subjects were taken off
study due to disease progression (n � 7), toxicity (n � 1),
and death (n � 1) prior to reaching cycle 3. In this small
cohort, we observed clinically meaningful improvement in
overall and tumor pain intensity and pain interference score
from baseline to either pre-cycle 3 or 5 evaluation with a
mean difference of 2.75, 2.5, and 3.35, respectively (Tables 4
and 5). All patients had progressive disease.

3.5. Response. In phase 1, patients received a median of 2
cycles (range, 2–34). One patient had a confirmed, sustained
partial response and came off study at cycle 34 due to in-
vestigator choice. 'is patient with a history of progressive
painful leiomyosarcoma also had a dramatic clinical re-
sponse with improved pain and function. Among the ten
patients enrolled on the first stage of phase 2, none achieved
clinical benefit as defined by the protocol. 'e study did not
demonstrate activity sufficient to open Stage 2. 'e median
number of cycles treated was 2 (1–4). One patient considered
a nonresponder by the WHO criteria after 4 cycles of
therapy. 'e patient had three target lesions with two of the
targets measuring stable disease and one target demon-
strating ≥25% increase in area, thus meeting the definition of
progression per theWHO.'e patient had stable disease per
RECIST criteria when evaluating the sum of the largest
dimension in all three targets, and the treating physician felt
the patient was receiving benefit through slowed progres-
sion. 'e study was amended to allow patient to continue
with treatment until progression per RECIST. 'e patient
continued until progression per RECIST after 8 cycles of
therapy. Of note, this patient also had clinically significant
decrease in tumor pain intensity (− 3) and BPI (− 3.57) from
baseline. 'ree patients with MPNST had shrinkage in some
targets but growth in other target lesions leading to an
overall PD by the WHO.

3.6. Pharmacodynamics. 'e effects of the combination of
sirolimus and ganetespib on biomarkers of Hsp90 andmTOR
pathway inhibition were examined in PBMC samples of 11
patients who provided consent and had adequate specimens
for analysis (Figure 1). We observed consistent inhibition of
p-S6 (read-out for mTOR pathway inhibition) by day 15 in all
patients (mean 56% inhibition; range 25–79%). p-Akt levels
varied significantly at steady state, ranging from over 4-fold

Table 2: Baseline patient characteristics.

Characteristic Phase 1
(n � 10)

Phase 2
(n � 10)

Median age, years (range) 26 (16–89) 38 (24–61)
Female, n (%) 2 (20) 4 (40)
Sarcoma subtype, n
Alveolar soft part sarcoma 1
Ewing sarcoma 1
Leiomyosarcoma 2
Liposarcoma 3
MPNST 3 10
NF1 associated, n (%) 3 (100) 5 (50)
Sporadic, n (%) 0 (0) 5 (50)

Tumor location at diagnosis, n
Abdomen 1 1
Extremity 1 4
Head 1 0
Lung 0 1
Mediastinum 1 0
Peritoneum 1 0
Skin 1 0
Spine 1 2
Other 3 2

Primary tumor resected, n (%) 8 (80) 4 (40)
If yes, margins
R0: microscopic negative 1 (12.5) 2 (50)
R1: microscopic positive 1 (12.5) 0 (0)
R2: gross residual disease 1 (12.5) 0 (0)
Unknown 5 (62.5) 2 (50)

History of metastatic disease, n (%) 9 (90) 9 (90)
Prior chemotherapy regimen, n (%) 10 (100) 8 (80)
Prior radiation, n (%) 7 (70) 6 (60)
Prior surgery, n (%) 10 (100) 9 (90)
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increase to 83% inhibition. 'ough associated with a
negative feedback loop for sirolimus mTOR inhibition, the
changes in p-Akt could not be correlated with response or
toxicity. We observed consistent and statistically significant
inhibition of p-eIF2α (read-out of UPR activation) in all
samples. Overall levels of Hsp70 (read-out of Hsp90 in-
hibition) varied greatly with six patients exhibiting a 91%
increase at day 15, two with minimal change, and three with

significant decrease. 'ese changes could not be correlated
with response or toxicity due to small numbers.

4. Discussion

We established an RP2D of 200mg/m2/dose of ganetespib IV
on days 1, 8, and 15 with sirolimus 4mg orally continuously
(with day 1 loading dose of 12mg) for a 28-day cycle. 'is is

Table 4: NRS-11 ratings of pain intensity from baseline to pre-cycle
3/5.

Patient
Tumor pain Overall pain

Baseline PC3/5 Diff Baseline PC3/5 Diff
009 10 10 0 10 10 0
013 5 2† − 3 5 1∗ − 4
016 10 8 − 2 10 8 − 2
019 5 0 − 5 5 0 − 5
Mean 7.5 5 2.5 7.5 4.75 2.75
∗Ratings from the pre-cycle 5 evaluation. Note. Clinically meaningful
change is ≥2 points (0–3�mild pain; 4–6�moderate pain; 7–10� severe
pain).

Table 5: BPI ratings of pain interference from baseline to pre-cycle
3/5.

Patient
Adults (n � 4)

Baseline PC3/5 Diff
009 5.29 5.71 0.42
013 4.43 0.86∗ − 3.57
016 9.43 6.0 − 3.43
019 6.8 0 − 6.8
Mean 6.49 3.14 3.35
∗Ratings from the pre-cycle 5 evaluation. Note. Clinically meaningful
change is ≥1 point.

Table 3: 'e combined phase 1/2 grade ≥3 toxicities separated by attribution.

All grade 3 All grade 4 Related grade 3 Related grade 4
Blood lymphatic
Lymphocyte count decreased 3 (15) 1 (5) 2 (10) 1 (5)
Platelet count decreased 1 (5) 1 (5) 1 (5) 1 (5)
White blood cell decreased 1 (5)

Gastrointestinal
Abdominal pain 1 (5)
Diarrhea 3 (15) 3 (15)
Nausea 1 (5)
Obstruction gastric 1 (5)
Vomiting 1 (5)

General
Edema limbs 1 (5)
Fever 1 (5)
General disorders and administration site
conditions—other, specify 1 (5)

Hepatobiliary disorders
Cholecystitis 2 (10) 1 (5)

Infections and infestations
Lung infection 1 (5)

Investigations
Alanine aminotransferase increased 1 (5) 1 (5)
Alkaline phosphatase increased 3 (15) 2 (10)
Aspartate aminotransferase increased 1 (5) 1 (5)

Metabolism and nutrition
Dehydration 2 (10) 1 (5)
Hypercalcemia 1 (5) 1 (5)
Hyperglycemia 1 (5)
Hypertension 1 (5) 1 (5)
Hypoglycemia 1 (5)
Hypokalemia 1 (5) 1 (5)
Hyponatremia 1 (5)

Musculoskeletal and connective tissue disorders
Back pain 1 (5)

Neoplasms benign, malignant, and unspecified
Tumor pain 1 (5)
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the RP2D for both agents as monotherapy, suggesting that the
combination does not have intolerable overlapping toxicities.
Although complete pharmacokinetic parameters were unable
to be fully determined, sirolimus trough levels were within
expected therapeutic levels and the half-life of ganetespib was
consistent with previous studies. Sirolimus does not appear to
influence ganetespib pharmacokinetics. 'ere was consistent
inhibition of p-S6 in PBMC at steady state, reflective of likely
effective therapeutic exposure to sirolimus. Upregulation of
Hsp70, a putative biomarker of Hsp90 inhibition, varied
greatly between patients, consistent with previous studies of
ganetespib [29, 31].'emost common adverse event seen was
diarrhea, which was manageable with loperamide therapy.
Infusion-related reactions with ganetespib were frequent but
manageable with premedications.

'is multi-institutional SARC coordinated study was
successful in terms of study implementation for a very rare
disease. Phase 1 was completed in a timely manner with
limited patients.'e initial stage of phase 2 fully accrued in 6
months. Unfortunately, our study did not meet the required
parameters to open the second stage, and this combination
was determined to have insufficient activity in MPNST to
move forward.

To date, clinical trials with noncytotoxic targeted therapy
have yet to demonstrate an objective response in MPNST
using traditional radiographic measurements such as
RECIST or WHO [32]. 'e outcome measurement used to
determine the response in this study was CBR using the
WHO criteria [22]. 'ese criteria were used because
MPNSTs are typically complex nonspherical tumors, and
bidimensional measurements may reflect better changes in
tumor size, but mainly, it was selected to allow for a con-
sistent comparison with previous phase 2 trials of MPNSTs,
which also used the WHO criteria. 'e WHO criteria define
progression as a ≥25% increase in one or more measurable
lesions or appearance of new lesions. 'us, it is possible that
the sum of the products decreases, but a patient meets
criteria for progression based on an increase in just one
lesion. Several patients demonstrated heterogeneous

responses radiographically, and many had symptomatic
improvement in pain as demonstrated by the clinically
meaningful changes in PRO pain scores. 'e more stringent
criteria may put finding any signal of interest for further
pursuit in this disease at a higher standard than other phase 2
trials which primarily use RECIST for activity. Which
standard response measurements are optimal for primary
outcome of novel agents in this patient population is not
known. 'us, other outcome measurements should be
evaluated and incorporated into clinical trials such as PROs
and functional imaging such as FDG-PET or magnetic
resonance imaging apparent diffusion coefficient. 'ese
types of imaging biomarkers are being used more frequently
in assessment of response in sarcomas and appear to be
better correlated with histologic response than 1D or 2D
measurements [33–36].

Our highly refractory pretreated population may affect
tumor response and microenvironment. PD surrogate blood
markers in this small sample set demonstrated consistent
mTOR inhibition, but changes in p-Akt were highly variable.
Although inconsistent in terms of up- or downregulation in
our samples, p-Akt is typically considered a negative feed-
back loop for sirolimus mTOR inhibition and may have also
contributed to the lack of responses. Changes in Hsp70 were
also highly variable, and the study may not have achieved
biologically effective levels of ganetespib, although in-
creasing the dose would unlikely have been tolerable. Sig-
nificant challenges remain with the direct measurement of
Hsp90 inhibition, and unknown mechanisms may have also
interfered with effect. To better understand target inhibition
and mechanisms of resistance that differ among patients and
mouse models, tumor tissue and surrogate markers should
be collected and evaluated and include additional client
proteins that may be more informative. Attempts should be
made to collect PROs and PD markers in all patients and at
earlier time points, as inconsistent sampling will not allow to
draw meaningful conclusions.

Overall, patients were able to tolerate the combination
therapy with HSP90 and mTOR inhibition. We were able to

Cycle 1, d1
Hsp70 p-Akt (Ser473) p-elF2α (Ser51) p-S6 (S235-236)

Cycle 1, d15 Cycle 1, d1 Cycle 1, d15 Cycle 1, d1 Cycle 1, d15 Cycle 1, d1 Cycle 1, d15

ns p = 0.8707

ns p = 0.5131

∗∗∗∗p < 0.0001

∗∗∗p = 0.0001

0

0.5

1

1.5

2

2.5

Figure 1: Aggregate pharmacodynamic responses to ganetespib and sirolimus therapy.
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determine a recommended dose of this combination ther-
apy. However, no responses were observed, and the study
did not meet parameters for further evaluation in MPNSTs.

5. Conclusions

Despite promising preclinical rationale and tolerability of
the combination therapy, no responses were observed, and
the study did not meet parameters for further evaluation of
this combination in this population. 'is trial was successful
in rapid accrual and execution and gave insight into future
design and development of targeted therapy for MPNST.
Further efforts to rapidly develop and translate the most
promising therapies in this aggressive sarcoma are ongoing.
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