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The study of brain network connectivity as a time-varying property began relatively
recently and, to date, has remained primarily concerned with capturing a handful of
discrete static states that characterize connectivity as measured on a timescale shorter
than that of the full scan. Capturing group-level representations of temporally evolving
patterns of connectivity is a challenging and important next step in fully leveraging
the information available in large resting state functional magnetic resonance imaging
(rs-fMRI) studies. We introduce a flexible, extensible data-driven framework for the
stable identification of group-level multiframe (movie-style) dynamic functional network
connectivity (dFNC) states. Our approach employs uniform manifold approximation
and embedding (UMAP) to produce a continuity-preserving planar embedding of high-
dimensional time-varying measurements of whole-brain functional network connectivity.
Planar linear exemplars summarizing dominant dynamic trends across the population
are computed from local linear approximations to the two-dimensional 2D embedded
trajectories. A high-dimensional representation of each 2D exemplar segment is
obtained by averaging the dFNC observations corresponding to the n planar nearest
neighbors of τ evenly spaced points along the 2D line segment representation (where n
is the UMAP number-of-neighbors parameter and τ is the temporal duration of trajectory
segments being approximated). Each of the 2D exemplars thus “lifts” to a multiframe
high-dimensional dFNC trajectory of length τ. The collection of high-dimensional
temporally evolving dFNC representations (EVOdFNCs) derived in this manner are
employed as dynamic basis objects with which to characterize observed high-
dimensional dFNC trajectories, which are then expressed as weighted combination of
these basis objects. Our approach yields new insights into anomalous patterns of fluidly
varying whole-brain connectivity that are significantly associated with schizophrenia as
a broad diagnosis as well as with certain symptoms of this serious disorder. Importantly,
we show that relative to conventional hidden Markov modeling with single-frame
unvarying dFNC summary states, EVOdFNCs are more sensitive to positive symptoms
of schizophrenia including hallucinations and delusions, suggesting that a more dynamic
characterization is needed to help illuminate such a complex brain disorder.

Keywords: functional magnetic resonance imaging (fMRI), functional network connectivity (FNC), dynamic
functional network connectivity (dFNC), schizophrenia, resting state fMRI, uniform manifold approximation and
embedding (UMAP)
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INTRODUCTION

The investigation of functional brain network connectivity
(FNC) as a time-varying property in resting state functional
magnetic resonance imaging (rs-fMRI) studies began relatively
recently and, to date, has remained primarily concerned with
capturing a handful of discrete static states that characterize
connectivity as measured on a timescale shorter than that
of the full scan (Allen et al., 2014; Damaraju et al., 2014;
Ou et al., 2015; Yaesoubi et al., 2015, 2017; Abrol et al.,
2017a,b; Marusak et al., 2017; Barber et al., 2018; Diez-
Cirarda et al., 2018; Faghiri et al., 2018; Patanaik et al., 2018;
Rashid et al., 2018; Smith et al., 2018; Vergara et al., 2018;
Xie et al., 2018, 2019; Denkova et al., 2019; Espinoza et al.,
2019a; Fiorenzato et al., 2019; Fu et al., 2019; Gonzalez-
Castillo et al., 2019; Hou et al., 2019; Klugah-Brown et al.,
2019; Li et al., 2019, 2021; Liu et al., 2019; Mash et al.,
2019; Rabany et al., 2019; Yao et al., 2019; Zhou et al.,
2019; Agcaoglu et al., 2020; d’Ambrosio et al., 2020; Mennigen
et al., 2020; Shappell et al., 2021). Temporal variation in
fMRI has been employed primarily to establish evidence of
stable hemodynamic covariation between pairs of functionally
or anatomically defined brain regions or functionally coherent
distributed spatial networks. Although initially controversial
(Laumann et al., 2017; Liegeois et al., 2017; Miller et al., 2018;
Lurie et al., 2020), research extending this paradigm from so-
called “static” scan-length patterns of functional integration into
the analysis of transient but replicable patterns of covariation
between functional networks has gained a strong foothold
in recent years (Calhoun et al., 2014; Zalesky et al., 2014;
Breakspear, 2017; Keilholz et al., 2017; Preti et al., 2017;
Heitmann and Breakspear, 2018; Khambhati et al., 2018).
A substantial amount of this work, however, focuses on the
separation of windowed, time-resolved connectivity measures
into temporally static patterns that are consistently transiently
realized across subjects. Typically, the dynamics are then
treated as a discrete (memoryless) Markov process, characterized
by the probability of transitioning from any one of the
summary states at time t to the same or another at time t +
1. The simplifying assumptions that (1) a small number of
snapshot summary connectivity patterns capture the functionally
important variations large-scale brain connectivity on shorter
timescales and that, furthermore, and (2) brain dynamics are
Markovian are useful starting points but stop short of revealing
how complex, fluidly varying reconfigurations of whole-brain
connectivity reflect the myriad dimensions of brain health
and dysfunction researchers seek to understand. Capturing
group-level representations of temporally evolving patterns of
connectivity is a challenging and important next step in fully
leveraging the information available in large rs-fMRI studies. We
introduce a flexible, extensible data-driven framework for the
identification of group-level multiframe (movie-style) dynamic
functional network connectivity (dFNC) states. Our approach
employs uniform manifold approximation and embedding
(UMAP) to produce a planar embedding of the high-dimensional
whole-brain connectivity dynamics that preserves important
characteristics, such as trajectory continuity, of the dynamics

in the native high-dimensional state space. The method is
shown to produce naturalistic (i.e., smoothly spatiotemporally
varying through sequences of realistic connectomic patterns),
interpretable, and evolving dFNC motifs (EVOdFNCs) whose
role in the dynamic connectomes of schizophrenia patients (SZs)
and healthy controls (HCs) differs significantly and interpretably.
Furthermore, these evolving multiframe representations of
dynamic connectivity exhibit stronger relationships with specific
positive symptom scores in patients than traditional static
representations of time-resolved connectivity, suggesting that
methods such as ours hold promise for extracting more
effective dynamical biomarkers from rs-fMRI than have thus
far been possible.

Because of its complexity, we present the methodological
pipeline in a series of schematics covering different stages
at different levels of granularity. For ease of navigation, we
will lead off with a short guided tour of Materials and
Methods section figures and schematics: Figure 1 displays the
underlying networks (Damaraju et al., 2014) and functional
domains (Miller et al., 2016a) in the order they appear in
all future figures featuring functional network connectivity
plots. It also shows the average static connectivity between
these networks. In this figure, the network and domain
labels along the axes are displayed in a larger font than
they are in some of the denser figures and are easier to
read. Figure 2 is also included for background. It displays
the so-called “dynamic states” obtained by clustering time-
resolved functional network connectivity computed on sliding
windows through the multivariate network time courses (TCs),
along with short descriptive summaries and schizophrenia
effects on the state occupancy rates. These states and clinical
findings were first reported in Damaraju et al. (2014) and,
afterward, appeared in other published work, e.g., (Miller
et al., 2016b,c, 2018; Espinoza et al., 2019b; Rashid et al.,
2019). Figure 3 contrasts several alternative approaches to
planar embedding with the one chosen (shown in the far
right panel in the figure). Figure 4 provides a comprehensive
schematic overview of all steps in the pipeline, from the
initial computation of windowed network connectivity, through
the embeddings, the averaging process, the computation of
local linear approximations, and the extraction of planar
linear exemplars, ultimately lifting these exemplars into higher-
dimensional EVOdFNCs. Figure 5 puts the linearizations near
embedded planar curves under magnification to elucidate the
objects from which linear exemplars are distilled. Figure 6
fixes the format of display for the high-dimensional evolving
(multiframe) movie-style connectivity motifs. Figure 7 is a
highly detailed schematic focused on exactly how the planar
linear exemplars are lifted into high-dimensional multiframe
evolving connectivity motifs. Figure 8 illustrates how the
representational importance (RI) of evolving connectivity motifs
corresponding to each of the planar linear exemplars is computed
for empirical sequences of windowed connectivity observations.
Finally, Figure 9 schematically presents the process by which RI
of evolving connectivity motifs can be used to induce empirically
informed blended or “meta”-level representations of evolving
high-dimensional connectivity.
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FIGURE 1 | (Left) Composite maps of the 47 resting state networks use in this study, organized according to functional domain with each network in the indicated
domain shown in a different color (Damaraju et al., 2014); (Right) Population means of pairwise correlations between RSN time series. The order in which networks
and functional domains (shown along the y-axis) are presented here is consistent through all figures in this paper. The functional domains, indicated by bracketed
groups of networks on the y-axis, are most often displayed in abbreviated form: SC, subcortical; AUD, auditory; VIS, visual; SM, sensorimotor; CC, cognitive control;
DMN, default mode network; and CB, cerebellar.

MATERIALS AND METHODS

Data
We use data from a large, multi-site eyes-open resting state
fMRI study with approximately equal numbers of SZs and HCs
(n= 311, nSZ= 150). Imaging data for six of the seven sites were
collected on a 3T Siemens Tim Trio System and on a 3T General
Electric Discovery MR750 scanner at one site. Resting state fMRI
scans were acquired using a standard gradient-echo echo planar
imaging paradigm: FOV of 220 × 220 mm (64 × 64 matrix),
TR= 2 s, TE= 30 ms, FA= 770, 162 volumes, and 32 sequential
ascending axial slices of 4 mm thickness and 1 mm skip. Subjects
had their eyes closed during the resting state scan. The data
were preprocessed with a standard pipeline and decomposed with
group-independent component analysis (GICA) into 100 group-
level functional network spatial maps (SMs) with corresponding
subject-specific TCs. Through a combination of automated and
manual pruning, N = 47 functionally identifiable resting state
networks (RSNs) were retained (Figure 1). The remaining
network TCs were detrended, despiked, and orthogonalized with
respect to estimated subject motion parameters. Subject-specific
SMs and TCs were obtained from the group level SMs via
spatiotemporal regression. The TCs were detrended, despiked,
and subjected to some additional post-processing steps [details
in Damaraju et al. (2014)]. The retained RSNs fall into seven
functional domains: subcortical (SC) (five networks), auditory
(AUD) (two networks), visual (VIS) (10 networks), sensorimotor
(SM) (seven networks), cognitive control (CC) (13 networks),
default mode network (DMN) (eight networks), and cerebellum
(CB) (two networks). In all figures showing functional network
connectivity matrices in heatmap form, the functional domains

appear in the indicated order along both axes. All subjects
in the study signed informed consent forms. Symptom scores
for patients were determined using the Positive and Negative
Syndrome Scale (PANSS) (Kay et al., 1987). The focus in this
paper will be on the six symptoms (delusions, grandiosity,
hallucinations, suspiciousness/persecution, preoccupation, and
unusual thought) that load on the “positive factor” in
a heavily used factor analysis study of PANSS symptoms
(Lindenmayer et al., 1995).

Dynamic Functional Network
Connectivity
Dynamic functional connectivity (dFNC) between RSN TCs
was estimated using sliding window correlations. Following
the protocols from published studies on dynamic connectivity
(Damaraju et al., 2014), we employed a tapered rectangular
window length of 22 TRs (44 s), advanced 1 TR at each step,
and computed pairwise correlations between RSN TCs within
these windows. After dropping the first three and final TRs, this
procedure yields a 47 (47− 1)/2 = 1, 081-dimensional dFNC
measure on each of 136 windows of length 22TRs for each
subject. Clustering this collection of time-resolved connectivity
observations using MATLAB’s implementation of k-means
clustering (Euclidean distance, 2,000 iterations, 250 repetitions,
five clusters chosen according the elbow criterion) produces five
non-varying cluster centroids, often referred to as “dynamic
states” or dFNC states (Figure 2) reported in previous studies
(Damaraju et al., 2014; Rashid et al., 2014, 2019; Yu et al., 2015;
Miller et al., 2016b,c; Yaesoubi et al., 2017; Espinoza et al., 2019b;
Mennigen et al., 2019; Weber et al., 2020; Faghiri et al., 2021;
Fu et al., 2021). We mention them because they are referenced
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FIGURE 2 | Centroids from clustering time-resolved connectivity measures without in a time-blind manner. These are called “dFNC states.” For these data, as have
been shown in previous publications (Damaraju et al., 2014; Miller et al., 2016c; Yaesoubi et al., 2017; Espinoza et al., 2019a; Rashid et al., 2019), there are five
characteristic states that can be can be visually summarized as ranging from maximally modularized to weakly connected. Studies consistently show that
schizophrenia patients spend more time in States 3 and 5 on average than do controls, whereas controls spend more time on average than patients in States 1, 2,
and 4.

FIGURE 3 | Applying different data reduction methods to the 1,081-dimensional dFNC observations yields various planar presentations. PCA (column 1) and spatial
Independent Component Analysis (ICA) (column 2) are “cloudy” and do not produce continuous, well-defined, subject-level trajectories; UMAP with
n_neighbors = 200 and min_dist = 0.1 (column 3) has a large periphery of isolated geometrically compressed trajectories; UMAP with n_neighbors = 200 and
min_dist = 0.8 (column 4) results in a crowded but diffuse embedding that blurs within-subject temporal trajectory continuity. UMAP with the parameters used in this
study, n_neighbors = 25 and min_dist = 0.75, embeds individual subject trajectories as continuous curves that are densely intermingled at a group level, qualitatively
reflecting the high-dimensional reality. In all panels, points corresponding to each subject are plotted in the same color.

later in the results section of this paper. To distinguish time-
blind non-varying states from EVOdFNCs, we will refer to them
as non-varying “snapshot” dFNC states (SNAPdFNC). There are
two modularized SNAPdFNC states dominated by strong positive
auditory-visual-sensorimotor (AVSM) connectivity: one (State
1) has strong negative connectivity between the default mode
network (DMN) and the AVSM networks; the other (State 2)
presents weak DMN-to-AVSM connectivity. HCs spend more
time in both of these AVSM-dominant modularized states than
the patients do. A third modularized state (State 3) is defined
by a contrast between strong negative connectivity between
the DMN and the rest of the brain, with diffuse positive
connectivity in all other blocks of the connectome. We will use
the shorthand, DMNneg, in future references to this particular
modularized SNAPdFNC state, which is more occupied by
patients than controls. The other two SNAPdFNC states (States
4 and 5) show much less modularity: one (State 4) is diffusely
hyperconnected and more occupied by controls; the other (State

5) is diffusely disconnected and more occupied by patients
(Damaraju et al., 2014).

Planar Embedding
We apply a MATLAB implementation (McInnes et al.,
2018; Meehan et al., 2020) of UMAP to embed all 1, 081-
dimensional dFNCs into the plane. Although both UMAP and
t-distributed stochastic neighbor embedding (t-SNE) preserve
high-dimensional local structure in the lower-dimensional
embedding, UMAP holds onto more global structure than t-SNE,
exhibits greater stability across runs, and is also significantly
more efficient (see Supplementary Files for experiments
clarifying the differences between UMAP and t-SNE and
the role of parameters in stabilizing the embedding). Key
user–chosen parameters in UMAP are the number of nearest-
neighbors (n_neighbors) over which the high-dimensional
uniformized neighborhoods are defined, and the minimum
distance (min_dist) which parameterizes proximity in the

Frontiers in Neuroscience | www.frontiersin.org 4 April 2022 | Volume 16 | Article 770468

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-770468 April 16, 2022 Time: 9:19 # 5

Miller et al. Multiframe Evolving Dynamic Connectivity Motifs

FIGURE 4 | Overview schematic exhibiting the pipeline for producing representative evolving multiframe high-dimensional states of dynamic functional network
connectivity (EVOdFNCs). High-dimensional dynamic functional connectivity assessed as pairwise correlations on sliding windows through each subject’s GICA
network timecourses (top left) are embedded into 2D using uniform manifold approximation and projection (UMAP). The embedding is done R times (bottom
leftmost), then averaged over the R runs to improve stability (bottom second from the left). Continuous trajectories in the averaged embedding are treated as locally
(i.e., sub-segments of temporal duration τ = 44) linear. Directional and positional trends in the 2D dynamics are then captured by clustering the midpoints and
slopes of these local linearizations, resulting in a set of summary tangents to the embedded trajectories, linearized trajectory exemplars (bottom right). The exemplars
are then “inverted” back to the native dFNC dimensionality, as EVOdFNCs, by associating to each of τ evenly points along an exemplar, the average of the
high-dimensional dFNCs that map to that point’s n nearest neighbors in 2D (top right).

low-dimensional embedding. The stability and “reasonableness”
of UMAP embeddings, especially with respect to preservation
of global structure, can be sensitive to initialization (Kobak and
Linderman, 2021), although our specific data were relatively
stable under re-initialization of the algorithm and we further
stabilized the final embedding by averaging over multiple runs
(Supplementary Figure 4). Because dFNCs are computed
on sliding windows that advance one TR at a time, they
exhibit considerable temporal smoothness in their native
high-dimensional space (mean elementwise squared distance
between successive dFNC measures is less than 0.0006). The
high-dimensional trajectories are also somewhat “densely
packed,” i.e., for any fixed dFNC observation, the average
mean squared elementwise distance between that observation
and its 10,000 nearest neighbors from different subjects is
less than 0.01. The ideal embedding for our purposes would
preserve intra-subject trajectory continuity and inter-subject
trajectory proximity. This within-subject smoothness is an
intrinsic feature of the actual dynamics, which we experimentally
optimized UMAP’s two main parameters (n_neighbors = 25;
mindist = 0.75) toward conserving in the planar embedding
(Supplementary Figure 3). It is worth quickly noting that linear
dimension-reduction methods such as PCA or ICA produced
diffuse two-dimensional (2D) clouds lacking intra-subject
temporal continuity (Figure 3), whereas t-SNE performed more

than 200-fold more slowly than UMAP on these data and,
thus, was not practical for achieving a planar embedding of
the entire dataset.

Because the UMAP embeddings are not fully
deterministic, we run the algorithm R = 25 times on
the input dFNC data D and use the average Ê (D) ={(

1
R
∑R

r=1 xr (t), 1
R
∑R

r=1 yr (t)
)

, s = 1, 2, .., n, t = 1, 2, . . . , T
}

,
of the R individual 2D embeddings Er (D) ={(

xs
r (t) , ys

r (t)
)
, s = 1, 2, . . . , n, t = 1, 2, . . . , T

}
. This

averaging procedure stabilizes the embedding but also
de-densifies the group level geometry (Supplementary
Figure 4), reducing its qualitative fidelity to the native
high-dimensional setting.

Linearized 2D Dynamic Functional
Network Connectivity Trajectory
Segments and Gradient Exemplars
Because of our choice of UMAP parameters within
intervals that preserve intra-subject trajectory continuity,
the majority of each subject’s high-dimensional dFNC trajectory
0 (t) = (v1(t), v2(t), . . . , v1081 (t)) embeds, under the rth

run of UMAP, into an approximately continuous segment
γr (t) =

(
xr (t) , yr (t)

)
in 2D (Figure 4). Continuity is preserved

under summation, so the average γ̂ (t) =
(
x̂ (t) , ŷ (t)

)
=
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FIGURE 5 | The linear trajectory segments (LTSs) (top right) along the boxed embedded trajectories (top left). These local linearizations are clustered to identify a set
of linear trajectory exemplars (bottom right, superimposed black and red segments) capturing localized directional trends in the dynamics.

FIGURE 6 | We display temporally evolving dFNCs as a sequence of frames in which the first time point is always the top leftmost subplot, and with time advancing
from left to right, then clockwise diagonally back to the first subplot in the subsequent row, until reaching the final frame of the sequence shown in the bottom
rightmost subplot. Because these are very dense displays, the EVOdFNCs in this work, which have duration 44 time points are subsampled to show only every other
frame in figures below. To avoid more crowding, colorbars are not displayed, but the range is fixed across EVOdFNCs, centered at 0 and bounded in [−q, q] where
q denotes the 95th percentile of all magnitudes in the collection of EVOdFNCs.
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(
1
R
∑R

r=1 xr (t) , 1
R
∑R

r=1 yr (t)
)
∈ Ê (D) will also be continuous.

We collect all continuous trajectory sub-segments (CTSs)
α̂j (̂γ) =

{̂
γ (t) , t ∈

[
tj, tj + τ

]}
, j = 1, 2, . . . , T − τ along

γ̂ (t) of temporal duration τ = 44 (twice the window
length used to estimate the dFNC observations in D). Each
α̂j (̂γ) can be approximated by a line Lj, yielding a reduced
characterization (x̂j, ŷj, m̂j, ̂̀j) of α̂j (̂γ) in terms of its lengtĥ̀j = maxt,t′∈[tj,tj+τ] ||̂γ (t)− γ̂

(
t′
)
||2 , its geometric midpoint

(x̂j, ŷj), and the slope m̂j of its linearization Lj (Figure 5). The
linearized trajectory segment (LTS) triples: (x̂j, ŷj, m̂j) are then
clustered (Figure 10) with k-means [MATLAB implementation,
squared Euclidean distance, 2,000 iterations, 250 repetitions,
slope bounded between positive and negative max ({|x|, |y|}) to
keep arbitrarily large near-vertical slopes from dominating the
spatial (x, y) components of the clustering] where the number of
clusters, K = 10, was chosen according to the elbow criterion.
From each of the K = 10 LTS cluster centroids (x̂j, ŷj, m̂j),
we induce a 2D line segment of length di (equal to the mean
length of all LTSs in that cluster) and slope m̂i centered at
(x̂i, ŷi) (Figures 4, 5). These segments are, roughly speaking,
gradients of the CTSs, which are, in turn, averages of continuous
embedded segments of the high-dimensional dFNC dynamics.
The collection of segments induced by LTS cluster centroids
will be called linear trajectory exemplars or just exemplars.
Although UMAP is a non-linear dimension reduction algorithm,
implying, among other things, that line segments in the planar
embedding are not necessarily linear segments in the source
domain – the line segments moving along dominant embedded
curve directions, capturing local spatial trends from t to t + 1,
will have non-linear inverse images that similarly reflect local
trends in the high-dimensional dynamics as locality is highly
preserved under UMAP.

Prototype High-Dimensional Evolving
Dynamic Functional Network
Connectivity Basis States (EVOdFNCs)
Because UMAP is not straightforwardly invertible, the 2D linear
trajectory exemplars above cannot easily be mapped back directly
into the native dimension of the dFNC space. To obtain the high-
dimensional dFNC trajectory segment ϒ of integer temporal
duration τ corresponding to a given 2D linear trajectory exemplar
ϒ , (i.e., the “data driven inverse” of υ), we average the high-
dimensional observations corresponding to the n = 25 nearest
2D neighbors of each of τ evenly spaced points along υ (Figure 7).
The points utilized are the 25 spatial nearest embedded neighbors
to each of the τ evenly spaced points along v. For the purpose
of inverting planar points not associated with samples, the slope
of the linear trajectory segments centered at these points are
not taken into account because the embedding itself is working
in spatial terms exclusively and its “data-driven” inverse should
work in the same terms as the embedding. The number of 2D
neighbors used for this inversion of the UMAP embedding,
n = 25, was chosen to match the number of nearest neighbors
parameter that we employed for running the UMAP algorithm.
The operation thus described effectively “lifts” a localized 2D
linear trajectory exemplar back into high-dimensional dFNC

space. The 2D linear trajectory exemplars are, by construction,
concentrated in more densely occupied parts of the plane, and the
continuity preserving parameterization of UMAP encourages the
high-dimensional data-driven inverse of each 2D linear trajectory
exemplar to exhibit naturalistic smoothness (Figure 11). These
high-dimensional inverse images of the 2D linear trajectory
exemplars are each multiframe representations of evolving
functional network connectivity (EVOdFNCs).

Expressing Observed High-Dimensional
Dynamic Functional Network
Connectivity Trajectories in Terms of
EVOdFNC Basis States
The high-dimensional EVOdFNCs obtained from 2D exemplar
linear trajectories are more properly viewed as representations
of dominant directional trends than as a hard segmentation
of the observed dynamics. We, therefore, employed them as
basis objects through which to parameterize observed high-
dimensional evolving connectivity dynamics. This is done by
correlating successive time points (i.e., t = 1, 2, . . . , τ) of each
length-τ window wi in a subject’s observed dFNC sequence
with the corresponding set of tth time points from the K
length-τ EVOdFNCs (Figure 8). For each wi and each t ∈
{1, 2, . . . , τ}, we identify the EVOdFNC k ∈ {1, 2, . . . , K} whose
tth time point has the highest correlation with the tth time
point of observed dFNC window wi, yielding a length-τ vector
ρ = (%1, %2, . . . , %τ) , %j ∈ {1, 2, . . . , K}. The weight λk (wi) ∈
[0, 1] on each k ∈ {1, 2, . . . , K} is the proportion of time points
b{j∈{1,2,...,τ}:%j=k}c

τ
in wi that most resemble (are most correlated

with) the same time point in EVOdFNC k. This approach both
normalizes the weights in [0, 1] and accommodates the possibility
that within any given time window of length τ, a subject’s dFNC
sequence might contain subintervals that are best represented
by the corresponding subinterval of different EVOdFNCs. From
this, we obtain a K-variate time series of EVOdFNC weights
Λ = {λk (wi)}

K,(T−τ)
k,i=1 for each subject (Figure 8, bottom left),

capturing the relative RI of each EVOdFNCs to successive length-
τ intervals of the subject’s observed high-dimensional dFNC
trajectory. To be clear, the weight attached to a given EVOdFNC
k, for a given length-τ window w of observed dFNCs, will be
λ ∈ [0, 1], denoting the proportion of the τ dFNC observations
in w that are more correlated to the corresponding frame in
EVOdFNC k than they are to the corresponding frames in other
EVOdFNCs. This assigns weight to each EVOdFNC according
to the level at which its ordered sequences of frames represent
(correlationally) represent ordered subsequences within the
window of dFNC observations.

Obtaining Meta-EVOdFNCs From
Multivariate EVOdFNC Time Series
Because EVOdFNCs are inverse images of 2D segments in
a planar embedding of very high-dimensional data, using
weighted combinations of the EVOdFNCs (as opposed, e.g., to
a binary “occupancy” approach) is arguably a better strategy
for capturing the evolving variability of high-dimensional dFNC
observations. Toward this end, we cluster (across all windows and
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FIGURE 7 | Exemplars are divided into τ evenly spaced points: p1, p2, . . . pτ (where τ is the mean temporal duration of the piecewise linear approximations of
continuous trajectories that are inputs to the clustering). The geometric length of each exemplar is the based on the lengths of the continuous trajectory segments
belonging to the cluster they represent. Timepoint t = i, i = 1, 2, . . . , τ of the multifrane EVOdFNC corresponding to linear exemplar k is the average of the observed
high-dimensional dFNCs corresponding to the n = 25 nearest 2D neighbors of pi.

subjects) the time-indexed weight vectors from the multivariate
EVOdFNC time series into M = 10 clusters (elbow criterion,
MATLAB’s k-means implementation, squared Euclidean metric,
2,000 iterations, and 500 repetitions). We then induce M meta-
EVOdFNCs as centroid-weighted sums of the basis EVOdFNCs
(Figure 9). Subject-specific occupancy rates of each meta-
EVOdFNC are computed as the fraction of the subject’s time-
indexed weight vectors that belong to the cluster whose centroid
defines the meta-EVOdFNC.

Statistical Modeling
All reported SZ effects are from a multiple regression on gender,
age, head motion (mean frame displacement), and SZ. Reported
positive PANSS symptom score effects are from a multiple
regression on the six positive PANSS symptoms (delusions,
grandiosity, hallucinations, suspiciousness/persecution,
preoccupation, and unusual thought) from the Lindenmayer
five-factor PANSS model (Lindenmayer et al., 1995), in addition
to age, gender, and head motion. The purpose of this model
is to identify the effect of each positive symptom corrected
for the contributions of the others, in a manner indifferent
to, i.e., summing over, the various profiles of negative and

general symptoms that subjects might manifest. Whereas
negative symptoms in the SZ subjects analyzed here are highly
intercorrelated [mean correlation between negative symptom
pairs = 0.31 (std. dev = 0.12)], positive symptoms are not
[mean correlation between positive symptom pairs = 0.12
(std. dev = 0.13)]. Schizophrenia effects are only reported
when significant at the p < 0.05 level after correction for
multiple comparisons. All displayed PANSS symptom effects
are significant at the p < 0.05 level and remain significant
at this level after correction for multiple comparisons where
specifically indicted.

RESULTS

Representational Importance of
EVOdFNCs: Effects of Schizophrenia and
Positive Symptoms
We found widespread schizophrenia effects on the RI of
each of the 10 EVOdFNCs in subject data (Figure 11).
The evolving motifs fluidly move through transient states
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FIGURE 8 | Represent each length-τ window w from the observed subject dFNCs as a weighted combinations of the K EVOdFNC states (top row); Rather than
simply regressing full 1081τ = 47, 564-dimensional dFNC windows on the K 1081τ-dimensional EVOdFNCs, which ends up highlighting the relationship, we go time
point–wise through the data window and EVOdFNCs, expressing each time point t of the data in terms of the corresponding time point in each EVOdFNC, then
averaging this evolving correspondence over the window w between the observation and each EVOdFNC k to obtain the weight βk(w) for the kth EVOdFNC on the
rth length-τ window of the subject’s dFNC sequence. This yields a K-variate time series expressing the subject’s observed sequence of dFNCs in terms of
time-indexed weightings on the EVOdFNCs (bottom left).

FIGURE 9 | EVOdFNCs are high-dimensional data-driven inverses of exemplar 2D linear trajectories that are relatively sparse in the space of linearized 2D trajectory
segments. A fuller range of the structure and dynamics exhibited by actual high-dimensional dFNC observations can be captured by expressing each length-τ
observed dFNC sequence as a weighted combination of the EVOdFNCs. From the multivariate EVOdFNC time series we induce a collection of meta-EVOdFNCs by
clustering the time-indexed weight vectors (top row) and applying the weight-vector cluster centroids to the EVOdFNC basis states (bottom row).
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FIGURE 10 | Zooming in on a box within the display (transparent background) of local linearizations of embedded curves (LTSs) colored according to the 2D linear
trajectory exemplar cluster to which they belong. Within the same region, the individual LTSs can belong to different exemplar clusters based on slope.

FIGURE 11 | There are pervasive group differences between schizophrenia patients and controls in representational importance of the K = 10 EVOdFNCs; thick red
(respectively, thick green) boxes designate significant positive (respectively, negative) association with SZ after correction for multiple comparisons; thin dashed red
box designates significant (p < 0.025) positive association with SZ that is not significant after correction for multiple comparisons. Omitted colorbar is bounded by
[−0.3, 0.3].

of connectivity that resemble familiar formations obtained
from the basic time-blind clustering into single transiently
realized connectivity patterns (Figure 2). Consistent with
published results (Damaraju et al., 2014; Miller et al., 2016b;
Yaesoubi et al., 2017; Espinoza et al., 2019b; Rashid et al., 2019)
on occupancy rates of time-blind SNAPdFNC states, we found

the following: strongly modularized and hyperconnected patterns
feature more prominently in EVOdFNCs with greater RI in
controls (1, 5, 7, and 8) and in EVOdFNCs whose RI in controls
is not statistically distinguishable from that in patients (4, 6,
and 9); weak connectivity and modularized negative DMN-to-
other (DMNneg) patterns (2 and 3) feature more prominently
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FIGURE 12 | Significant positive symptom effects on the representational importance of EVOdFNCs in high-dimensional dFNC dynamics. Thick arrows with stars
indicate effects that are significant after correction for multiple comparisons; thin dashed arrows indicate effects that are significant with p < 0.05, but not after
correction for multiple comparisons. Yellow lines denote positive effects. Blue lines denote negative effects. EVOdFNC 3, the low-contrast, low-dynamism DMNneg
patterned state is a locus of positive symptom effects: RI elevated by Hallucinations, Delusions and Unusual thought, and suppressed by
Suspiciousness/Persecution. EVOdFNC 7, dynamically changing from a low-contrast DMNneg pattern to an AVSM-dominant hyperconnected pattern is more
important in HCs than SZs, but among SZs with high levels of Preoccupation its importance is further significantly suppressed and elevated in those with high levels
of Unusual Thought. Note that positive symptoms exhibit no significant (p < 0.05, uncorrected) effects on the occupancy rates of the SNAPdFNCs.

in EVOdFNCs with significantly higher RI in patients. A novel
modularized pattern of functional organization, not seen in
time-blind SNAPdFNC states, appears in EVOdFNC 10, which
features a persistent stretch of strong modularized negative
SM-VIS/CC/DMN connectivity. EVOdFNC 10 has significantly
greater RI in patients, and its distinctive modularity eventually
dissolves into unstructured weak connectivity. EVOdFNC 7,
with greater RI in controls, transitions from a weakly connected
negative DMN-to-other structure (more characteristic of patients
in time-blind analysis, e.g., SNAPdFNC State 3) into another
novel pattern that is strongly modularized with positive DMN-
VIS/SM connectivity. EVOdFNC 2 (+SZ, RI) and EVOdFNC
5 (+HC, RI) show roles for disconnected periods leading into
and out of modularized structures that are more characteristic of
SZ and HC, respectively. EVOdFNC 2 (+SZ, RI) also exhibits a
transition from something more like SNAPdFNC State 1 (+HC,
OCR) to SNAPdFNC State 3 (+SZ, OCR), presenting a path from
strong AVSM-focused modularity (+HC, SNAPdFNC OCR) to
the DMNneg configuration (+SZ, SNAPdFNC OCR) to weak
connectivity (+SZ, SNAPdFNC OCR).

EVOdFNCs 1 and 8 (both +HC, RI) show the role of
disconnected periods in transitioning between AVSM-
centered modularity and hyperconnectivity in healthy

people: in EVOdFNC 1, we see modularity dissolving
into diffuse dysconnectivity, which then uniformly inflates
toward diffuse hyperconnectivity, whereas, in EVOdFNC 8,
diffuse hyperconnectivity gradually erodes toward greater
dysconnectivity away from the AVSM core and then starts
manifesting negative DMN/CC-AVSM connectivity from a
substrate of dysconnectivity. Although EVOdFNCs 2 and 3
both have greater RI in patients and both contain patterns
similar to SNAPdFNC State 3 (+SZ, OCR), it is the weaker,
less dynamically varying EVOdFNC 3 whose RI is significantly
further elevated in more delusional patients (Figure 12). The
RI of EVOdFNCs 4 and 9 is not significantly affected by subject
diagnosis, but they reveal patterns of functional organization
that do not appear in time-blind dFNC clustering. Specifically,
EVOdFNC 4 evolves from strong AVSM-centered modularity
(+HC, SNAPdFNC OCR) through a DMNneg configuration
(+SZ, SNAPdFNC OCR) connectivity into a modularized
pattern, in which intra-AVSM and intra-CC connectivity is
at approximate parity. EVOdFNC 9 passes through a stage in
which intra-CC connectivity is even stronger than intra-AVSM
connectivity. Transient periods of whole-brain connectivity
where connectivity strength within the CC domain equals
or exceeds that within AVSM domain block do not appear
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FIGURE 13 | Three EVOdFNCs (2, 3, and 7) start with intervals characterized by the modularized DMNneg patterning defined by SNAPdFNC State 3, a state that is
more occupied by SZ patients. All three EVOdFNCs start with a DMNneg type of pattern, but each presents a different dynamic context. EVOdFNC 2 (top left)
exhibits a high-contrast DMNneg pattern that dissolves into diffuse dysconnectivity. EVOdFNC 3 (top middle) presents a persistent, unvarying low-contrast DMNneg
pattern. EVOdFNCs 2 and 3 have very similar temporal means (displayed below each EVOdFNC), with distinguishing characteristics requiring representation of their
temporal evolution. Only EVOdFNC 3 has significant positive symptom effects. In EVOdFNC 7, the DMNneg pattern is part of a dynamic progression leading to
AVSM-dominant hyperconnectivity. Although DMNneg patterning is significantly associated with SZ in time-blind SNAPdFNC analysis, EVOdFNC 7 not only has
higher RI in HCs but also is sensitive to positive symptom levels in SZ patients.

FIGURE 14 | As with representational importance of EVOdFNCs, we see many significant group differences between schizophrenia patients and controls in the
occupancy rates of meta-EVOdFNCs; thick red (respectively, thick green) boxes designate significant positive (respectively, negative) effect of SZ on meta-EVOdFNC
occupancy rate; all displayed effects are significant at the p < 0.05 level after correction for multiple comparisons. The cluster centroids of the EVOdFNC weight
vectors from which the meta-EVOdFNCs (middle row, column 3) are induced tend to focus the majority of weight on one EVOdFNC, so there is evident resemblance
between meta-EVOdFNCs and the EVOdFNCs. Note that positive symptoms exhibit no significant (p < 0.05, uncorrected) effects on the occupancy rates of the
SNAPdFNCs.
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FIGURE 15 | Significant positive symptom effects on the occupancy of meta-EVOdFNCs, each a weighted combination of EVOdFNCs. Thick arrows with stars
indicate effects that are significant after correction for multiple comparisons; thin dashed arrows indicate effects that are significant with p < 0.05, but not after
correction for multiple comparisons. Yellow lines denote positive effects. Blue lines denote negative effects. Consistent with results on representational importance of
EVOdFNCs, meta-EVOdFNC 2 which is heavily weighted on EVOdFNC 3 is a locus of positive symptom effects, including positive effects of delusions and negative
effects of suspiciousness/persecution that remain significant after correction for multiple comparisons. Note that positive symptoms exhibit no significant (p < 0.05,
uncorrected) effects on the occupancy rates of the SNAPdFNCs.

in time-blind dFNC clustering of these data. EVOdFNCs 4
and 9 both have strong population-wide RI (Supplementary
Figure 2) indicating that these patterns play a meaningful role
in dynamic connectivity despite not appearing in SNAPdFNC
clusters centroids.

Three of the 10 EVOdFNCs start with intervals characterized
by modularized DMNneg patterning, i.e., strong negative
connectivity between DMN and all other brain areas with
positive connectivity everywhere else. The SNAPdFNC state
with this pattern is more occupied by SZs than HCs. Two
of the EVOdFNCs (2 and 3) have higher RI in SZs, one
(EVOdFNC 7) in HCs. Two have significant positive PANSS
symptom effects (Figure 12): One of these (EVOdFNC 3) has
higher RI in SZs, and the other (EVOdFNC 7) has higher
RI in HCs. Although all three EVOdFNCs pass through a
DMNneg type of pattern, each embeds this pattern in a different
dynamic context (Figure 13). EVOdFNC 2 presents a high-
contrast DMNneg pattern dynamically dissolving into diffuse
dysconnectivity. Its temporal mean (bottom left) resembles
that of EVOdFNC 3, which features persistent, low-contrast,
unvarying DMNneg. Both EVOdFNCs 2 and 3 have higher
RI in SZs, but only the lower contrast, less dynamic version,
EVOdFNC 3, has significant further relationships to positive

symptoms within the patient population (Figure 12). The
temporal averages of EVOdFNCs 2 and 3 (Figure 13, bottom
row) are very similar, suggesting that the differential sensitivity
of EVOdFNCs 2 and 3 to positive symptoms resides in
their temporal patterning. Finally, although, in time-blind
SNAPdFNC analysis, the DMNneg pattern is significantly more
occupied by SZs, we found EVOdFNC 7 (Figure 13, top
right) featuring DMNneg, leading into AVSM-dominant, lightly
modularized hyperconnectivity to have significantly higher RI
in HCs and also to be sensitive to positive symptoms in
SZs (Figure 12).

Occupancy Rates of Meta-EVOdFNCs:
Effects of Schizophrenia and Positive
Symptoms and Relationship to
EVOdFNCs
The 2D linear exemplars that lift to high-dimensional
EVOdFNCs are relatively sparse in the planar embedding.
Many local linearizations of embedded subject dFNC
trajectories are not geometrically proximal to an exemplar
or are not directionally aligned with the nearest exemplar.
Moreover, the local linearizations are only approximations
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FIGURE 16 | Five of the seven positive PANSS symptoms exhibited significant relationships with membership of local 2D trajectory linearizations to clusters defining
the linear trajectory exemplars that lift to the displayed EVOdFNCs. Red (respectively, green boxes) around EVOdFNCs indicate positive (respectively, negative) SZ
effects on their representational importance in observed high-dimensional dFNC trajectories. Yellow (respectively, blue) arrows point symptoms to EVOdFNCs with
which they exhibit positive (respectively, negative) membership effects. Symptom effects are significant at the p < 0.025 level. The negative effect of Hallucinations
with 2D exemplar #8, i.e., with EVOdFNC #8, remains significant at the p < 0.05 level after correction for multiple comparisons. Note that positive symptoms exhibit
no significant (p < 0.05, uncorrected) effects on the occupancy rates of the SNAPdFNCs.

to the embedded curves, which, in turn, are imperfect
representations of the high-dimensional ground truth. This
suggests that a multivariate characterization of the dynamics
in terms of replicable patterns, i.e., clusters, of concurrent
multivariate EVOdFNC RI would induce meta-EVOdFNCs
(Figure 9) that capture more of the high-dimensional data
variability than the RI of individual EVOdFNCs. In practice,
for the data evaluated in this study, the resulting weight-
vector centroids (Figure 14, center right) were each highly
concentrated on one EVOdFNC, yielding meta-EVOdFNCs that
strongly resemble the dominantly weighted EVOdFNC in the
corresponding weight-vector cluster centroid (Figures 11, 14).
However, although focused on one dominant EVOdFNC,
the meta-dFNCs include content from all EVOdFNCs, which
allows for more flexible representation of the data when
warranted. Moreover, the occupancy rate forces a harder
segmentation than RI, yielding slightly different results.
Delusions, for example, show positive effects on the RI of
EVOdFNC 3 and on the occupancy rate of meta-EVOdFNC
2 (Figure 15), which is heavily weighted toward EVOdFNC
3. Delusions, however, also exhibit negative effects on the
occupancy rate of meta-EVOdFNC 4, which is heavily

weighted on EVOdFNC 7 whose RI is not significantly
affected by Delusions.

Occupancy Rates of Underlying 2D
Linear Exemplar Clusters: Effects of
Positive Symptoms and Relationship to
EVOdFNCs
It is also possible to explore diagnosis and symptom effects
directly in the 2D embedding, considering the linear exemplar
cluster membership of each local linearization to an embedded
subject trajectory (Figure 10). This approach “trusts” the
embedding to distill some important relationships in the data
while unavoidably distorting others. Surprisingly, there are
no significant SZ effects on exemplar cluster membership of
2D local linearizations: nothing significant at the p < 0.05
level after correction for multiple comparisons, nor any raw
uncorrected p-values less than 0.05. However, in the case of
positive PANSS symptoms, we found a number of significant
relationships between positive PANSS scores and linear exemplar
cluster membership (Figure 16), one of which, the negative
effect of Hallucinations on the linear exemplar that lifts to
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FIGURE 17 | Top row shows two EVOdFNCs: leftmost in thick orange box is significantly (p < 0.025) more important in SZ before correction for multiple
comparisons; the rightmost in the thick green box is significantly more important in HCs after correction for multiple comparisons. Note the similarity between the
circled frames in both EVOdFNCs arising from the corresponding 2D linear trajectory exemplars that pass very near each other but have different slopes; the
EVOdFNC with higher representational importance in healthy controls corresponds to the more horizontal exemplar (#8 in the thick green circle), whereas the nearby
exemplar (#6 in the thick red circle) lifts to EVOdFNC 6, which has significantly higher RI in SZs. Although the EVOdFNCs in the top row are built from 2D linear
trajectory exemplars that are proximal, especially near their endpoints, their differing slopes (i.e., angles of approach) cause them to represent dynamic trajectories
sufficiently different as to be to represent high-dimensional dynamic contexts that are characteristic in one case of HCs and in the other of SZs.

FIGURE 18 | Three examples (leftmost panel in each subfigure) showing how proximity of subject embedded trajectories γ̂ [maroon, superimposed with the 10 linear
exemplars (dark gray, labeled in dark blue) over the full embedding (light gray)] are represented in terms of (right panel in each subfigure, top row) membership of
local linear approximations to γ̂ in clusters defining each of the 10 linear exemplars; (right panel in each subfigure, middle row) the representational importance of the
high-dimensional EVOdFNCs corresponding to each 2D linear exemplar in the subject’s high-dimensional dFNC trajectory 0, and (right panel in each subfigure,
bottom row) the occupancy of meta-EVOdFNCs re-indexed to correspond with the EVOdFNC, which is most strongly weighted in each meta-EVOdFNC.

EVOdFNC 8, is significant at the p < 0.05 level after correction
for multiple comparisons.

High-dimensional EVOdFNCs are inverses or lifts of
2D linear exemplars that summarize the planar embedding

of group level high-dimensional dynamics. The exemplar
membership of successive linear approximations to the
embedded curves offers a “first pass” view of the alignment
of subject connectivity dynamics with directional trends in

Frontiers in Neuroscience | www.frontiersin.org 15 April 2022 | Volume 16 | Article 770468

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-770468 April 16, 2022 Time: 9:19 # 16

Miller et al. Multiframe Evolving Dynamic Connectivity Motifs

FIGURE 19 | (Leftmost panel) One subject’s embedded trajectory γ̂ (maroon) and the 10 linear exemplars (dark gray, labeled in dark blue) shown superimposed over
the full embedding (light gray). The embedded trajectory passes near exemplars 3, 1, and 9. (Left panel, column 2, top) As expected, the local linearizations
approximating γ̂ belong to clusters defining exemplar 3 and then exemplar 1, both of which γ̂ passes close to. (Left panel, column 2, middle) The time-varying
representational importance of the high-dimensional EVOdFNCs corresponding to each linear exemplars in the subject’s high-dimensional dFNC trajectory 0; the
highest RI concentrates in EVOdFNCs 2 and 4, which are lifted from exemplars 2 and 4, neither of which is proximal to γ̂; EVOdFNCs 3 and 1, corresponding to
exemplars 3 and 1, have very low high-dimensional RI. (Right panel, top row) windows w12 and w85 starting at t = 12 and t = 85, which carry high RI from
EVOdFNCs 2 and 4, respectively (Right panel, middle row), EVOdFNCs corresponding to exemplars 3, 1, and 9 that γ̂ passes close to in the plane are not highly
frame-wise correlated with 0 (w12) or 0 (w85) , whereas (Right panel, bottom row) EVOdFNCs 2 and 4, which are most representationally important in 0, do exhibit
evidently strong framewise correlations with 0 (w12) and 0 (w85).

the embedded data. As an embedding-intrinsic measure,
exemplar cluster membership of 2D linear approximations is
less concretely empirical than high-dimensional EVOdFNC
RI. For positive SZ symptoms, this embedding-intrinsic point
of view strengthens the uncorrected significance of, e.g., the
Hallucinations effects on EVOdFNCs 3 and 8 while identifying
several new relationships between positive symptoms and
dimensionally reduced dFNC dynamics (Figure 16).

DISCUSSION

Characterization and analysis of the time-varying resting state
connectome continues to rely heavily on identifying a small
number of fixed whole-brain connectivity patterns that manifest
on timescales shorter than the full scan duration. The small
set of fixed “states” is then then employed to model brain
dynamics as a stationary Markov process, with the brain
occupying and transitioning between this small set of fixed
patterns. More sophisticated analyses of the complex dynamical
processes that support human cognitive, emotional, executive,
and motor functions require frameworks for characterizing
and leveraging the fluidly varying high-dimensional dynamics

presented by functional imaging modalities such as fMRI. Here,
we introduce an approach that works from a data-driven
inversion of the summary gradients in a planar embedding of
the high-dimensional dynamics (Figure 17) to capture group-
level multiframe evolving “movie-style” representations of dFNC
(EVOdFNCs) in a large schizophrenia imaging study. We
show that the method produces interpretable, naturalistic high-
dimensional EVOdFNC states, whose contributions to HC and
SZ dynamic connectivity differ significantly. The EVOdFNCs also
expose distinct ways the two groups manifest and recede from
certain characteristic organizational states of the connectome,
e.g., the pattern in which DMN is anticorrelated with other
networks and non-DMN networks are positively intercorrelated
with each other (DMNneg).

Capturing characteristic longer sequences of evolving whole-
brain connectivity exposes differences between patients and
controls that reside in a complex joint feature space over
temporal pacing, modular patterning, and overall strength
of functional integration. Although the more traditional
SNAPdFNC approaches do not elucidate variations in the
dynamic connectome that correlate with positive symptoms
of schizophrenia, this richer viewpoint shows, e.g., that a
DMNneg pattern with weak contrast and limited temporal

Frontiers in Neuroscience | www.frontiersin.org 16 April 2022 | Volume 16 | Article 770468

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-770468 April 16, 2022 Time: 9:19 # 17

Miller et al. Multiframe Evolving Dynamic Connectivity Motifs

variation (EVOdFNC 3) is highly implicated in both SZ and its
positive symptoms, whereas high-contrast DMNneg dissolving
into dysconnectivity (EVOdFNC 2) strongly differentiates SZ
from HC but displays no sensitivity to positive symptoms. Finally,
EVOdFNC 7 that, like EVOdFNC 2, starts with high-contrast
DMNneg but, instead of losing energy and modularity over
time, gains connectivity strength while reconfiguring its modular
patterning is negatively correlated with SZ while being both
positively and negatively associated with positive SZ symptoms.
Of the five EVOdFNCs that exhibit AVSM-dominant modularity,
four (EVOdFNCs 1, 5, 7, and 8) are more representationally
important in HCs and one (EVOdFNC 4) is highly important
across the population (Supplementary Figure 2) but not
significantly different between SZs and HCs. At the timescale
being examined, τ = 44 TRs (88 s), the majority of the
EVOdFNCs captured pass through several discernibly different
configurations. This is true for all of the EVOdFNCs with
significantly greater RI in HCs (1, 5, 7, and 8) and for two of the
EVOdFNCs with significantly greater RI in SZs (2 and 10). Of the
more static EVOdFNCs (3 and 6) (see Supplementary Figure 1),
the one (EVOdFNC 3) that features consistent, low-contrast
DMNneg plays a central role in positive symptom levels as well
as SZ generally; the other (EVOdFNC 6) is consistently diffusely
disconnected and has no significant role either in distinguishing
patients from controls, or in connection with positive symptoms.
Intervals of diffuse dysconnectivity are associated with significant
group differences and symptom effects when they appear as
subintervals in EVOdFNCs (1, 2, 5, and 10) that also have
higher contrast intervals (see Supplementary Figure 1). The role
of disconnected periods in the evolving connectomes of HCs
and SZ differ in timescale and their role as “connective tissue”
between higher-magnitude patterns of connectivity, suggesting
that clinically relevant aspects of resting state connectivity
dynamics are obscured by the field’s current overreliance on
a simplifying Markov assumption. Fluidly evolving dynamic
representations can also reveal important new connectivity
patterns that are on the pathway from one familiar connectivity
pattern from SNAPdFNC to another, e.g., the end of EVOdFNC 9
where intra-CC connectivity is stronger than AVSM connectivity
and the negative connectivity between SM and part of the VIS
with the rest of VIS in EVOdFNC 10.

It is also important to mention that, while promising, this
approach has a number of limitations that will benefit from
further development. The method has a large number of
parameters, from those that govern the UMAP embedding to
the temporal scale (duration of EVOdFNCs) to the number of
clusters at both the 2D exemplar and meta-EVOdFNC stages.
There are different ways of assessing RI, each of which has

benefits and drawbacks. Finally, there are multiple levels of
results, emphasizing either the embedding itself, each high-
dimensional EVOdFNCs individually, or weighted combinations
of the EVOdFNCs. In this study, each meta-EVOdFNCs was
strongly focused on one specific EVOdFNC, so results from
the individual and multivariate levels tracked each other. The
relationship between exemplar cluster membership, defined
within the planar embedding, and the high-dimensional
representational importance of EVOdFNCs to observed
sequences of dFNCs is more complicated (Supplementary
Figure 2), leading to some shared results at a statistical level
(e.g., significant effects of hallucinations and delusions on
exemplars/EVOdFNCs 3 and 8) with weaker relationships
on a time point–by–time point basis (Figures 17–19). While
acknowledging limitations, we believe this is an important first
step toward more sophisticated analysis of high-dimensional
functional imaging data, allowing researchers to more finely
resolve the relationship of longer dynamic processes to human
health and performance.
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