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Abstract

There is a growing need to understand how species respond to habitat changes and the

potential key role played by natal dispersal in population dynamics, structure and gene flow.

However, few studies have explored differences in this process between conspecifics living

in natural habitats and those inhabiting landscapes highly transformed by humans, such as

cities. Here, we investigate how individual traits and social characteristics can influence the

natal dispersal decisions of burrowing owls (Athene cunicularia) living in urban and rural

areas, as well as the consequences in terms of reproductive success and apparent survival.

We found short dispersal movements among individuals, with differences between urban

and rural birds (i.e., the former covering shorter distances than the latter), maybe because

of the higher conspecific density of urban compared to rural areas. Moreover, we found that

urban and rural females as well as bold individuals (i.e., individuals with shorter flight initia-

tion distance) exhibited longer dispersal distances than their counterparts. These dispersal

decisions have effects on individual fitness. Individuals traveling longer distances increased

their reproductive prospects (productivity during the first breeding attempt, and long term

productivity). However, the apparent survival of females decreased when they dispersed

farther from their natal territory. Although further research is needed to properly understand

the ecological and evolutionary consequences of dispersal patterns in transformed habitats,

our results provide information about the drivers and the consequences of the restricted

natal movements of this species, which may explain its population structuring through

restricted gene flow between and within urban and rural areas.

Introduction

Natal dispersal, defined as the movement of individuals from their birthplace to their first

breeding area [1] may influence the future survival, fecundity, and lifetime fitness of
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individuals [2,3,4], playing an important role in the evolution, persistence and spread of popu-

lations and species[5,6,7,8,9,10,11]. Thus, a large number of studies have investigated the fac-

tors driving natal dispersal decisions, in particular the importance of social and environmental

cues (e.g. conspecific density and habitat characteristics; [12,13], previous experience [14]) and

phenotypic attributes, including personality [15,16], structural size [17,18], body mass [13,19]

and sex [20], among others (reviewed by [21]). All of these factors can interact in complex and

subtle ways, varying across the spatial range of a species, such that natal dispersal decisions, as

well as their conditioning, can differ among species but also among populations of the same

species [21]. Therefore, studies comparing the dispersal patterns of conspecifics inhabiting

areas with contrasting characteristics and subjected to different selection regimes are impor-

tant to better understand the dynamic nature of dispersal as well as how drivers of global

change affect the fate of animal populations.

Urbanization is the most drastic and persistent alteration of a landscape, creating new habi-

tats starkly different from the natural habitats it replaces [22]. Currently, the urban expansion

is occurring at an unprecedented rate, mainly by the migration from rural to urban areas. One

century ago, only 10% of humans inhabited cities, and today about the 50% did so, with a 70%

predicted to live in urbanized landscapes by 2050 [22, 23]. Furthermore, the continuous

human population growth (from today’s 7 billion people to the estimated 9 billion by 2050

[24]) also contribute to the large increase in the spatial extent of urbanized areas worldwide.

Although urbanization leads to an overall loss of biodiversity (the so-called ‘biotic homogeni-

zation process; [25, 26, 27]), some species seem to prosper in these environments [28]. Among

birds, for example, nearly 20% of the roughly 10,000 described species can be found in cities

[29]. Thus, understanding the factors that allow them to persist within these landscapes as well

as the consequences for their population dynamics and structure is as important as identifying

the drivers of species loss. A common finding of studies exploring traits that allow individuals

to live in urban environments is that urban birds are less fearful of humans (bolder) than their

rural counterparts, such that urban colonization may be driven by tame individuals from spe-

cies with high interindividual variability in fear of humans crossing the disturbance frontier

[30,31,32,33,34,35]. Fear of humans, measured as the distance at which an individual flees in

response to an approaching person (also called flight initiation distance, hereafter FID), is

repeatable throughout the adult lifespan [36, 37], heritable [38], and correlates with other

behaviors such as exploration and antipredatory response [34]. Thus, it can be considered a

personality trait [39]. Another common pattern found in the literature is that urbanization

leads to a reduction in predators [40, 41], such that species able to colonize urbanized habitats

can show larger densities or abundances than their rural counterparts [42,43,44,45]. These

changes in individual behaviors or personalities, conspecific density and predation pressure

can have profound effects on the breeding performance and survival prospects of individuals

[33], including their dispersal decisions [39]. There is a growing literature showing how the

dispersal patterns of some species change in response to local conditions and depending on

the phenotypic characteristics of the individuals present in a particular population [6, 21].

Despite this, there are no studies exploring whether urban individuals show different natal dis-

persal movements than their rural counterparts.

Here, we use the burrowing owl (Athene cunicularia) as a study model to assess the role

played by individual characteristics (i.e., sex, and personality), and the environment where an

individual was born (i.e., the breeding density and productivity of conspecifics) on the natal

dispersal distances of urban and rural individuals. We predict that if natal dispersal is related

to individual personality, bold and shy individuals (i.e., those with short and large FID, respec-

tively) will breed at different distances from the sites where they were born. Some studies show

that boldness is positively associated with dispersal tendency [15, 46, 47, 48] and thus, urban
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birds (which are bolder than rural individuals; [32, 33, 34,35]) should have longer natal dis-

persal distances than rural ones. However, our previous work has indicated that the breeding

dispersal propensity of burrowing owls is personality-dependent among rural but not urban

individuals, with shy birds moving further than bold ones but only in the rural habitat [39].

Moreover, as avian females usually move greater distances during dispersal than males [49,

50], we expect to find this general pattern among all urban and rural individuals. Social fea-

tures such as conspecific density and productivity can be used by individuals as indicators of

habitat quality, such that dispersers would prefer to move to high-density and high-productiv-

ity areas [51, 52, 53]. However, young individuals born in very dense areas could also disperse

to low-density areas to avoid intraspecific competition [54, 55]. In our study model, predation,

the main determinant of individual fitness [33, 41], is highly unpredictable; thus, conspecific

presence and productivity can be used as indicative clues of predation risk. We expect that

individuals born in areas with low conspecific density and/or productivity move to other areas

of higher quality (i.e., high conspecific density and/or productivity). As urban areas have fewer

predators than rural ones [41], this pattern is expected to be more pronounced among birds

living in more natural areas. Finally, we evaluated posterior survival and reproductive output.

We predict that due to the risk associated with moving to areas far from their natal sites, where

individuals are not familiar with the habitat and predation is difficult to assess, birds moving

greater distances should have lower reproductive output and survival than those staying close

to their natal areas [4].

Material and methods

Study system and field procedures

The study area covers approximately 5,400 km2 of natural grasslands, pastures and cereal

crops, surrounding the city of Bahı́a Blanca, Argentina [30, 36]. We surveyed burrowing owls

from 2006 to 2018, monitoring ca. 2500 and ca. 3200 urban and rural nests, respectively.

Urban nests were located in private and public gardens, vacant lots among houses, curbs of the

streets, roundabouts, and large avenues, in contact with the intense daily activity derived from

cities. Rural nests, on the contrary, were located in large extensions of natural or semi-natural

grasslands, with very low human presence. It is worth noting that the city is immediately sur-

rounded by large areas of pastures, and there is no obstacle precluding the movement of indi-

viduals between urban and rural areas. Moreover, as these owls are able to excavate their own

burrows, their distribution is not constrained by the availability of nesting structures.

During the breeding period (from November to early February), all known breeding sites

and areas of suitable habitat for the species were regularly visited, and active nests were geore-

ferenced using a portable GPS. Chicks were captured at their natal nests using bow nets and

ribbon carpets, and marked with plastic colored and numbered rings readable at a distance.

Resightings of marked birds were done annually during the breeding period, throughout the

study area [33, 36]-. At the end of every breeding season (except in 2018), we recorded the pro-

ductivity of each nest as the number of young that reached fledging age.

Natal dispersal distance was measured as the straight line between an individual’s nest site

and its first breeding nest. Individuals that were not observed in their first but in their second

breeding season were included in our analyses, using as natal dispersal distance the straight

line between their natal site and their second breeding nest. In these cases, we assumed that

natal dispersal distances were larger than the short breeding dispersal distances recorded for

the species [39], such that the breeding location at the second nest would not be far from the

first breeding point. However, we cannot discard the possibility that those birds were actually
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breeding for their first time at 2 years of age, and that this dispersal distance corresponds to

their natal dispersal.

We sexed adult birds based on plumage pattern and coloration [36] and, when needed, by

molecular procedures [44]. FID was measured using the standard procedure of walking toward

undisturbed individuals perched close to their nests during the day and recording the distance

at which the bird flew away [38]. We used one FID per individual or the mean when more

than one value was available, given the high repeatability of this behavior (r = 0.91; [35]). Con-

specific density was calculated using an annual aggregation index for each breeding pair,

obtained as their relative position within the spatial distribution of all breeding pairs [56]. This

index reflects conspecific density and was obtained using the GPS location of all breeding pairs

as Si = S exp (−dij) (with i 6¼ j), where dij was the linear distance between pairs i and j. We also

estimated the productivity of the breeding pairs in the surroundings of each breeding site

using a modification of this aggregation index, where the distance of each breeding pair was

weighted by its productivity. Conspecific productivity was then obtained as the residual of this

last variable against the aggregation index calculated previously.

Ethics statements

Fieldwork and procedures were conducted under permits from the Argentinean wildlife

agency (22500-4102/09), and the owners of private properties, in accordance with the

approved guidelines of the Ethics Committee of CSIC (CEBA-EBD-11-28).

Statistical approach

We used Generalized Linear Mixed Models (GLMM) to assess the effects of individual traits

(sex and personality, measured as FID), and social variables (conspecific density and produc-

tivity in the natal area) on the natal dispersal distances (log-transformed, identity link function,

normal error distribution) of urban and rural burrowing owls. Due to the low proportion of

birds that bred for the first time in their natal nests (philopatric individuals), dispersal distance

was modeled as a continuous variable ranging from 0 to the maximum distance observed.

Models were built using a different combination of variables in interaction with habitat (urban

or rural) but including alternatively only one descriptor of the social environment (conspecific

density or productivity) due to their slight, but significant, correlation (Spearman correlation:

rho = 0.41, p<0.0001). All models included the year as a random variable. Although individu-

als born in the same clutches share the same social environment and habitat and can even

show similar FID [38], clutch identity was not considered as a random term in models because

only 20% of individuals belong to shared clutches (45 individuals of 22 clutches). Thus, the

dimension of the variance-covariance matrix was exactly zero and model comparissons using

likelihood ratio (LRT) tests did not support the inclusion of this random term in models.

We then compared the social environment of individuals (conspecific density and produc-

tivity; identity link functions, normal error distributions) between natal and dispersal sites.

Due to differences in conspecific density and productivity between rural and urban areas, we

included the habitat of recruitment as a factor in the models. We tested whether these differ-

ences were related to the individuals’ dispersal distances, again considering potential habitat

differences. All models included the year as a random variable to control for interannual

differences.

Next, we assessed the effect of dispersal distance on immediate (the first breeding event)

and long term productivity of individuals (log link functions, negative binomial error distribu-

tions). For long term productivity analyses we only considered individuals with known repro-

ductive output for every year during their reproductive careers and not seen during at least 2
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years prior to the end of this study (until 2016), which had a very high probability of being

dead (probability of not resighting an alive individual over 2 years at least once was 0.005 for

males and 0.033 for females). Models included the dispersal distance of individuals, the habitat

where the bird bred, and its sex. Models obtained for long term productivity also included, for

each year (random term), the age of each bird (covariate) and its identity (random term) to

control for potential improvements along years and pseudoreplication [4]. We also considered

potential habitat and sexual differences by including the interaction between sex and dispersal

distance and between habitat and dispersal distance in models.

Model selection was performed using the Akaike Information Criterion corrected for small

sample sizes (AICc; [57]). Models within 2 AICc units of the best one were considered as alter-

natives and used to perform model averaging (MuMIn package, [58]). All continuous variables

were centered and standardized before modeling to properly estimate their main effects

regardless of whether we included the interaction [59]. We considered that a given effect

received no, weak or strong statistical support when the 95% confidence interval (CI) strongly

overlapped with zero, barely overlapped with zero, or did not overlap with zero, respectively.

Finally, we calculated the coefficient of determination, R2, as a measure of the variance

explained by a model [60]. Statistical analyses were conducted in R 3.1.2 ([61] using the pack-

age “lme4” [62]).

We modeled apparent survival following basic capture–mark–recapture methods for open

populations, in which return rates were corrected for detection (p) probabilities [63]. For this

purpose, we created encounter histories for every marked individual with known natal dis-

persal distances. We evaluated if adult apparent survival was related to natal dispersal distance

(log transformed) by including it as an individual covariate while habitat (rural and urban)

and sex were considered as factors. We first tested the effects of time, habitat and sex on detec-

tion probability and, once the best structure for this parameter was selected, we modeled sur-

vival. Models differing by < 2 AICc points were considered equivalent [57]. We tested the

goodness-of-fit of our global model using the program U-CARE [64]. Models were imple-

mented in the program E-SURGE 2.1.4 [65].

Results

During the study period, we marked 830 urban and 566 rural burrowing owls with PVC rings,

and were able to record 321 natal dispersal events in 75 rural (48 males and 27 females) and

246 urban (129 males and 117 females) birds. However, as FID was not measured for all indi-

viduals, our dataset was reduced to 224 individuals, 85% of which were resighted during their

first breeding. Although some individuals moved more than 10km, median dispersal distance

was much shorter (322m), and most birds bred for the first time close to their natal areas (per-

centage of individuals remaining within 1 km of their natal sites: 75%; Fig 1A) and in the same

habitat of birth (96% of dispersions were within the same habitat type). Movements between

habitats were rare (10 individuals out of 224), and mainly from urban to rural areas (6 move-

ments from urban to rural areas vs 3 movements from rural to urban ones).

Correlates of natal dispersal

Sex, individual personality and habitat were the most important variables to explain interindi-

vidual differences in natal dispersal distances (Tables 1 and 2). Urban birds dispersed over

shorter distances than rural ones, with females moving farther than males in both habitat

types. Moreover, individuals with shorter FID dispersed over greater distances than their

counterparts, regardless of their sex or the habitat where they were born (Fig 1B). Although

social variables were weakly related to dispersal distances, individuals born in areas with low

Natal dispersal in urban and rural owls
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Fig 1. A) Natal dispersal distances of urban and rural burrowing owls Athene cunicularia (males: gray bars; females: black bars). The inserted figure shows a detailed

distribution of dispersal distances lower than 1km. B) Relationship between natal dispersal distances (log-transformed) and individual personality (measured as FID,

flight initiation distance). Lines show the tendency observed for males (gray line) and females (black line). Dashed lines represent the 95% confidence interval. Dots are

raw data (males: gray dots, females: black dots).

https://doi.org/10.1371/journal.pone.0226089.g001

Table 1. Models obtained to assess the relative importance of individual’s traits (sex and personality, measured as FID), and social variables (conspecific density

and productivity in the natal area) on the natal dispersal distances of rural and urban (habitat) burrowing owls Athene cunicularia. Models shown are the first 10

models ranked using their AICc. K: number of estimated parameters in approximating model, AICc: Akaike information criteria with small sample bias adjustment,

ΔAICc: difference between each model and the best model (i.e., the model with the lowest AICc), weight: Akaike weight.

Model K AICc ΔAICc weight

FID + habitat + sex 6 590.51 0.00 0.25

conspeficic density + FID + habitat + sex 7 590.86 0.35 0.21

conspecific productivity + FID + sex + habitat 7 592.53 2.03 0.09

conspeficic density + FID + sex 6 592.93 2.42 0.07

conspecific productivity�habitat + FID�habitat + sex�habitat 10 593.07 2.56 0.07

conspeficic density + sex 5 593.16 2.65 0.07

habitat + sex 5 593.70 3.19 0.05

Sex 4 594.34 3.83 0.04

conspeficic density + habitat + sex 6 594.61 4.10 0.03

FID�habitat + sex�habitat 8 594.70 4.20 0.03

https://doi.org/10.1371/journal.pone.0226089.t001
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conspecific density tended to dispersed greater distances than those born in high-density areas

(Table 2). Importantly, when habitat was removed from the analysis, conspecific density

received stronger support as a predictor of dispersal distances, with individuals born in high-

density areas dispersing less than those born in more isolated sites (Table 2). This change in

the result suggests that habitat differences in dispersal distances are actually related to the

higher conspecific density recorded in the surroundings of urban compared to rural sites (esti-

mate: 13.16, 95% CI: 10.99–15.33). Finally, we found no differences in conspecific density or

productivity between natal and dispersal areas in both habitat types (conspecific density: esti-

mate: 2.44, 95% confidence interval: -5.58–1.35; conspecific productivity: estimate: 0.65, 95%

confidence interval: -0.29–1.59). However, individuals dispersing farther settled in areas more

similar in terms of conspecific densities than those staying close to their natal areas (estimate:

-1.17, 95% CI: -2.20 - -0.15), a pattern not observed when considering changes in conspecific

productivity (estimate: 0.27; 95% CI: -0.77–1.32). It is worth noting that similar results were

obtained when restricting our dataset to individuals resighted during their first breeding

attempt (S1 Table).

Correlates of natal dispersal distances on productivity and survival

Birds breeding for their first time in rural areas were less productive than those inhabiting

urban ones (Tables 3 and 4). However, when they dispersed farther from their natal areas, they

raised more chicks during their first breeding attempt than those staying nearby, a relationship

that was absent among urban individuals. Besides, females dispersing at larger distances of

their natal areas also increased their productivity in the first breeding event. When considering

the long term productivity of individuals (data available for 144 individuals), we found that all

birds, urban and rural, tended to increase productivity with age and when at greater natal dis-

persal distances (Table 4). Results remained consistent when we repeated models using only

individuals resighted during their first breeding attempt (S2 Table).

We estimated the effect of dispersal distances on future apparent survival probabilities

using encounter histories of 248 individuals (1411 resightings). The overall goodness-of-fit test

of the model was not statistically significant (χ2 = 34.34, d.f. = 43, p = 0.824). Model selection

Table 2. Relative importance of individual’s traits (sex and personality, measured as FID), and social variables

(conspecific density and productivity in the natal area) on the natal dispersal distances of rural and urban (habi-

tat) burrowing owls Athene cunicularia. Estimates and 95% confidence intervals (2.5% and 97.5%) obtained after

averaging models in Table 1 (all models) and using the subset of models that did not include habitat (models without

habitat). We considered that a given variable has no, weak or strong support when the 95% confidence interval strongly

overlapped with zero, barely overlapped with zero (asterisk), or did not overlap with zero (in bold), respectively. Results

remained unchanged when model averaging was performed using all candidate models, not only those with

ΔAICc< 2 (S3 Table).

All models

Variable Estimate 2.50% 97.50%

FID -0.18 -0.34 -0.03

habitat (urban) -0.49 -0.88 -0.09

sex (female) 0.63 0.40 0.87

conspecific density -0.10 -0.25 0.05

Models without habitat

Variable Estimate 2.50% 97.50%

FID -0.10 -0.23 0.03�

sex (female) 0.59 0.35 0.83

conspecific density -0.14 -0.28 0.00

https://doi.org/10.1371/journal.pone.0226089.t002
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Table 3. Models obtained to assess the relationship between natal dispersal distances and productivity during the first breeding attempt, and long term productivity

of rural and urban (habitat) burrowing owls Athene cunicularia. All models were run including year as a random term; models for long term productivity also included

individual as a random term. Models shown are the first 10 models ranked using their AICc. K: number of estimated parameters in approximating model, AICc: Akaike

information criteria with small sample bias adjustment, ΔAICc: difference between each model and the best model (i.e., the model with the lowest AICc), weight: Akaike

weight.

Productivity during the first breeding attempt

Model K AICc ΔAICc weight

sex + dispersal distance�habitat 7 1372.93 0.00 0.42

dispersal distance�sex + habitat 7 1374.79 1.86 0.17

dispersal distance�sex 6 1374.90 1.96 0.16

sex 4 1376.48 3.55 0.07

sex + habitat 5 1376.54 3.61 0.07

dispersal distance�habitat 6 1377.89 4.96 0.04

sex + dispersal distance + habitat 6 1377.99 5.06 0.03

sex + dispersal distance 5 1378.24 5.31 0.03

dispersal distance + habitat 5 1382.84 9.91 0.00

dispersal distance 4 1383.60 10.67 0.00

Long term productivity

Model k AICc ΔAICc weight

sex + age 5 1239.58 0.00 0.39

sex + age + habitat 6 1240.69 1.11 0.22

sex + age + distst 6 1241.34 1.76 0.16

sex + age + distst + habitat 7 1242.15 2.57 0.11

sex + age + distst�habitat 8 1242.48 2.90 0.09

sex 4 1246.63 7.05 0.01

sex + habitat 5 1247.52 7.94 0.01

sex + distst 5 1248.16 8.58 0.01

sex + distst�habitat 7 1248.52 8.94 0.00

sex + distst + habitat 6 1248.64 9.06 0.00

https://doi.org/10.1371/journal.pone.0226089.t003

Table 4. Estimates and 95% confidence intervals (2.5% and 97.5%) obtained after model averaging to assess the

relationship between natal dispersal distances and productivity during the first breeding attempt, and long term

productivity of rural and urban (habitat) burrowing owls Athene cunicularia. We considered that a given variable

has no, weak or strong support when the 95% confidence interval strongly overlapped with zero, barely overlapped

with zero (asterisk), or did not overlap with zero (in bold), respectively. Results remained unchanged when model aver-

aging was performed using all candidate models, not only those with ΔAICc< 2 (S3 Table).

Productivity during the first breeding attempt

Variables Estimate 2.50% 97.50%

dispersal distance -0.27 -0.82 0.28

sex (females) 0.50 0.13 0.87

habitat (rural) -0.36 -0.76 0.04

dispersal distance�sex (females) 0.62 0.05 1.19

dispersal distance�habitat (rural) 0.42 0.11 0.72

Long term productivity

Variables Estimate 2.50% 97.50%

sex (female) 0.27 0.10 0.45

age 0.08 0.03 0.14

habitat (urban) 0.11 -0.11 0.34

dispersal distance 0.02 -0.06 0.11

https://doi.org/10.1371/journal.pone.0226089.t004
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showed that resighting probabilities were lower for females (estimate: 0.82, 95% CI: 0.72–0.90)

than for males (estimate: 0.93, 95% CI: 0.86–0.96; Table 5). Using this resighting structure, we

tested the effect of natal dispersal distances on survival probabilities. The best model supported

an interaction between dispersal distance and sex (Table 5), with females dispersing farther

reducing their survival prospects compared to females staying closer (beta estimate: -1.21, 95%

CI: -2.29 - -0.14). For males, future survival was not correlated with dispersal distances, as the

estimate of the slope of this variable was not different to 0 (beta estimate: 1.60, 95% CI: -0.30–

3.50; Fig 2). Habitat was not retained in models as a significant predictor of survival.

Discussion

Our results show that variability in the natal dispersal distances observed among burrowing

owls was mainly explained by the additive effects of sex, personality and habitat. As expected,

females moved farther distances than males in both habitat types, while urban birds (both

males and females) dispersed over shorter distances compared to rural ones, partly because of

the higher conspecific density recorded in urban compared to rural areas. Moreover, bold

Table 5. Model comparison to assess the effects of natal dispersal distances (distance) on immediate survival probabilities of urban and rural (habitat) burrowing

owls Athene cunicularia. K: number of estimated parameters in approximating model, AICc: Akaike information criteria with small sample bias adjustment, ΔAICc: dif-

ference between each model and the best model (i.e., the model with the lowest AICc), deviance: deviance explained by each model.

Survival model Detection Probability K deviance AICc ΔAICc

distance�sex sex 6 735.58 747.73 0.00

constant sex 3 744.20 750.25 2.51

distance sex 4 743.24 751.24 3.51

sex sex 4 743.72 751.80 4.06

habitat sex 4 744.17 752.25 4.51

distance�habitat sex 6 740.19 752.35 4.62

distance+sex sex 5 743.03 753.14 5.41

distance+habitat sex 5 743.18 753.29 5.55

habitat+sex sex 5 743.66 753.77 6.03

time sex 12 729.65 754.24 6.50

time+sex sex 13 728.62 755.30 7.57

habitat�sex sex 6 743.57 755.73 7.99

ttime+habitat sex 13 729.65 756.33 8.60

time+habitat+sex sex 14 728.59 757.38 9.65

time�sex sex 20 722.68 764.29 16.55

time�habitat sex 21 722.75 766.51 18.78

time�habitat�sex sex 36 703.86 781.10 33.37

time�habitat�sex constant 35 707.06 782.01 34.28

time�habitat�sex habitat+sex 37 703.84 783.39 35.65

time�habitat�sex habitat 36 707.05 784.29 36.56

time�habitat�sex habitat�sex 38 703.56 785.42 37.68

time�habitat�sex time+sex 41 697.32 786.17 38.43

time�habitat�sex time 40 700.19 786.70 38.96

time�habitat�sex time+habitat+sex 42 697.31 788.51 40.78

time�habitat�sex time+habitat 41 700.17 789.02 41.29

time�habitat�sex time�sex 46 695.13 795.81 48.08

time�habitat�sex time�habitat 46 697.52 798.21 50.47

time�habitat�sex time�habitat�sex 57 682.28 809.86 62.13

https://doi.org/10.1371/journal.pone.0226089.t005
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individuals—those with shorter FID—dispersed larger distances than their counterparts,

regardless of their sex or the habitat and social environment in which they were born.

Sexual differences in natal dispersal distances are common among vertebrates to prevent

mating between close relatives (inbreeding avoidance [66, 67, 68, 69]). However, the sex that

disperses farther is not always the same and largely depends on the prevailing mating system

of the species. In resource-defense mating systems, which is the prevailing system among

birds, natal dispersal distances are generally shorter for males because they have to acquire and

defend territories and, therefore, they may benefit from remaining near their natal area, where

they are most familiar with resources and are probably best able to compete for them

[49,70,71]. In our study species, males, but rarely females, actively defend an area larger than

that immediately surrounding the nest burrow from conspecifics, with a more active response

toward intruders at distances shorter than 100m [72]. This behavioral difference between sexes

may underlie the sexual differences observed in the dispersal distances of individuals.

Sex is not the only individual trait affecting dispersal distances among burrowing owls. Pre-

vious findings showed that bolder, more asocial, and more active individuals can move greater

distances and are more suited to colonizing new areas than shyer, social and less active ones

[15,73,74]. In agreement with these results, we found a significant negative relationship

between FID and natal dispersal among both urban and rural males and females. After settling

in a breeding site, however, these bold individuals are more faithful than shy ones [39]. This

apparent contradiction can be solved when considering the different behaviors correlated with

FID. On the one hand, FID is positively correlated with explorative behavior [34]. Thus, bold

individuals, which are also more explorative, can search for breeding sites exploring wider

Fig 2. Relationship between natal dispersal and survival probabilities of male (gray lines) and female (black lines)

burrowing owls Athene cunicularia. Solid lines represent the general tendency obtained using the first model shown

in Table 5; dashed lines: 95% confidence intervals.

https://doi.org/10.1371/journal.pone.0226089.g002
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areas during their natal displacements than shy owls. When settled, however, bold individuals

tend to remain in their breeding sites during consecutive years, even after suffering predation

events that may cause their breeding failure [39]. A frequent finding from a wide range of ver-

tebrate species is that individuals may change breeding sites after a poor breeding performance

[75, 76, 77], or under predation pressures [78, 79, 80]. However, bolder individuals, which are

also more aggressive toward predators [34], can choose to remain in their breeding site and

cope with this important conditioning to take advantage of site familiarity.

Social variables received limited support in our modeling approach when we considered

the habitat where individuals were born. However, after removing habitat from models, con-

specific density became a strong predictor of dispersal distances, with individuals born in areas

with low conspecific density covering greater distances than those born in high density areas.

Thus, differences in natal dispersal patterns among urban and rural birds could be partially

attributed to differences in conspecific density between habitats. Although high population

densities can reduce individual fitness via increased competition for resources or direct inter-

ferences between individuals, thus promoting dispersal [81], our results did not support this

hypothesis. Conversely, burrowing owls dispersed shorter distances when born in high-density

areas. Several studies have shown that individuals use information about conspecifics (i.e.,

their presence, density or breeding performance) to predict habitat quality and thus select

whether or not to settle [52, 82, 83, 84]. Young burrowing owls recruit into their breeding ter-

ritories during their first year of life, so they are not able to use conspecific productivity as a

proxy of habitat quality. Conversely, they can use conspecific density. Conspecific density can

correlate with habitat quality due to the movement of individuals to high-quality patches and/

or to the differential mortality of resident conspecifics. In our study species, predation is the

main determinant of breeding failure [39, 41], so areas with a high density of conspecifics can

represent areas where predation risk is rather low.

In vertebrates, current evidence suggests that natal dispersal could be penalized in terms of

fitness [4], although some researches have reported opposite patterns [85, 86]. The low natal

dispersal distances observed in our study suggest that moving far from areas where individuals

were born is not the preferred strategy for burrowing owls. However, when analyzing the rela-

tionships between individual survival and breeding prospects, we found that females and rural

individuals dispersing farther from their natal areas raised more chicks during their first

breeding attempt than those staying close, a relationship that was absent among urban individ-

uals. Moreover, long term productivity tended to increase when both urban and rural individ-

uals dispersed at greater distances from their natal areas. Contrarily, females dispersing farther

reduced their survival prospects compared to females staying closer and males. Thus, the

reproductive benefits associated with large natal dispersal in females are outweighed by its sur-

vival costs [87, 88, 89]. This, along with the benefits obtained by males that stay close to natal

areas, explain the low dispersal distances observed in the whole population. Although we can-

not discard the possibility that the lower survival of females dispersing longer distances arises

as a consequence of permanent emigration, the large size our study area (5400km2) and the

intensive monitoring we performed (as shown by the large resignting probability observed for

all individuals, independently of their sex and habitat) reduce this likelihood [4].

In conclusion, we found evidence supporting a role for individual traits (sex and personal-

ity) and conspecific density in explaining variability in the natal dispersal patterns of burrow-

ing owls. Although urban areas per se did not affect this demographic parameter, the lower

predation risk experienced by urban individuals may favor greater conspecific densities, which

actually reduce dispersal propensity. From an evolutionary perspective, and although it is

known that very low rates of dispersal among subpopulations are sufficient for the system to

behave as a panmictic population [90], rates of dispersal among subpopulations determine the
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level of gene flow and could, therefore, affect processes such as local adaptation. Thus, the low

natal dispersal distances combined with reduced breeding dispersal may be the underlying

cause explaining the genetic structure detected among urban and rural populations of burrow-

ing owls at small spatial scales [91]. Further research is needed to assess the generalizability of

these results to other taxa to properly ascertain the consequences of urbanization in the ecol-

ogy and evolution of species thriving in anthropogenic areas.
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77. Forero MG, Donázar JA, Blas J, Hiraldo FCauses and consequences of territory change and breeding

dispersal distance in the Black Kite. Ecology. 1999; 80(4): 1298–1310. https://doi.org/10.2307/

3071887

78. Greig-Smith PW. Dispersal between nest-sites by stonechats Saxicola torquata in relation to previous

breeding success. Ornis Scandinavica;1982; 232–23. https://doi.org/10.2307/3676304

79. Gavin TA, Bollinger EK. Reproductive correlates of breeding-site fidelity in Bobolinks (Dolichonyx oryzi-

vorus). Ecology. 1988; 69(1): 96–103. https://doi.org/10.2307/1943164

80. Wiklund CG. Breeding lifespan and nest predation determine lifetime production of fledglings by male

Merlins Falco columbarius. Proc R Soc Lond B Biol Sci. 1996; 263(1371): 723–728. https://doi.org/10.

1098/rspb.1996.0108

81. Bowler DE, Benton TG. Causes and consequences of animal dispersal strategies: relating individual

behaviour to spatial dynamics. Biol. Rev. 2005; 80: 205–225. https://doi.org/10.1017/

s1464793104006645 PMID: 15921049

82. Danchin E, Boulinier T, Massot M. Conspecific reproductive success and breeding habitat selection:

implications for the study of coloniality. Ecology. 1998; 79(7): 2415–2428. https://doi.org/10.2307/

176832

83. Brown CR, Brown MB, Danchin E. Breeding habitat selection in cliff swallows: The effect of conspecific

reproductive success on colony choice. J Anim Ecol. 2000; 69(1):133–42. https://doi.org/10.1046/j.

1365-2656.2000.00382.x.

84. Danchin E, Giraldeau LA, Valone TJ, Wagner RH. Public information: from nosy neighbors to cultural

evolution. Science.2004; 305(5683): 487–491. https://doi.org/10.1126/science.1098254 PMID:

15273386

85. Lemel JY, Belichon S, Clobert J, Hochberg ME. The evolution of dispersal in a two-patch system: some

consequences of differences between migrants and residents. Evo Ecol. 1997; 11(5): 613–629. https://

doi.org/10.1007/s10682-997-1516-z.

86. Spear LB, Pyle P, Nur N. Natal dispersal in the western gull: proximal factors and fitness consequences.

J Anim Ecol. 1998; 67(2): 165–179. https://www.jstor.org/stable/2647486.

87. Tarwater CE, Brawn JD. Family living in a Neotropical bird: variation in timing of dispersal and higher

survival for delayed dispersers. Anim Behav. 2010; 80(3): 535–542. https://doi.org/10.1016/j.anbehav.

2010.06.017.

88. Bonte D, Van Dyck H, Bullock JM, Coulon A, Delgado M, Gibbs M, et al. Costs of dispersal. Biol Rev.

2012; 87(2): 290–312. https://doi.org/10.1111/j.1469-185X.2011.00201.x PMID: 21929715

89. Cox AS, Kesler DC. Reevaluating the cost of natal dispersal: post-fledging survival of red-bellied wood-

peckers. The Condor. 2012; 114(2): 341–347. https://doi.org/10.1525/cond.2012.110070.

90. Hoelzel AR, Dover GA. Genetic differentiation between sympatric killer whale populations. Heredity.

1991; 66(2): 191. https://doi.org/10.1038/hdy.1991.24

91. Mueller JC, Kuhl H, Boerno S, Tella JL, Carrete M, Kempenaers B. Evolution of genomic variation in the

burrowing owl in response to recent colonization of urban areas. Proc R Soc Lond B Biol Sci. 2018; 285

(1878): 20180206. https://doi.org/10.1098/rspb

Natal dispersal in urban and rural owls

PLOS ONE | https://doi.org/10.1371/journal.pone.0226089 February 12, 2020 17 / 17

https://doi.org/10.2307/3071887
https://doi.org/10.2307/3071887
https://doi.org/10.2307/3676304
https://doi.org/10.2307/1943164
https://doi.org/10.1098/rspb.1996.0108
https://doi.org/10.1098/rspb.1996.0108
https://doi.org/10.1017/s1464793104006645
https://doi.org/10.1017/s1464793104006645
http://www.ncbi.nlm.nih.gov/pubmed/15921049
https://doi.org/10.2307/176832
https://doi.org/10.2307/176832
https://doi.org/10.1046/j.1365-2656.2000.00382.x
https://doi.org/10.1046/j.1365-2656.2000.00382.x
https://doi.org/10.1126/science.1098254
http://www.ncbi.nlm.nih.gov/pubmed/15273386
https://doi.org/10.1007/s10682-997-1516-z
https://doi.org/10.1007/s10682-997-1516-z
https://www.jstor.org/stable/2647486
https://doi.org/10.1016/j.anbehav.2010.06.017
https://doi.org/10.1016/j.anbehav.2010.06.017
https://doi.org/10.1111/j.1469-185X.2011.00201.x
http://www.ncbi.nlm.nih.gov/pubmed/21929715
https://doi.org/10.1525/cond.2012.110070
https://doi.org/10.1038/hdy.1991.24
https://doi.org/10.1098/rspb
https://doi.org/10.1371/journal.pone.0226089

