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The melanocortin (MC) peptides are produced centrally by propiomelanocortin (POMC)
neurons within the arcuate nucleus of the hypothalamus and act through five
seven-transmembrane G-protein coupled melanocortin receptor (MCR) subtypes. The
MC3R and MC4R subtypes, the most abundant central MCRs, are widely expressed
in brain regions known to modulate neurobiological responses to ethanol, including
regions of the hypothalamus and extended amygdala. Agouti-related protein (AgRP),
also produced in the arcuate nucleus, is secreted in terminals expressing MCRs and
functions as an endogenous MCR antagonist. This review highlights recent genetic and
pharmacological findings that have implicated roles for the MC and AgRP systems in
modulating ethanol consumption. Ethanol consumption is associated with significant
alterations in the expression levels of various MC peptides/protein, which suggests that
ethanol-induced perturbations of MC/AgRP signaling may modulate excessive ethanol
intake. Consistently, MCR agonists decrease, and AgRP increases, ethanol consumption
in mice. MCR agonists fail to blunt ethanol intake in mutant mice lacking the MC4R,
suggesting that the protective effects of MCR agonists are modulated by the MC4R.
Interestingly, recent evidence reveals that MCR agonists are more effective at blunting
binge-like ethanol intake in mutant mice lacking the MC3R, suggesting that the MC3R has
opposing effects on the MC4R. Finally, mutant mice lacking AgRP exhibit blunted voluntary
and binge-like ethanol drinking, consistent with pharmacological studies. Collectively,
these preclinical observations provide compelling evidence that compounds that target
the MC system may provide therapeutic value for treating alcohol abuse disorders and
that the utilization of currently available MC-targeting compounds- such as those being
used to treat eating disorders- may be used as effective treatments to this end.
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INTRODUCTION AND OVERVIEW
The melanocortin (MC) system has been implicated in a host
of physiological functions. Emerging evidence indicates that this
neuropeptide system is also involved in modulating the neurobio-
logical responses to drugs of abuse, including ethanol. This review
will present notable discoveries in the preclinical realm that high-
light the role of the central MC system in the neurobiological
responses to ethanol. In light of these findings, special consid-
eration will be given to the MC system as a potential target for
treating alcohol use disorders (AUDs) in clinical populations.

Post-translational processing of the prohormone, proopi-
omelanocortin (POMC), involves cleavage by two prohormone
convertases, PC1/3 and PC2, that yield two different classes of
peptides, melanocortins (MCs) and the opioid β-endorphin-
hence the term pro-opio-melanocortin. Of the MC family, POMC
cleavage leads to several peptides including: α-, β-, and γ-
melanocyte stimulating hormone (MSH) as well as adrenocorti-
cotrophic hormone (ACTH), which all share the same core amino
acid sequence, His-Phe-Arg-Trp, that is required for the biological
activity of these peptides. POMC is primarily expressed within the
central nervous system (CNS) within the nucleus of the solitary

tract (NST) of the brainstem, the arcuate nucleus of the hypotha-
lamus (Arc), and the pituitary (Joseph et al., 1983; Hadley and
Haskell-Luevano, 1999). Peripheral expression of POMC has also
been observed in the skin, spleen, thyroid, and the gastrointestinal
tract (Smith and Funder, 1988). The post-translational processing
of POMC is tissue specific (Pritchard et al., 2002), which allows a
multitude of peptides to be derived from a single prohormone
(Figure 1).

These peptides exert their actions onto five MC recep-
tors (MCRs). These five receptors, numbered MC1-5R, which
represent the order in which they were cloned, are seven-
transmembrane G-protein coupled receptors coupled through
Gαs signaling pathways. The MC1R, MC2R, and MC5R have been
observed to be widely expressed throughout peripheral tissue (see
Chhajlani, 1996; Wikberg, 1999 for review). Although the MC3R
and MC4R have also been observed in the periphery (Gantz et al.,
1993a; Chhajlani, 1996), these MCRs are the predominant MCR
subtypes expressed in the brain (Mountjoy, 2010) and thus the
MC3R and MC4R will be the focus of this review.

Immunohistochemical (IHC) and in situ hybridization (ISH)
studies have localized central expression of the MC4R to be widely
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FIGURE 1 | Melanocortin ligands and receptors. (A) Simplified model
of posttranslational processing of POMC. Agonists that act at
MCR1-5 are highlighted black. (B) These ligands exert their effects
via five G-protein coupled receptors, differentially expressed
throughout the body, with varying degrees of potency. ACTH,

adrenocorticotropic hormone; CLIP, corticotrophin-like intermediate lobe
peptide; CPE, carboxypeptidase E; JP, junctional peptide; LPH,
lipotropic hormone; N-POC, N-pro-opiocortin; MC, melanocortin; MSH,
melanocyte stimulating hormone; PC, prohormone convertase; POMC,
proopiomelanocortin.

distributed across the striatum, hippocampus, cortex, amygdala,
brainstem, thalamus, and hypothalamus (Mountjoy et al., 1994;
Kishi et al., 2003; Liu et al., 2003). Similar studies have deter-
mined that expression of the MC3R overlaps a great deal with
the MC4R, although the former is restricted to the hypothalamus
and, to a lesser extent, the brainstem (Roselli-Rehfuss et al., 1993).
It is also worth noting that despite their overlapping expression
patterns, these MCR subtypes possess differential affinity for MC
peptides (Figure 1). Notably, the four MC peptides are approx-
imately equipotent at the MC3R (Roselli-Rehfuss et al., 1993)
though γ-MSH is reported to possess much greater selectivity and
potency at the MC3R than at any other MCR subtype (Renquist
et al., 2011). Conversely, α-MSH, β-MSH, and ACTH are simi-
larly potent for the MC4R while γ-MSH is the least (Gantz et al.,
1993b). Importantly, γ-MSH has a much greater affinity and
potency for the MC3R than MC4R (Grieco et al., 2000; Kask et al.,
2000)- a fact that has been taken advantage of when attempting
to selectively target MCR subtypes (Marks et al., 2006; Lee et al.,
2008).

In addition to the aforementioned MC peptides and receptors,
the MC system is unique among neuropeptide systems in that an
endogenous antagonist, agouti-related protein (AgRP) exists for

the system. AgRP has been found to be predominately expressed
in the Arc in the CNS as well as the adrenal cortex in the periphery
(Broberger et al., 1998; Haskell-Luevano et al., 1999). Although
AgRP is synthesized within the Arc, it has widespread projections
to other hypothalamic subnuclei including the paraventricular
nucleus of the hypothalamus (PVN), ventromedial hypothala-
mus (VMH), dorsomedial hypothalamus (DMH), and the lateral
hypothalamus (LH) as well as regions beyond the hypothalamus
including the NST, amygdala, bed nucleus of the stria terminalis
(BNST), ventral tegmental area (VTA), and nucleus accumbens
(NAc; Broberger et al., 1998; Bagnol et al., 1999). This peptide acts
as a competitive antagonist that is equipotent at both MC3R and
MC4R. Interestingly, evidence also exists that suggests AgRP acts
as an inverse agonist- reducing adenylyl cyclase activity to below
baseline levels (Nijenhuis et al., 2001). This presents the intrigu-
ing possibility that AgRP may be able to regulate MCR activity
independent of endogenous MC peptide activity.

Given the multitude of peptides derived from the POMC
prohormone, it comes as no surprise that the MC system has
been implicated in a myriad of physiological functions. The
term melanocortin was coined when early research found that
the peptide exhibited melanotropic and/or adrenocorticotropic
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activity. The MC system has since been implicated in a wide
array of other functions, such as sexual behavior, inflammation,
and feeding behavior. Although these functions have been dis-
cussed in more detail elsewhere (see Gantz and Fong, 2003 for
review), this review focuses on the emerging evidence that the MC
system significantly modulates the neurobiological responses to
ethanol.

ETHANOL’S EFFECTS ON THE MELANOCORTIN SYSTEM
Through an ever-increasing body of literature, it is clear that
ethanol causes significant alterations in the MC system. The
first hint that the MC system was involved in the neurobiolog-
ical responses to ethanol was observed when ethanol exposure
caused a marked reduction in hypothalamic levels of ACTH, one
of the precursors to α-MSH (Gambert et al., 1981). Wilkinson
et al. (1986) later reported similar reductions in α-MSH levels
following exposure to acute ethanol vapor in mice.

These reports and many others demonstrate that ethanol
impacts the MC system; however, it appears that the manner
in which ethanol is exposed to the subject can determine how
the MC system is altered (see Table 1). For example, increases
in POMC levels have been observed following ethanol exposure
in vitro (Pastorcic et al., 1994) while Kokare et al. (2008) reported
that rats in a withdrawal state following chronic exposure to
an ethanol-liquid diet displayed similar increases in α-MSH.
However, chronic ethanol exposure via vapor chamber, and in
the absence of withdrawal, has been shown to decrease POMC
levels in rats (Scanlon et al., 1992). Similarly, chronic exposure to
an ethanol liquid-diet without withdrawal also reduced levels of
POMC as well as convertase PC1/3 (Navarro et al., 2013). Given
that PC1/3 is an enzyme responsible for cleaving POMC into sub-
sequent MC peptides, it should come as no surprise that chronic
ethanol exposure via an ethanol liquid-diet has been shown to
cause a reduction in α-MSH as well (Rainero et al., 1990; Navarro
et al., 2008).

Additionally, a concerted effort has been made to explore
the innate differences in the MC system of rodents that display
enhanced ethanol consumption, which may be used to deter-
mine possible biomarkers to help identify individuals at risk of
developing AUDs. To this end, De Waele and Gianoulakis (1994)
observed a marked increase in POMC levels following voluntary
consumption of ethanol in ethanol-preferring C57BL/6J (C57),
but not ethanol-avoiding DBA/2 mice. Although these data are
contradictory to many of the studies discussed above, the different
methodologies (e.g., strain, species, modality of ethanol exposure,
etc.) may, in part, account for these incongruities. Additionally,
Lindblom et al. (2002) reported that ethanol-naïve Alko Alcohol
(AA) rats, which are selectively bred to prefer ethanol, displayed
elevated POMC expression and reduced AgRP mRNA in the Arc
relative to their non-ethanol preferring ANA counterparts. The
authors then went on to explore facets of the MC system beyond
the peptides themselves and discovered that AA rats exhibited
abnormal expression patterns of the MC3R in the shell of the
NAc, PVN, VMH, and Arc. Moreover, a recent study from our
lab found that an acute injection of ethanol causes a significant
increase in AgRP levels within the Arc of C57 mice while the
same effect was absent in low drinking 129/SvJ mice (Cubero

Table 1 | Summary of findings examining the effects of ethanol

exposure on the melanocortin system.

Method of ethanol

delivery

Brain area Alterations in protein

expression

Acute ethanol diet Amygdala = α-MSH6

Arc ↓ α-MSH6, = AgRP4,
↓ POMC5, ↓ PC1/35,
= PC25

BNST ↓ α-MSH4

CeA = α-MSH4, ↓ α-MSH3

DMH = α-MSH4, ↓ α-MSH3

Frontal cortex = α-MSH6

Hippocampus = α-MSH6

LH = α-MSH4,6

NAc = α-MSH6

PAG = α-MSH4

Pituitary ↓ α-MSH6

PVN = α-MSH4

PVT ↓ α-MSH4

Striatum = α-MSH6

Substantia nigra ↓ α-MSH6

Chronic ethanol diet Arc ↓ α-MSH3, ↓POMC5

BNST ↓ α-MSH4

CeA ↑ α-MSH3, ↓ α-MSH4

DMH ↑ α-MSH3, = α-MSH4

LH = α-MSH3, ↓ α-MSH4

PAG = α-MSH4

PVN ↑ α-MSH3, = α-MSH4

PVT = α-MSH3, ↓ α-MSH4

Withdrawal from ethanol
diet

Arc ↑ α-MSH3

CeA ↑ α-MSH3

DMH ↑ α-MSH3

LH = α-MSH3

PVN ↑ α-MSH3

PVT = α-MSH3

Vapor chamber Hypothalamus ↓ POMC7

Pituitary ↓ α-MSH8

Voluntary consumption Hypothalamus ↑ POMC2

Bath application (in vitro) Hypothalamus ↑ POMC1

↑, peptide/protein levels increase in response to ethanol exposure; ↓, pep-

tide/protein levels decrease in response to ethanol exposure; =, ethanol

has no effect on peptide/protein levels. AgRP, agouti-related protein; Arc,

arcuate nucleus of the hypothalamus; BNST, bed nucleus of the stria ter-

minalis; CeA, central nucleus of the amygdala; DMH, dorsomedial hypotha-

lamus; LH, lateral hypothalamus; MSH, melanocyte stimulating hormone;

NAc, nucleus accumbens; PAG, periaqueductal gray; POMC, proopiome-

lanocortin; PVN, paraventricular nucleus of the hypothalamus; PVT, paraven-

tricular nucleus of the thalamus. References are as follows: 1Cubero et al.

(2010); 2De Waele and Gianoulakis (1994); 3Kokare et al. (2008); 4Navarro et al.

(2008); 5Navarro et al. (2013); 6Rainero et al. (1990); 7Scanlon et al. (1992);
8Wilkinson et al. (1986).
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et al., 2010). Together, these findings suggest that the different
drinking behaviors between these animals may be attributed to
innate differences in the functionality and responses to ethanol
by the MC system, although further investigation is required in
order to precisely determine the neurobiological locus responsible
for the differences between these strains.

THE EFFECTS OF THE MELANOCORTIN SYSTEM ON
ETHANOL CONSUMPTION
Several lines of evidence have indicated that the MC system
plays a rather important role in modulating the neurobiologi-
cal responses to ethanol (see Table 2). Initial evidence that the
MC system modulates ethanol responding can be credited to Ploj
et al. (2002) when they demonstrated that intracerebroventric-
ular (i.c.v.) infusions of the potent, non-selective MCR agonist,
melanotan-II (MTII), significantly reduced voluntary ethanol
consumption in AA rats. Similarly, both central and peripheral
injections of MTII resulted in significant reductions in ethanol
consumption in C57 mice (Navarro et al., 2003). Together, these
studies indicate that the MC system serves to protect against
ethanol consumption.

Although these findings indicate that the MCR signaling
is inversely related to ethanol consumption, the non-selective
nature of these MC agents prevented the ability to pinpoint
which receptor subtype are mediating these effects. With the
advent of mutant mice lacking these specific receptors, researchers
have begun to elucidate the specific contribution of the indi-
vidual MCR subtypes to ethanol consumption focusing on the
two subtypes predominately expressed in the CNS: the MC3R
and MC4R. Using mutant mice deficient in MC3R (MC3R−/−)
and the non-selective MCR agonist, MTII, Navarro et al. (2005)
sought to determine the contribution of the specific MCR sub-
types. With this approach, if the MC3R plays a significant role
in modulating the protective effects of MTII, then treatment
with the agonist should reduce ethanol consumption in wild-
type (MC3R+/+), but not MC3R−/− mice. However, it was
found that MTII significantly reduced 24-h voluntary ethanol
consumption in both MC3R+/+ and MC3R−/− mice. This find-
ing suggested that the MC3R did not contribute to the pro-
tective effects of MTII, leaving MC4R as the logical mediator
of this effect. To test this, the authors then treated standard
C57s with the selective MC4R agonist, cyclo(NH-CH2-CH2-CO-
His-D-Phe-Arg-Trp-Glu)-NH2, and found that it caused a dose-
dependent reduction in ethanol intake. Consistent with these
findings, this same group later conducted a similar study with
MC4R−/− mice and found that treatment with MTII significantly
blunted ethanol intake in MC4R+/+, but not MC4R−/− mice
(Navarro et al., 2011). Interestingly, the authors also noted that
peripheral injections of MTII significantly reduced ethanol con-
sumption in both genotypes, which suggests that other MCRs in
the periphery may participate in the protective effects of MTII.
Taken together, these studies suggest that central MC4R, but not
MC3R, contribute to blunted ethanol consumption.

Despite these findings that suggest the MC3R does not play a
role in ethanol consumption, a number of previous studies have
indicated that this receptor may serve as an inhibitory autore-
ceptor on POMC neurons (see Renquist et al., 2011 for review).

Table 2 | Summary of findings targeting the melanocortin system on

ethanol-related phenotypes.

MCR examined Notable findings

Non-selective MCR MTII (i.c.v.) ↓ voluntary consumption in AA rats11

MTII (i.c.v.) ↓ voluntary consumption in C57 mice6

Intra-amygdala MTII ↓ voluntary consumption in P
rats12

α-MSH (i.c.v.) ↓ ethanol-induced anxiolysis2

γ-MSH (i.c.v.) ↓ ethanol-induced anxiolysis1

γ-MSH (i.c.v.) ↑ withdrawal-induced anxiogenesis1

α-MSH (i.c.v.) ↓ ethanol-induced antidepressive-like
effects3

MC3R MTII (i.c.v.) ↓ voluntary consumption in MC3R−/−
mice7

MTII (i.c.v.) ↓ binge-like ethanol drinking in both
MC3R+/+ and MC3R−/− mice, but was more
effective in MC3R−/− mice10

MC4R Selective MC4R agonist (i.c.v.) ↓ voluntary
consumption in C57 mice7

MTII (i.c.v) did not alter voluntary consumption in
MC4R−/− mice9

Selective MC4R agonist directly infused into the
NAc ↓ voluntary consumption in rats4

Selective MC4R agonist directly infused into the
NAc ↓ ethanol palatability in rats5

Selective MC4R agonist (i.c.v.) ↑ ethanol-induced
anxiolysis2

Selective MC4R agonist (i.c.v.) ↓
withdrawal-induced anxiogenesis2

Selective MC4R agonist (i.c.v.) ↑ ethanol-induced
antidepressive-like effects3

Selective MC4R agonist (i.c.v.) ↓
withdrawal-induced depressive-like symptoms3

AgRP AgRP (i.c.v.) blocked MTII-induced ↓ voluntary
consumption in C57 mice6

AgRP (i.c.v.) ↑ voluntary consumption in C57 mice7

AgRP−/− display ↓ voluntary ethanol consumption,
↓ operant ethanol seeking, ↓ binge-like ethanol
drinking8

↑, increase; ↓, decrease. AA, Alko Alcohol; AgRP, agouti-related protein; C57,

C57BL/6J; LH, lateral hypothalamus; MSH, melanocyte stimulating hormone;

MTII, melanotan-II; NAc, nucleus accumbens; P, alcohol-preferring; i.c., intracis-

ternal; i.c.v., intracerebroventricular. References are as follows: 1Jansone et al.

(2009); 2Kokare et al. (2006); 3Kokare et al. (2008); 4Lerma-Cabrera et al. (2012);
5Lerma-Cabrera et al. (2013); 6Navarro et al. (2003); 7Navarro et al. (2005);
8Navarro et al. (2009); 9Navarro et al. (2011); 10Olney et al. (2014); 11Ploj et al.

(2002); 12York et al. (2011).

Briefly, the MC3R has been found to be expressed on POMC
neurons (Bagnol et al., 1999) and activation of these recep-
tors using the selective MC3R agonist, D-Trp8-γ-MSH, increased
IPSC frequency on these neurons (Cowley et al., 2001) and
causes a marked reduction in POMC mRNA levels in rats (Lee
et al., 2008). Consistent with these findings, selective activa-
tion of MC3Rs also results in enhanced food consumption (Lee
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et al., 2008)- an effect that is notably absent in MC3R−/− mice
(Marks et al., 2006).

Given the converging evidence from electrophysiological,
anatomical, and behavioral studies that indicate MC3R acts as an
inhibitory autoreceptor on POMC neurons, our lab decided to
revisit the MC3R and further probe its role in binge-like ethanol
consumption in MC3R−/− mice following a range of doses of
MTII. Consistent with previous results (Navarro et al., 2005), we
found that central infusions of MTII significantly reduced binge-
like ethanol consumption in both MC3R−/− and MC3R+/+ mice
during the first hour of testing (Olney et al., 2014). Interestingly,
however, we also observed that MC3R−/− mice were more sen-
sitive to the protective effects of MTII as all doses of MTII tested
produced a significant reduction in binge-like ethanol consump-
tion while only the highest dose significantly attenuated con-
sumption in MC3R+/+ mice. Thus, although the MC4R may be
the main effector of the protective effects of MTII against ethanol
consumption, this data suggests that the MC3R may contribute
to ethanol consumption as a pre-synaptic inhibitory autoreceptor
on POMC neurons by regulating endogenous α-MSH signaling
onto MC4Rs, or possibility by directly opposing the actions of the
MC4R post-synaptically.

Together, these studies demonstrate that MC agents are capa-
ble of modulating the neurobiological responses to ethanol.
However, it is worth noting that these effects are not specific
to ethanol intake. Indeed, a single i.c.v. infusion of MTII causes
significant reductions in ethanol, food, sucrose, and saccharin,
but not water intake (Navarro et al., 2011)- suggesting that MC
agonists reduce consumption of salient reinforcers, regardless of
caloric content. Moreover, recent findings have also implicated
the MC system in other neurobiological responses to ethanol
beyond intake. It is well established that ethanol use is associated
with anxiety and depression (Roelofs, 1985; Grant and Harford,
1995; Gilman and Abraham, 2001). Interestingly, MC agonists
appear to suppress the anxiolytic and antidepressive-like prop-
erties of acute ethanol while antagonists enhanced these effects
(Kokare et al., 2006, 2008; Jansone et al., 2009). What is more,
these same studies also reported MC agonists enhance the anxio-
genic effects and depressive-like symptoms of ethanol withdrawal
while antagonists had the reverse effect. It has been postulated
that these findings may be due to the neurobiological effects
of ethanol on MC signaling within the CeA- an area that has
been identified to be critically involved in depression and anxiety
(Kask and Schiöth, 2000; Huang and Lin, 2006). In fact, ethanol
has been observed to alter α-MSH expression within the CeA
(Kokare et al., 2008) that coincides with the anxiolytic and anxio-
genic properties of acute ethanol and withdrawal, respectively (see
Table 1). Altogether, these findings indicate that the MC system
may modulate numerous neurobiological responses to ethanol
use beyond consumption.

The studies outlined above were successful in elucidating the
role of specific subtypes of MCRs in ethanol consumption, but
they were unable to determine which brain regions convey these
effects. One recent study sought to determine the participation
of MCRs within the amygdala in regulating ethanol consumption
in alcohol-preferring (P) rats (York et al., 2011). Following site-
directed infusion of MTII into the amygdala, P rats exhibited a

significant reduction in 24-h ethanol consumption. Interestingly,
the authors also noted treatment with the non-selective MC3/4R
antagonist, SHU9119, produced a similar reduction in ethanol
intake among P rats despite the fact that MCR antagonists have
previously been found to augment ethanol drinking (see below).
However, the authors also reported that treatment with SHU9119
resulted in an increase in 24-h water intake in these animals;
therefore, the observed reduction in ethanol intake following
inhibition of central MCRs may be due to the fact that the ani-
mals replaced ethanol intake with water drinking during a state
of increased feeding behavior. Additionally, direct infusion of
a selective MC4R agonist into the VTA and NAc, but not the
LH, significantly reduced ethanol consumption in rats (Lerma-
Cabrera et al., 2012). Later studies by the same group revealed
that similar activation of MC4Rs within the NAc, but not the LH,
decreased the palatability of ethanol in rats (Lerma-Cabrera et al.,
2013). Specifically, the authors noted that treatment with a selec-
tive MC4R agonist directly into the NAc significantly decreased
the duration of hedonic responses and increased the frequency
of aversive responses following delivery of ethanol via an intrao-
ral cannula. This latter study raises the intriguing possibility that
one mechanism by which the MC system regulates ethanol con-
sumption is by modulating the subjective orosensory responses to
ethanol, which has previously been reported to influence ethanol
consumption (Brasser et al., 2012).

Given that a wealth of research has demonstrated that MCR
signaling regulates ethanol consumption and that POMC and
AgRP circuits exert oppositional effects on feeding behavior, it
should come as no surprise that modulation of AgRP has been
reported to alter ethanol consumption as well. Indeed, central
infusion of the active AgRP fragment, AgRP-(83-132), was found
to significantly augment ethanol drinking in mice (Navarro et al.,
2005). Furthermore, these authors also demonstrated that pre-
treatment with AgRP-(83-132) blocked the ability of MTII to
attenuate ethanol consumption- providing further confirmation
that this peptide regulates ethanol consumption via antagonistic
actions at MCRs. Moreover, deletion of the gene that encodes
for AgRP produces a mouse that exhibits blunted responding
to ethanol in a variety of paradigms relative to wild-type con-
trols (Navarro et al., 2009). Specifically, these AgRP−/− mice
displayed reduced ethanol-reinforced lever-pressing behavior as
well as reduced consumption in a two-bottle choice and binge-
like drinking paradigm. Together these data indicate that AgRP
regulates ethanol consumption by functionally opposing MCR
signaling.

Although the research involving AgRP thus far has been lim-
ited to its capacity as an MCR antagonist, recent evidence pro-
poses the exciting possibility that AgRP may act beyond MCRs.
Dietrich et al. (2012) recently reported that AgRP neurons were
found to modulate reward processing as well as contribute to plas-
tic changes in reward circuitry. Specifically, the authors observed
that impairment of AgRP neurons increased cocaine-induced
conditioned place preference (CPP) and novelty seeking- a behav-
ior known to be associated with dopamine (DA) levels (Bradberry
et al., 1991; Hooks et al., 1991; Zald et al., 2008). The authors
then went on to demonstrate that mice with impaired AgRP neu-
rons exhibited increased levels of DA and enhanced long-term
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potentiation. This study represents the first demonstration that
AgRP neurons may function in a dimension beyond regulating
POMC signaling. Although pharmacological MCR agents were
observed to be ineffective at modulating the effects observed
in this report, it is important that one does not hastily con-
clude that this provides definitive evidence that the AgRP peptide
acts beyond MCRs. Importantly, the authors impaired AgRP cir-
cuitry via neuronal ablation or genetic knockdown of neuronal
activity. Indeed, AgRP neurons are known to coexpress neu-
ropeptide Y (NPY) as well as GABA (Shutter et al., 1997; Hahn
et al., 1998) and, given that depressed AgRP circuitry appeared to
decrease the inhibitory tone on DAergic VTA neurons, the effects
observed here are most likely due to GABA- although future stud-
ies may seek to clarify the mechanism governing these observed
effects.

TARGETING THE MELANOCORTIN RECEPTORS TO TREAT
ALCOHOL ABUSE DISORDERS
Progress in our understanding of the MC system’s involvement in
the neurobiological effects of ethanol has made great strides using
preclinical models. As such, the next logical step is to apply our
understanding to develop effective treatments for clinical pop-
ulations suffering from AUDs. Perhaps the most widely studied
function of the central MC system is its role in feeding behavior
(see Ellacott and Cone, 2006 for review). This is of importance
when one considers the fact that several lines of evidence suggest
that both food and alcohol consumption are governed by shared
pathways (Thiele et al., 2003; Volkow et al., 2013). Indeed, ethanol
is unique among the drugs of abuse in that, like food, it holds
caloric value- thereby providing a potential source of nutrients-
and has an exclusive oral route of administration. Moreover,
a multitude of clinical reports have described a relatively high
rate of co-morbidity between alcohol abuse and eating disor-
ders (Higuchi et al., 1993; Holderness et al., 1994; Dansky et al.,
2000; Sinha and O’Malley, 2000; Anderson et al., 2005), which
should come as no surprise considering aberrant consummatory
behavior and a loss of control are hallmarks of both conditions.
What is more, it has previously been documented that comor-
bid patients often show improvements in both conditions when
receiving treatment for one disorder (Dawe and Staiger, 1998;
Daniels et al., 1999; O’Malley et al., 2007). Fortunately, clinical
research studies are already underway that are investigating drugs
that target the central MC system for the treatment of eating
disorders and energy balance.

One compound currently undergoing such investigations is
MSH/ACTH(4-10), an MC4R agonist that, when administered
intranasally (i.n.), has been shown to gain access to the CNS
(Born et al., 2002) where it may serve to augment central MC
functioning. Studies with this compound have demonstrated
that participants treated with an i.n. dose of MSH/ACTH(4-10)
display significantly increased lipolysis (Wellhöner et al., 2012)
and reduced adiposity (Fehm et al., 2001). Another compound,
the orally active MC4R agonist, MK-0493, has similarly been
investigated as a pharmacological treatment for weight loss in
obese patients. Krishna et al. (2009) recently reported that
patients treated daily with MK-4093 exhibited a small, albeit non-
significant, reduction in food consumption over the course of

24-h. Although this drug was found to be only marginally suc-
cessful, it is worth noting that some pharmacological treatments
have been found to be more effective when the treatment program
is supplemented with some forms of behavioral therapy (Anton
et al., 2006). Therefore, MK-4093 alone may have been insuffi-
cient at treating excessive food consumption, but its effectiveness
as part of a more complete, multidimensional treatment program
should not be dismissed.

In addition to supplementing behavioral therapy, these MC
compounds may be used to in tandem with other pharmaco-
logical treatments to achieve a more effective treatment strat-
egy. These combinatorial pharmacological therapies offer unique
benefits over traditional monotherapies in that the two com-
pounds may produce additive effects- or may even work syn-
ergistically with one another. Indeed, opioid signaling has been
shown to inhibit the activity of POMC neurons (Kelly et al.,
1990; Cowley et al., 2001). As such, perhaps the most impres-
sive data using this strategy comes from studies using naltrexone,
an already FDA approved drug used to treat opioid and ethanol
dependence (Bouza et al., 2004), in tandem with bupropion,
another FDA approved medication for depression (Davidson and
Connor, 1998), smoking cessation (Roddy, 2004), and weight-
loss (Anderson et al., 2002) that has been shown to stimulate MC
pathways (Greenway et al., 2009b). The combination of naltrex-
one and bupropion has already garnered a great deal of interest
as an effective treatment regimen for obesity. Indeed, a num-
ber of reports are available that demonstrate improved efficacy
of a combination of naltrexone and bupropion over a treatment
regimen that uses either drug alone (Greenway et al., 2009a,b;
Apovian et al., 2013; Hollander et al., 2013; McElroy et al., 2013;
Smith et al., 2013). Furthermore, a combination of naltrexone
and bupropion used in conjunction with behavioral therapy was
found to be a highly effective treatment regimen for weight loss
(Wadden et al., 2011).

Like most pharmacological treatment options, compounds
that target the MC system are not without their side-effects. The
most common adverse side-effects reported in patients partici-
pating in clinical trials are nausea and headache (Greenway et al.,
2009a,b; Apovian et al., 2013; McElroy et al., 2013; Smith et al.,
2013). Despite these adverse side-effects, these studies report
these compounds to be largely well-tolerated by the patients-
though further examination of the safety and tolerability of
these compounds is encouraged as these drugs continue through
clinical trials. Additionally, though the MC system is involved
in a wide range of physiological functions, some of the non-
specific effects of these compounds may be beneficial toward
the ultimate goal of treating AUDs. For example, the utility
of the fact that MC compounds act on neurobiological cir-
cuits involved in feeding behavior has already been discussed-
suggesting this form of treatment may be most beneficial for
these patients with comorbid eating and alcohol abuse disorders.
What is more, it is well established that the activation of MCR
pathways exert potent inhibitory control of central inflamma-
tory processes (see Muceniece and Dambrova, 2010 for review).
Numerous reports have demonstrated that anti-inflammatory
agents produce a marked reduction in ethanol consumption
(Agrawal et al., 2011; McIver et al., 2012) while pro-inflammatory
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agents increase consumption (Blednov et al., 2011). Therefore,
the anti-inflammatory effects of the MC system, like its effects on
feeding behavior, may provide another avenue by which these MC
compounds may act to effectively treat AUDs.

Together, these findings clearly illustrate the utility of MC
compounds in treating such neuropsychological disorders-
whether it be alone or in concert with other behavioral or
pharmacological treatments. Interestingly, the development of
pharmacological interventions aimed at treating eating disorders
has received considerable attention from drug developers over
recent years (Mancini and Halpern, 2006). Given the common
and overlapping neurobiological pathways shared between alco-
hol abuse and eating disorders and the effectiveness across condi-
tions that these treatments have demonstrated, further investiga-
tions of the efficacy of these drugs in the development for eating
disorders- such as those mentioned above- in treating AUDs may
prove to be a worthwhile endeavor.

CONCLUSION
For more than a decade, significant progress has been made in
elucidating the role of the MC system in the neurobiological
responses to ethanol. Indeed, ethanol has been shown to sig-
nificantly alter the functionality of the central MC system (see
Table 1) and that compounds that target the MC system can
protect against ethanol consumption and other ethanol-related
behaviors (see Table 2). Together, these findings hold promise
for the MC system as a potential target for therapeutic interven-
tion for AUDs. In fact, a number of therapeutic drugs targeting
the MC system are currently under development for other clini-
cal disorders. Given the commonalities between AUDs and other
disorders- such as eating disorders- the utilization of these avail-
able drugs as potential means to alleviate the symptoms associated
with alcohol use and abuse may be a beneficial avenue to pursue
in the future.
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