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A B S T R A C T   

Background: Pancreatic ductal adenocarcinoma (PDAC) often presents with liver or peritoneal 
metastases at diagnosis. Despite similar treatment approaches, patient outcomes vary between 
these metastatic sites. To improve targeted therapies for metastatic PDAC, a comprehensive 
analysis of the genetic profiles and evolutionary patterns at these distinct metastatic locations is 
essential. 
Methods: We performed whole exome sequencing on 44 tissue samples from 27 PDAC patients, 
including primary tumours and matched liver or peritoneal metastases. We analysed somatic 
mutation profiles, signatures, and affected pathways for each group, and examined clonal evo-
lution using subclonal architectures and phylogenetic trees. 
Results: KRAS mutations remained the predominant driver alteration, with a prevalence of 89 % 
across all tumours. Notably, we observed site-specific differences in mutation frequencies, with 
KRAS alterations detected in 77.8 % (7/9) of peritoneal metastases and 87.5 % (7/8) of liver 
metastases. TP53 mutations exhibited a similar pattern, occurring in 55.6 % (5/9) of peritoneal 
and 37.5 % (3/8) of liver metastases. Intriguingly, we identified site-specific alterations in DNA 
repair pathway genes, including ATM and BRCA1, with distinct mutational profiles in liver versus 
peritoneal metastases. Furthermore, liver metastases demonstrated a significantly higher tumor 
mutational burden (TMB) compared to peritoneal metastases (median [IQR]: 2.14 [1.77–2.71] vs. 
1.29 [1.21–1.69] mutations/Mb; P = 0.048). 
Conclusions: In conclusion, metastasis of pancreatic cancer may be influenced by variables other 
than KRAS mutations, such as TP53. PDAC peritoneal and liver metastases may differ in potential 
therapeutic biomarkers. Further inquiry is needed on the biological mechanisms underlying 
metastasis and the treatment of diverse metastases.  
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Implications for practice 

Over 50 % of pancreatic ductal adenocarcinoma (PDAC) patients have liver and peritoneal metastases at diagnosis. Metastasis 
treatment regimens are similar, but patient outcomes vary. We compared the mutation landscape and clone evolution of PDAC patients 
with liver and peritoneum metastasis or non-metastatic. Our findings will offer fresh insights into the biology of the metastatic process 
in PDAC, as well as implications for novel therapeutic approaches to precisely manage distinct distant metastases. 

1. Introduction 

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and fatal cancers in the world [1]. Approximately fifty 
percent of newly diagnosed PDAC patients have distant metastases [2]. The peritoneum is the second most common site of metastasis 
after the liver [3,4]. Peritoneal metastases are present in 50 % of patients with pancreatic cancer at the time of death, but treatment of 
these dismal metastases remains a clinical challenge [5]. Surgery is the only currently curative treatment for pancreatic cancer. 
However, once distant metastases are diagnosed, the National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines do 
not recommend radical surgery, resulting in an extremely low 5-year survival rate (1 %) and a median survival time of approximately 
5.4–8.2 months [6]. Metastasis is a complicated process with many steps, including invasion, intravasation, survival in the blood-
stream, extravasation, adaptation to survival in a new microenvironment, colonisation, and outgrowth at a different body site [7]. 
Recent studies that compared primary tumours and metastases suggest that different types of cancer may have different metastatic 
progression patterns. However, it is still not known whether metastasis to different organ sites follows the same or a different pro-
gression paradigm in cancer [8]. A better comprehension of these issues will not only yield new insights into the biology of metastatic 
processes but may also disclose differences in the therapeutic strategies that concurrently target primary and metastatic malignancies. 

Herein, for the first time, we systematically investigated the genomic profiles of synchronous resected primary tumours (PTs), 
paired liver metastases (Li-M), and peritoneum metastasis (Pe-M) from 27 treatment-naïve PDACs carrying hepatic or peritoneum 
metastases. We sought to unravel the underlying mechanism of PDAC metastasis, which would shed light on the development of novel 
therapeutic strategies for metastatic PDAC patients through whole exome sequencing. 

2. Materials and methods 

2.1. Sample collection 

Primary surgically resected PDAC-matched metastatic sites (liver or peritoneum) were collected between June. 2020 and August. 
2022 in the First Affiliated Hospital of Henan University of Science and Technology. Yet, six samples were removed from quality 
control due to tumour purity. Whole exome sequencing (WES) was also performed on three main or metastatic foci. Two expert pa-
thologists assessed histologic kinds and cancer cell proportions on H&E-stained slides. Each sample must have at least 50 % tumour 
nuclei and less than 20 % necrosis on histology to be sequenced [9]. The ethics committees of the First Affiliated Hospital of Henan 
University of Science and Technology approved the study, and informed consent was obtained before sample collection. The study was 
conducted in accordance with the Declaration of Helsinki. 

2.2. DNA extraction and library construction 

Genomic DNA (gDNA) of formalin-fixed and paraffin-embedded (FFPE) tissues was extracted using the Genomic DNA Tissue 
Extraction Kit (Concert®). DNA samples were quantified with the Qubit dsDNA HS Assay kit (Life Technologies, Carlsbad, CA) per the 
manufacturer’s recommended protocol. 

2.3. Whole exome sequencing 

NGS tests targeting the Whole exome Hyb Panel were performed at Simceredx company (Nanjing, China) following the manu-
facturer’s instructions. In brief, 200 ng gDNA was sheared into 200–300 bp with a combined bisulfite restriction assay. Indexed paired- 
end adaptors for the Illumina platform were synthesized by Integrated DNA Technologies (IDT). End repair, A-tailing and adaptor 
ligation of sheared DNA were performed with reagents from the KAPA Hyper DNA Library Prep kit (Roche Diagnostics). Unligated 
adaptors were removed by the size selection function of Agencourt AMPure XP beads (Beckman Coulter), and the ligation products 
were PCR amplified to form a prelibrary for hybridization. Prepared DNA libraries were sequenced on an Illumina NovaSeq6000 
platform (Illumina, San Diego, CA), and 150 bp paired-end reads were generated. The principle of sequencing was sequencing by 
synthesis, and the mean sequencing depth of tissue was 500X. 

2.4. Data filtering and variant calling 

The sequencing reads were parsed with fastp (V.2.20.0) for adapter pruning, and low-quality bases were removed [10]. Using 
Burrows‒Wheeler Aligner version 0.7.17 (http://bio-bwa.sourceforge.net/index.shtml), cleaned paired-end reads were aligned to the 
hg19 human genome reference [11]. Using Picard (https://broadinstitute.github.io/picard/), duplicate reads were then removed from 
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the aligned and sorted Binary Alignment Map files (Broad Institute, Cambridge, MA). MuTect2 (v 4.2.3) from GATK (Broad Institute) 
was utilized to detect SNVs and minor indels [12]. Subsequently, the variant call format (VCF) was annotated with ANNOVAR [13]. An 
SNV was considered a true positive if the variant allele frequency (VAF) was greater than 1 % and the read depth was greater than 
200X. Variants were labelled germline if they were present in any of the following four germline population variant databases (PVDs) 
at a minor allele frequency (MAF) of 0.1 %: 1000 Genomes phase 3 (https://www.internationalgenome.org/data),ESP6500 (http:// 
evs.gs.washington.edu/EVS), gnomAD (v2.1.1, https://gnomad.broadinstitute.org/) or dbSNP build141 (GRCh37.p13, https:// 
www.ncbi.nlm.nih.gov/snp/). Variants not found in any of the PVDs at the 0.1 % MAF threshold were labelled somatic. Addition-
ally, variants were labelled somatic if they were found in COSMIC database release version 85, with two or more occurrences, even if 
they were also found in a germline population database. Finally, variants were labelled germline if they were present as a benign or 
likely benign variant in either ClinVar (https://www.ncbi.nlm.nih.gov/clinvar) or InterVar (http://wintervar.wglab.org/). Additional 
analysis of the mutation filter and inspection was implemented by custom scripts. All mutations in coding regions were manually 
checked using the Integrative Genomics Viewer (version (v2.14.1, https://igv.org/) [14]. DNA CNVs were detected by using Detection 
of Exon Copy Number variants (DECoN, https://github.com/RahmanTeam/DECoN) [15]. We surveyed the discordance of the CNV 
profile between paired primary and metastatic tumours using Pearson correlation analysis. 

2.5. Jaccard similarity index 

We used the Jaccard similarity index (JSI) to quantify mutational similarity between primary and metastasis pairs [16]. The 
number of metastasis-private, primary-private and primary-metastasis shared SNVs for each P/M pair was denoted Lm, Lp and Ws, 
respectively. For two sets, the Jaccard similarity index (JSI) is defined for the intersection divided by the union of these two sets. Thus, 
the JSI for a P/M pair can be defined as: 

JSI=
Ws

Lm + Lp + Ws  

2.6. Mutational signature analysis 

Nonsynonymous somatic SNVs were analysed to define mutational signatures, including six categories of base substitutions, 
namely, T > A, T > C, T > G, C > A, C > G, and C > T, in each included sample. We extracted the potential mutational signatures by 
using nonnegative matrix factorization (R package maftools, v 2.6.05) [17]. We then analysed and compared the relative contribution 
of different signatures in the primary lesions of patients with those in Li-M and Pe-M. We also used nonnegative matrix factorization 
(NMF) to predict signatures and compared the identified signatures with the 30 known signatures in the Catalogue of Somatic Mu-
tations in Cancer (COSMIC, https://cancer.sanger.ac.uk/cosmic/signatures_v2). 

2.7. Classification of driver mutations 

We collated a driver gene list using genes identified in the COSMIC cancer gene census (v.85) [18], supplemented with those 
identified in large-scale pancancer analyses [19] and previous large-scale sequencing landscape studies across 12 major cancer types 
[20,21]. Any nonsynonymous variant located within one of these genes underwent further categorization based on the following 
criteria. If the mutation was found to be deleterious (either a stop-gain or predicted deleterious in three out of the five computational 
approaches applied: Sift, SIFT4G, Polyphen2, FATHMM and MutationTaster) and the gene was annotated as being recessive by 
COSMIC (tumour suppressor) [22–26], the variant was classified as a driver mutation. We collected actionable unique alterations in 
each liver or peritoneum metastatic group of PDAC and cross-referenced them with the OncoKB (https://www.oncokb.org/) and 
COSMIC (https://cancer.sanger.ac.uk/actionability) databases to identify potential drug targets and therapeutic strategies. 

2.8. Clonality analysis 

The clonal and subclonal architecture of paired primary with metastasis focal were estimated using the R package SciClone [27]. 
For each tumour, variants belonging to the cluster with the highest VAF were annotated as ‘‘clonal’’, whereas those belonging to 
clusters with a lower VAF were annotated as ‘‘subclonal’’. The R package ClonEvol (v0.99.11) [28] was utilized to reconstruct the 
cellular fraction of the clones, as well as to probabilistically model the clonal ordering constraints and provide visualization for each 
patient. The tumour clonal evolution of each patient was visualized using the R package fishplot (version 0.2) [29]. 

2.9. Phylogenetic Analysis 

To illustrate the clonal architecture of each paired patient, we constructed phylogenetic trees using somatic mutations. The clonal 
and subclonal architecture of paired primary with metastasis focal were estimated using the R package SciClone [27], which imple-
ments a Bayesian inference model to assign SNVs to clonality clusters based on VAF. Clonal architecture was inferred from copy 
number neutral (diploid) genomic regions, and only somatic variants supported by at least 100 reads were considered for the analyses. 
For each tumour, variants belonging to the cluster with the highest VAF were annotated as ‘‘clonal’’, whereas those belonging to 
clusters with a lower VAF were annotated as ‘‘subclonal’’. The R package ClonEvol (v0.99.11) [28] was utilized to reconstruct the 

G. Yao et al.                                                                                                                                                                                                            

https://www.internationalgenome.org/data),ESP6500
http://evs.gs.washington.edu/EVS
http://evs.gs.washington.edu/EVS
https://gnomad.broadinstitute.org/
https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/snp/
https://www.ncbi.nlm.nih.gov/clinvar
http://wintervar.wglab.org/
https://igv.org/
https://github.com/RahmanTeam/DECoN
https://cancer.sanger.ac.uk/cosmic/signatures_v2
https://www.oncokb.org/
https://cancer.sanger.ac.uk/actionability


Heliyon 10 (2024) e35428

4

cellular fraction of the clones, as well as to probabilistically model the clonal ordering constraints and provide visualization for each 
patient. The number of bootstraps was set as 1000. The minimum probability that a VAF estimate for a clone in a sample is nonnegative 
in an accepted clonal ordering was set as 0.01. The cluster centre used the median of each cluster. The tumour clonal evolution of each 
patient was visualized using the R package fishplot (version 0.2). The length of the trunk and branch represented the number of shared 
and specific mutations, respectively. The branch lengths were estimated through ancestral state reconstruction with the accelerated 
transformation method [30]. The candidate driver mutations were mapped to the trunk and branches of each phylogenetic tree to 
depict the molecular processes. iTOL (v6.7.5) was used to draw evolutionary trees [31]. 

2.10. Pathway enrichment analysis 

For each sample group, the altered genes were evaluated for their potential enrichment in the Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways (https://www.kegg.jp and KEGG.db package version 3.2.3) using gene set overrepresentation analysis on 
the basis of Fisher’s exact test, which was implemented in the R package clusterProfiler (version 3.6.0) [32]. 

2.11. Statistical analysis 

All tests were performed with the R environment version 4.0.2 (R core team, Vienna, Austria) or GraphPad Prism 6.0 (GraphPad 
Software, San Diego, CA). Comparisons between paired primary tumours and metastases were based on Student’s t-test. The 
nonparametric Wilcoxon rank-sum test was applied for comparison of mutation counts and branch lengths. If not noted otherwise, the 
tests applied were two-sided. As per the convention, p values less than 0.05 were considered statistically significant. 

3. Results 

3.1. Clinical and sample information 

We performed WES sequencing on 44 samples taken from 27 treatment-naïve patients with PDAC (17 males, 10 females). The 
samples analysed in this study, no metastasis occurred within the first year after surgery (non-PTs), paired liver-metastatic primary 
lesions (LiM-PTs) and liver metastatic lesions (LiM-MTs), and paired samples of peritoneal-metastatic primary lesions (PeM-PTs) and 
peritoneal metastatic lesions (PeM-MTs). The patient flow is illustrated in Fig. 1. The mean age of these patients was 63 (range: 38–81). 
Supplementary Table S1 and Fig. S1 provide the clinicopathological characteristics of all enrolled patients. 

3.2. The mutation landscape of the pancreatic cancer cohort and similarity analysis of the paired LiM-PTs/MTs and PeM-PTs/MTs 

To decipher the mutation landscape difference in separate groups, we performed WES sequencing on 44 samples. The WES results 
of all 44 samples showed that the KRAS mutation was the most common mutation in pancreatic cancer, with a mutation frequency of 
89 %. This was followed by TP53, GOLGA8J, TTN, and SMAD4, and the mutation frequencies were 50 %, 25 % and 25 %, 23 %, 
respectively (Fig. 2A). The incidence of KRAS mutations in different types of primary sites, including LiM-PTs, PeM-PTs, and non-PTs, 
was 90 % (9/10), 90 % (9/10), and 88.9 % (8/9), respectively (Fig. 2B). The mutation frequencies of all genes in primary tumours are 
shown in Supplementary Table S2. It is noteworthy that modifications of PCDHB14 and PXDN were solely identified in the non-PT 
group with mutation frequencies of 40.0 % and 30.0 %, respectively. MUC16 was mutated only in LiM-PTs with a mutation 

Fig. 1. Patient flow.  

G. Yao et al.                                                                                                                                                                                                            

https://www.kegg.jp


Heliyon 10 (2024) e35428

5

frequency of 33.3 %. ZNF594 was mutated only in PeM-PTs, with a mutation frequency of 30 % (Fig. 2B–Supplementary Table S2). 
Mutations were also found in liver and peritoneal metastases. Cross-referencing with the OncoKB and COSMIC databases reveals 
unique mutations that may benefit patients from targeted therapy. In contrast to liver metastasis, peritoneal metastasis has mutations 
in DNA repair pathway genes such as ATM and BRAC1 (Table 1). The results indicated that treating hepatic and peritoneal metastases 
in pancreatic cancer may require different therapeutic approaches. Next, we examined shared and private mutations in paired liver and 
peritoneal metastasis samples. As shown in Fig. 2C, there was considerable variation in mutations among individual patients within 
each group. The proportion of shared mutations between each primary lesion and its corresponding paired samples was calculated. The 
median value of shared mutations in the liver metastasis group was 33.13 % (range: 8.57%–72.26 %), while that in the peritoneal 
metastasis group was 42.12 % (range: 6.26%–66.19 %) (Supplementary Table S3). We also computed the Jaccard similarity index 
(JSI), an indicator of mutational resemblance, and found no discernible difference in JSI between the two groups (p = 0.81, Fig. 2D). 
The JSI of each paired sample also showed the same trend as the shared mutation ratio, that is, large individual differences 
(Figs. 2E–1F). Furthermore, the LiM-MT group exhibited a higher TMB than the PeM-MT group (LiM-MT: 2.14(1.77–2.71) vs PeM-MT: 
1.29(1.21–1.69), p = 0.048, Fig. 2G). However, there was no statistically significant difference between paired primary and corre-
sponding metastases (LiM-PTs vs. LiM-MTs: 2.09(1.32–2.63) vs:2.14(1.77–2.71), p = 0.49; PeM-PTs vs. PeM-MTs: 1.72(1.39–2.08) vs 
1.29(1.21–1.69), p = 0.38, Fig. 2G). 

3.3. The mutation signature of the pancreatic cancer cohort 

To infer the underlying mutational processes, we delineated the mutational signatures based on somatic mutation data. The 
mutation types of all samples are shown in Fig. 3A–C. Single nucleotide polymorphisms (SNPs) were the predominant type of mutation, 
with missense mutations accounting for the vast majority (Fig. 3A). In terms of mutation patterns, the most prevalent base change 
observed in the samples was C > T (Fig. 3B). The median number of variants per sample was 54 (Fig. 3C). The mutation types of the 
highly recurrent genes are illustrated in Fig. 3D. Both the LiM and PeM groups exhibited a significantly higher proportion of C > T and 
transitions (Ti)/transversions (Tv), as shown in Fig. 3E–F. According to the cosine similarity, in the LiM-MT group, the 3 mutational 

Fig. 2. A. Mutation landscape of all samples. The top panel represents the number of somatic mutations in each sample. The middle panel represents 
the matrix of mutations in a selection of frequently mutated genes. Columns represent samples. Three clinicopathological characteristics (sex, stage, 
and smoking history) are presented below; B. Bar plot of the top recurrent mutation frequency in the primary loci of different groups (LiM-PT, PeM- 
PT, and non-PT groups). C. The percentages of identified somatic mutations that were found to be shared (present in both primary and metastatic 
lesions) or private (present only in primary or metastatic lesions) in each tumor specimen D. Statistical analysis of the Jaccard similarity index in the 
LiM and PeM groups. E-F. The somatic mutation consistency of paired primary and metastasis samples in the LiM group (E) and in the PeM group 
(F); G. Statistical analysis of TMB in primary-metastasis paired sample groups. 
Note: P11.P and P11.M refer to the primary and metastasis lesion of patient 11 (A); P20–P and P20-M refer to the primary and metastasis lesion of 
patient 20 (E); LiverM-P and Liver-M represent the primary and liver metastasis lesion of the PDAC liver metastasis group (G). 
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signatures corresponded to COSMIC_1 (spontaneous deamination of 5-methylcytosine) and COSMIC_3 (defects in DNA− DSB repair by 
HR) (Fig. 3G) [33]. In the PeM-MT group, the mutational signatures corresponded to COSMIC_1 (spontaneous deamination of 5-meth-
ylcytosine) (Fig. 3H). COSMIC_3 is linked to breast, ovarian, and pancreatic cancers. Platinum-responsive pancreatic cancer patients 
had COSMIC_3 signature mutations. No primary sample groups had the COSMIC_3 signature, although COSMIC_1 and COSMIC_6 
(showing deficient DNA mismatch repair) was often seen (Supplementary Fig. S2). The findings suggested that the mutational 
characteristics of primary PDAC sites were similar across different metastatic sites, albeit with some variations observed among the 
latter. 

3.4. Copy number variation (CNV) profile of paired samples 

Pearson correlation analysis was utilized to investigate the congruity between the CNV profiles of paired primary and metastatic 
tumours. The distribution of the Pearson correlation coefficient was found to be irregular and discrete in both groups, as depicted 
Supplementary Figs. 3A–3B. This intriguing finding indicates that the copy number variation profile of the LiM-MT and PeM-MT 
cohorts exhibits significant intertumoral heterogeneity. The range of Pearson correlation coefficients was observed to be between 
− 0.36 and 0.47 in LiM-Mts (Supplementary Fig. 3C). Additionally, a similar trend was observed in relation to PeM-Mts, indicating that 
the Pearson correlation coefficient ranged from − 0.42 to 1 (Supplementary Fig. 3C). The statistical analysis demonstrated that the LiM 
group exhibited a comparable Pearson correlation coefficient to that of the PeM group (p = 0.44, Supplementary Fig. 3C). 

3.5. Signaling pathway enrichment analysis between three primary foci or between paired samples 

In order to determine whether somatic mutation landscapes influence cancer-related signalling pathways, we evaluated pathway- 
level enrichment. The KEGG database (https://www.kegg.jp) and gene set overrepresentation analysis on the segregated group were 
utilized to accomplish this. Enrichment analysis was performed on the genes impacted by somatic mutations in each of the four sample 
groups (LiM-PTs, LiM-MTs, PeM-PTs, and PeM-MTs) against each KEGG pathway. Similar to the SNV profile results, the pathway level 
exhibits several pathways that are specific to each group. Eleven GO terms were enriched in all samples, calmodulin binding and 
extracellular ligand-gated ion channel activity, and the other 2 terms were unique in the LiM-MT group compared to the PeM-MT 
group (Fig. 4A). In terms of KEGG enrichment analysis, 8 KEGG pathways were significantly enriched in these sample groups. LiM- 
PTs have a unique metastasis-related pathway, such as ECM-receptor interactions, which related to liver carcinoma development 
[34], were not enriched in the PeM group. Nevertheless, LiM-MTs have many more unique pathways other than LiM-PTs or PeM-MTs, 
such as proteoglycans in cancer, and the calcium signalling pathway is associated with tumour invasion (Fig. 4B) [35,36]. 

3.6. The subclonal architecture and phylogenetic relationships of paired primary and metastatic tumours 

The process of clonal evolution, in which a clone that can metastasize is selected for dispersion to distant sites of secondary growth, 
is well known. High-resolution SNP profiling and mutation screening allowed us to determine the main and metastatic pairs’ clonal and 
phylogenetic relationships. We used the VAF of variations to characterize the subclonal structures of paired tumour samples to study 

Table 1 
The unique actionable gene mutation of Liver or Peritoneal metastic foci refer to OncoKB and COSMIC database.  

Gene Mutation Type Mutation Group Potential Target Drug or Treatment 

ARID1A Truncating Mutations Uniq mutation in Liver 
metastasis 

Tazemetostat; PLX2853 

TNFRSF8 Oncogenic SNV Mutations Uniq mutation in Liver 
metastasis 

Brentuximab vedotin + Cyclophosphamide + Doxorubicin hydrochloride +
Prednisone 

ERBB3 Oncogenic Mutations Uniq mutation in Liver 
metastasis 

Chemotherapy + Pertuzumab 

KDR Oncogenic Mutations Uniq mutation in Liver 
metastasis 

Dovitinib; Sunitinib; Erlotinib + Sunitinib 

TET2 Oncogenic Mutations Uniq mutation in Liver 
metastasis 

Azacitidine + Lenalidomide; Cytarabine + Daunorubicin + Glasdegib; 
Azacitidine; Azacitidine + Lenalidomide 

MYC Oncogenic Mutations Uniq mutation in Liver 
metastasis 

Berzosertib 

ATM Oncogenic SNV Mutations Uniq mutation in Peritoneal 
metastasis 

Olaparib; Talazoparib + Enzalutamide 

FGFR2 Oncogenic Mutations, 
Amplification 

Uniq mutation in Peritoneal 
metastasis 

Erdafitinib; AZD4547; RLY-4008 

BRCA1 Oncogenic Mutations Uniq mutation in Peritoneal 
metastasis 

Rucaparib 

SMAD4 Oncogenic Mutations Uniq mutation in Peritoneal 
metastasis 

Capecitabine + Cetuximab + Gemcitabine + Oxaliplatin + Radiotherapy 

ESR1 Oncogenic Mutations Uniq mutation in Peritoneal 
metastasis 

Letrozole + Taselisib; Fulvestrant + Pictilisib; Capivasertib + Paclitaxel 

PIK3CA Oncogenic SNV Mutations Uniq mutation in Peritoneal 
metastasis 

Alpelisib + Fulvestrant; RLY-2608; LOXO-783; Sirolimus; Everolimus  
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PDAC metastasis driving events. Furthermore, to elucidate the evolutionary routes of PDAC metastases, we examined all the phylo-
genetic trees of paired primary and metastatic tumours. The polygenic tree analysis revealed that the occurrence rate of KRAS trunk 
mutations in the peritoneal metastatic group was 77.8 % (7 out of 9), while in the liver metastasis group it was 87.5 % (7 out of 8). 
Similarly, the frequency of TP53 trunk mutations in the two groups was 55.6 % (5 out of 9) and 37.5 % (3 out of 8), respectively. which 
revealed that KRAS plays an important role in metastasis and can drive metastasis events regardless of liver or peritoneal metastasis 
(Fig. 5A–B). Statistical analysis revealed that the LiM group had a similar proportion of trunk mutations as the PeM group (p = 0.563). 
However, the LiM-M group had a higher proportion of branch mutations than the PeM-M group (p = 0.043) (Fig. 5C). Notably, when 
KRAS was a branch mutation (P12, P20) (Fig. 5A–B, Fig. 6A) or without KRAS mutation (P17) (Figs. 5A and 6C), the subclone-based 
evolution architecture revealed that every subclone was relatively independent of each other. Principal component analysis (PCA) of 
clones and dynamic subclone-based evolution architecture analysis showed tended to be parallel evolution, as shown in Fig. 6B and D. 
It has been proven that oncogenic KRAS can recruit an expansive transcriptional network through mutant p53 to drive pancreatic 
cancer metastasis [37]. Subclonal architecture results of other patients are shown in Supplementary Fig. S4. 

4. Discussion 

Pancreatic ductal adenocarcinoma (PDAC), the classical and the most common subtype of pancreatic cancer, represents increased 
incidence and mortality rates worldwide. The liver is a common site for the metastasis of PDAC. In addition, it is worth noting that a 
considerable number of patients suffer from peritoneal metastasis, a significant yet inadequately studied factor contributing to 
morbidity and mortality [38]. Although several studies [39,40] have demonstrated that these two types of patients vary in terms of 

Fig. 3. A. Summary of mutation classification number in all 44 samples; B. The proportion of different SNV classifications in all 44 samples; C. The 
variants number per sample in all 44 samples; D. The top 10 mutated gene frequencies of all 44 samples; E-F. The ratio of base transformation to 
transversion was in the LiM group (E) and in the PeM group (F). G. The cosine similarity between the mutational signatures of the LiM-MT group and 
the validated COSMIC V2 signature (left panel). The identified mutational signatures of the LiM-MT group (right panel). H. The cosine similarity 
between the mutational signatures of the PeM-MT group and the validated COSMIC V2 signature (left panel). The identified mutational signatures of 
the PeM-MT group (right panel). 
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prognosis, both refer to a similar treatment now [41]. Nonetheless, the mechanisms that underlie the causes and prognostic disparities 
in metastases across various sites have yet to be elucidated. Thus, detailed research on PDAC metastatic site metastasis mechanisms is 
essential. In this study, we conducted WES on 44 samples obtained from 27 patients with PDAC. Our initial analysis focused on single 
nucleotide variants (SNVs) to elucidate the mutational landscape in two distinct metastatic groups: liver metastases and peritoneal 
metastases. The most observed alterations in our cohort were KRAS (89 %), TP53 (50 %), GOLGA8J (25 %). These findings are further 
corroborated by prior research investigation [42]. Additionally, we noted a 50 % mutation frequency in TP53 which was reported 
related to pancreatic cancer invasion and differentiation and has been reported to have a poorer prognosis than wild-type [43]. We 
examined how the genetic differences between liver and peritoneal metastases might inform the development of site-specific treatment 
strategies. In contrast to liver metastasis, peritoneal metastasis has mutations in DNA repair pathway genes such as ATM and BRAC1. 
At present, olaparib is FDA-approved for BRCA1/2 mutant metastatic PDAC maintenance [44]. Our results revealed PDAC with 
peritoneal metastases may be an advantageous group for this treatment. The TMB is a powerful genetic biomarker that predicts 
immunotherapy success in several cancers. PeM-MTs had a lower TMB than LiM-MTs. This suggests immunotherapy may be a more 
effective treatment for liver metastases. A phase 1b/2 study evaluated surufatinib, camrelizumab, nab-paclitaxel, and S-1 (NASCA) as a 
first-line treatment for metastatic pancreatic cancer. The ORR for patients with liver metastases who received NASCA was significantly 
higher than that of those who did not (90.0 % vs. 20.0 %, p = 0.0017) [45]. However, the matched sample mutation landscape analysis 
showed that LiM- and PeM-metastatic tumours were consistent with their primary sites. CNV was not directly related to LiM or PeM 
when we examined the CNV pattern. The somatic and CNV alteration consistency between the primary and metastasis sites in the Li-M 
group exhibited similarities to the PDAC liver metastasis cohort recently reported by Sun et al. [42]. Additionally, Christine et al. [46] 
noted limited variability in driver gene mutations within primary and metastatic pancreatic cancer. 

To further differentiate between LiM and PeM, we performed a comparative analysis of molecular pathways. Our results indicated 
enhanced activity in Gene Ontology (GO) pathways in LiM compared to PeM. Additionally, we identified distinct patterns of 
calmodulin binding between the two metastatic groups, suggesting site-specific molecular mechanisms underlying metastasis. The 
Ca++/calmodulin-dependent kinase superfamily categorises PKD [47]. According to Storz’s findings [48], PKD1 has been implicated 

Fig. 4. A. GO enrichment analysis in primary-metastasis paired sample groups; B. KEGG enrichment analysis in primary-metastasis paired sam-
ple groups. 
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in the pathogenesis of pancreatic ductal adenocarcinoma, leading to the emergence of pancreatic intraepithelial neoplasia (PanIN). 
Furthermore, KEGG pathway analysis revealed that the LiM group exhibited distinct characteristics in terms of proteoglycans in cancer 
and the calcium signalling pathway. Juan et al. [49] discovered that Hyaluronan and proteoglycan link protein-1 in the extracellular 
matrix increase cancer cell malleability and pancreatic ductal adenocarcinoma metastasis. Numerous studies show that the calcium 
pathway affects pancreatic cancer progression and metastasis [36,50,51]. 

KRAS plays a crucial role in the biology of pancreatic cancer, and significant endeavors are currently being made to target this 
oncoprotein specifically [37]. KRAS mutations are the most common driver gene of PDAC, observed in up to 90 % of cases. Stepwise 
PDAC carcinogenesis is the most widely accepted model [52]. Firstly, KRAS mutations cause low-grade dysplastic pancreatic intra-
epithelial neoplasias (PanINs). Second, TP53, CDKN2A, and SMAD4 mutations generally cause high-grade PanINs and invasive ade-
nocarcinomas. The factors that drive and influence metastasis of pancreatic cancer remain a subject of ongoing debate. Then, we 
concluded by examining the evolution of clones in different metastases. The principal trunk mutations identified in both peritoneal and 
hepatic metastatic cohorts were KRAS and TP53. In general, KRAS branch mutations and the absence of mutations follow the pro-
gression model. This may be related to the manner in which KRAS promotes the metastasis of pancreatic cancer [53]. Nevertheless, it is 
worth noting that not all metastases within our cohort exhibited KRAS (PeM-MT vs. LiM-MT: 77.8 % (7/9) vs. 87.5 % (7/8)) or TP53 
mutations (PeM-MT vs. LiM-MT: 44.4 % (4/9) vs. 37.5 % (3/8)). Consequently, it can be inferred that KRAS mutations play a sig-
nificant role in the spread of pancreatic cancer, while mutations in genes like TP53 may also serve as potential stimulants. 

Our study has several limitations that warrant consideration. The small sample size limited our ability to establish statistical 
significance for the high-frequency mutations observed in different metastatic sites. Additionally, the complexity of tumor metastasis 
requires more sophisticated analytical approaches.Future research should aim to increase sample sizes to improve statistical power and 
validate our findings, while also implementing comprehensive multi-omics analyses to capture the temporal and spatial heterogeneity 

Fig. 5. Phylogenetic Analysis of Paired Primary Tumours and Metastases. Phylogenetic tree with the key variants highlighted in the PeM group (A) 
and LiM group (B), The phylogenetic trees illustrate the genetic relationships between primary pancreatic tumours and their corresponding me-
tastases. Key genetic variants are highlighted to elucidate the evolutionary trajectories. In both trees, branch lengths represent the prevalence of 
shared genetic alterations or site-specific mutations in primary tumours or metastases. This visualization reveals distinct evolutionary patterns in 
organ-specific metastases. C. Statistical comparison of the proportions of private in primary or metastasis lesion and trunk mutations in the PeM 
group and LiM group. 

Fig. 6. Patterns of clonal evolution in the P12, P20 with KRAS branch mutation and P17 without KRAS branch mutation. A. Four components of the 
subclone-based evolution architecture in P12 and P20 From the left to the right, 1. Jitter plot of variant clusters, 2. Bell plots of clonal evolution in 
individual samples that are annotated with driver events. The probability of the various clones is annotated on the right end, which also indicates 
the time of sample collection. 3. A sphere of cells that represents the admixture of clones in individual samples, 4. Clonal evolution trees based on 
nodes that are annotated with samples that contain clones in primary or metastases; B. PCA analysis of different clusters in P12 and P20 (left panel), 
original model visualized using a fishplot whose width represents CCF of the clones in samples P12 and P20 (right panel); C. subclone-based 
evolution architecture in sample P17; D. PCA analysis of different clusters in P17 (left panel), original model visualized using a fishplot whose 
width represents CCF of the clones in samples P17 (right panel). 
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of pancreatic ductal adenocarcinoma (PDAC) metastasis. These advancements will deepen our understanding of the metastatic process 
in PDAC, potentially inform strategies to mitigate its progression, and enhance the clinical relevance of our findings, ultimately 
contributing to improved patient outcomes. 

5. Conclusions 

In conclusion, our study revealed that PeM and LiM exhibit not only a comparable somatic mutation landscape but also a similar 
evolutionary pattern at the genomic level. PeM-MTs are observed unique actionable mutations, including ATM and BRCA1. Addi-
tionally, liver metastases exhibit a higher TMB compared to peritoneal metastases. These findings provide evidence for the potential 
effectiveness of immunotherapy in treating liver metastases. These findings will offer fresh insights into the mechanism underlying 
different PDAC metastasis’s location, as well as implications for more precisely treat specific distant metastases. 
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