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Abstract

As rice is an important staple food globally, research for development and enhancement of

its nutritional value it is an imperative task. Identification of nutrient enriched rice germplasm

and exploiting them for breeding programme is the easiest way to develop better quality

rice. In this study, we analyzed 113 aromatic rice germplasm in order to identify quantitative

trait loci (QTL) underpinning nutrition components and determined by measuring the normal

frequency distribution for Fe, Zn, amylose, and protein content in those rice germplasm.

Comparatively, the germplasm Radhuni pagal, Kalobakri, Thakurbhog (26.6 ppm) and Hati-

sail exhibited the highest mean values for Fe (16.9 ppm), Zn (34.1 ppm), amylose

(26.6 ppm) and protein content (11.0 ppm), respectively. Moreover, a significant linear rela-

tionship (R2 = 0.693) was observed between Fe and Zn contents. Cluster analysis based on

Mahalanobis D2 distances revealed four major clusters of 113 rice germplasm, with cluster

III containing a maximum 37 germplasm and a maximum inter-cluster distance between

clusters III and IV. The 45 polymorphic SSRs and four trait associations exhibited eight sig-

nificant quantitative trait loci (QTL) located on eight different chromosomes using composite

interval mapping (CIM). The highly significant QTL (variance 7.89%, LOD 2.02) for protein

content (QTL.pro.1) was observed on chromosome 1 at 94.9cM position. Also, four QTLs

for amylose content were observed with the highly significant QTL.amy.8 located on chro-

mosome 8 exhibiting 7.2% variance with LOD 1.83. Only one QTL (QTL.Fe.9) for Fe content

was located on chromosome 9 (LOD 1.24), and two (QTL.Zn.4 and QTL.Zn.5) for Zn on

chromosome 4 (LOD 1.71) and 5 (LOD 1.18), respectively. Overall, germplasm from clus-

ters III and IV might offer higher heterotic response with the identified QTLs playing a signifi-

cant role in any rice biofortification breeding program and released with development of new

varieties.
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1. Introduction

While nutritious crop varieties (including those enriched with micronutrients) represent a

crucial demand for healthy growth and development of human beings, few micronutrient-

enriched food crop varieties exist among global staple cultivated crop varieties. In particular,

iron (Fe) is an essential element for hemoglobin with zinc (Zn) also providing a key co-factor

for more than three hundred enzymes involved in principal biological activities [1, 2]. Defi-

ciencies of Fe and Zn cause a wide range of health problems, including but not limited to ane-

mia, reduced growth, poor cognitive development, stunting, reduced immunity, diarrhea,

lesions on eyes and skin, delayed healing of wounds, and mental lethargy [3, 4]. Currently,

more than two billion people in the world—especially children and pregnant or lactating

women—suffer from Fe and Zn deficiency diseases [5]. And while micronutrient enriched

supplementary drugs are available to remediate these problems, such drugs are typically pre-

scribed by doctors only after micronutrient deficiency symptoms appear and are often prohib-

itively expensive [6].

According to FAO, more than 90% of Asian people depend on rice as food, delivering

micronutrients via rice would afford these missing micronutrient benefits in a more cost-effec-

tive and wider-reaching way [7, 8]. “Biofortification”—or, the hybridization of food crops with

rich vitamin and mineral densities—represents one powerful and cost-effective tool for pro-

viding these micronutrients and for reducing or eliminating micronutrient-related malnutri-

tion [7–9]. In general, although consumers prefer milled rice, which unfortunately provides an

only limited source of Fe and Zn micronutrients, research to identify rice germplasm with

higher micronutrient content can make rice biofortification breeding programs possible [10,

11]. A biofortification breeding program was succeeded for Zn-enriched rice varieties in Ban-

gladesh, India, and Philippines [12]. However, amylose content in rice is also an important

determinant for maintaining the eating and cooking quality of rice, as determined by three

principal physicochemical properties: amylose content (AC), gel consistency (GC), and gelati-

nization temperature (GT). In general, rice growers prefer high amylose content rice, such that

amylose-categorized rice germplasm would be required for any rice biofortification program

to match market viability and grower and consumer preferences. Protein is an essential com-

ponent of diet which provides basic function in nutrition and supply adequate amounts of

needed amino acids in the body. Therefore, enhancing protein content in rice is an important

criterion for consumer preference for ensuring healthy life [13].

Micronutrient Fe, Zn, amylose, and protein content varies widely among rice germplasm,

landraces, cultivars, breeding lines, and wild rice. Among these, aromatic rice germplasms

constitute a small but important group of rice genotypes that are popular (and increasingly in

demand) in many countries of the world for their aroma and/or super-fine grain quality [14].

As such, aromatic rice represents a strategic choice for biofortification and is also readily avail-

able and popular in Bangladesh, where it comprises short and medium bold types with a mild

to strong aroma [15, 16]. Although genetic diversity and population structure analysis based

on phenotypic and genotypic characteristics of aromatic rice have been reported [17, 18], the

micronutrient content for Fe, Zn, amylose, and protein content have not yet been analyzed.

The rice varieties enriched with micronutrients like iron (Fe), zinc (Zn), and/or other vita-

mins are considered better quality rice. Recently, demands for this type of rice has increased as

a way to offset micronutrient deficiencies both in children and older people. While Fe- and

Zn-rich rice varieties have been developed through conventional breeding approaches and cul-

tivation in rice-growing countries, several issues—like complex genetic backgrounds, sophisti-

cated phenotyping, lack of knowledge about molecular markers, and interactions between

germplasm and environmental [19, 20]—make such an approach time-consuming to meet
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growing demand and climate change effects. In contrast, identification of quantitative trait loci

(QTLs) and genes for high Fe, Zn, amylose, and protein content could lead to more results

more quickly. Furthermore, these genes or loci could be introgressed into cultivar back-

grounds precisely through molecular marker assisted breeding (MAB) and genetic engineering

approaches to enable early release of rice varieties [21].

QTL is a locus, or a part, of DNA estimated from quantitative trait and molecular marker

data in a population. To map QTLs or genes, bi-parental mapping and genome-wide associa-

tion studies (GWAS) have been applied to a number of rice traits [20–24]. However, GWAS

have several merits over bi-parental mapping, including high resolution and scanning for

numerous and rare alleles [25]. GWAS have been utilized to identify QTLs for Fe, Zn, and sev-

eral other mineral elements in rice seeds [20, 24]. In addition, 31 putative QTLs have been

identified for Fe and Zn (as well as Mn, Cu, Ca, Mg, P, and K) contents [26]. In one study, 14

QTLs for Fe and Zn and candidate genes OsYSL1 and OsMTP1 for Fe and OsARD2, OsIRT1,

OsNAS1, and OsNAS2 for Zn were identified in rice seeds [27].

While mapping of QTLs for Fe and Zn concentrations in non-aromatic rice has been per-

formed, limited studies have investigated Fe and Zn concentrations (and amylose and protein

content) in aromatic rice. The purpose of this study, therefore, was: (1) to identify high yield

genotypes for Fe, Zn, amylose, and protein content in 113 aromatic rice germplasm, (2) to

cluster the genotypes based on the studied traits, and (3) to identify QTLs for Fe, Zn, amylose,

and protein content using molecular marker-trait associations studies.

2. Results

2.1 Mean comparison and frequency distribution

Fig 1 and Table 1 present frequency distributions and means comparison of 113 aromatic

germplasm for four phenotypic traits (Fe, Zn, amylose, and protein content). Fig 1 depicts a

normal frequency distribution, along with a wider phenotypic variation, for grain-Fe content

(8.90 ± 3.72 ppm, range 1.10–16.90). The highest number of genotypes (25) occupied the 10–

11 range followed by 11–12. The Zn content also showed a normal frequency distribution with

an average 19.93 ± 6.48 ppm, with the highest number of genotypes (22) occupying the 20–

21.66 range followed by 10.00–13.33 and 21.67–25. Overall, the Radhuni pagal genotype exhib-

ited the maximum Zn content and the Luina genotype the minimum.

Amylose content exhibited a wider range, from 18.20–26.60, with an average for the 113

genotypes of 21.88 ± 1.91. The highest number of genotypes (17) occupied the 20.00–21.25

range followed by 21.25–22.5, with the genotype Thakurbhog exhibited the maximum amylose

content and the genotype Jirabuti the minimum. The least significant difference (LSD) (5%)

was estimated at 0.35 considering all genotypes for the trait.

Protein content also showed a normal frequency distribution, with an average for the 113

genotypes of 8.19±0.10 ppm. The highest number of genotypes (22) occupied the 8.00–8.5

range, with genotype Hatisail exhibiting the maximum protein content (11.00) and Sadagura

(Sl -104) the minimum (6.30). The Zn content ranged from 7.30 to 34.10 with an average of

19.93 ± 0.61ppm, and the genotype Kalobakri exhibiting the maximum.

2.2 Regression analysis

The response function for the relationship between Zn concentration and Fe concentration

(shown in Fig 2) exhibited a strong, highly significant linear relationship (R2 = 0.693) between

both. Zn content (ppm) was positively affected by Fe concentration and showed a strong rela-

tionship with Fe (F = 250.73, p< 0.001), e.g., with increasing Zn content, the Fe content

increases and vice-versa.
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Fig 1. Frequency distribution of 113 aromatic rice germplasm for four traits.

https://doi.org/10.1371/journal.pone.0234395.g001

Table 1. Mean values of selected superior and inferior lines for studied traits.

Variety/ Line Amylose Protein Zn Fe

Selected seven superior genotypes

Kalobakri 23.80 8.22 34.10 12.70

Sakkorkhana 20.70 9.50 34.00 11.00

Hatisail 20.40 11.00 32.60 11.60

Rajbut 20.60 9.10 27.80 10.80

Sakkor khora 20.30 8.00 27.70 13.50

Radhuni pagal 21.00 9.00 27.00 16.90

Thakurbhog 26.60 7.20 19.00 12.00

Selected seven inferior genotypes

Lal Soru 20.10 7.60 7.30 5.80

Luina 22.50 8.10 8.90 1.10

Sadagura (Sl -104) 24.30 6.30 18.20 10.30

Gobindhabhog (Sl -110) 20.80 6.40 20.60 9.00

Jirabuti 18.20 8.40 25.30 10.80

Begunmala 19.10 8.10 26.40 11.80

Chinniguri 19.10 8.30 20.30 10.20

Calculations

Max. 26.60 11.00 34.10 16.90

Min. 18.20 6.30 7.30 1.10

Average 21.88 8.19 19.93 8.90

Std 1.91 1.03 6.48 3.72

SE 0.18 0.10 0.61 0.35

CV 8.72 12.54 32.50 41.74

LSD (5%) 0.35 0.19 1.19 0.69

https://doi.org/10.1371/journal.pone.0234395.t001
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2.3 Cluster analysis

The 113 germplasm were grouped into four major clusters (I, II, III and IV) at a 26% level of

genetic similarity coefficient (Fig 3). Cluster I comprised 35 germplasm and was further classi-

fied into two sub-clusters IA and IB with 15 and 20 germplasm, respectively. Similarly, Cluster

II comprised 21 genotypes and was further subdivided, with sub-clusters IIA and IIB having

12 and 9 germplasm, respectively, as well as higher diversity. Cluster III (with 37 genotypes,

divided into IIIA and IIIB with 20 and 17, respectively) had a higher number of genotypes

exhibit variable genetic distances among the germplasm. Cluster IV (with 19 genotypes, and

17 and 2 sub-clusters in IVA and IVB, respectively) was the smallest; in IVB, the two genotypes

were Sakor and Chini Sagar. Higher inter-cluster was revealed between clusters III and IV, fol-

lowed by clusters I and II (see Fig 3).

2.4 Molecular marker-trait associations

In the study, 45 polymorphic SSR markers were used in 113 rice genotypes for four phenotypic

traits. Table 2 shows results of significant marker-trait associations. A total of eight significant

Fig 2. Linear regression showing Zn concentration as a dependent variable on Fe concentration.

https://doi.org/10.1371/journal.pone.0234395.g002

Fig 3. A UPGMA cluster dendrogram of 113 aromatic rice germplasm based on 4 physio-chemical traits using

Ward’s method.

https://doi.org/10.1371/journal.pone.0234395.g003
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markers were identified for four nutritional traits including high Fe, Zn, amylose, and protein,

with each significant marker designated a quantitative trait loci (QTL): four QTLs for protein,

two QTLs for Zn, one QTL for Fe, and one QTL for protein. These QTLs were mapped using

Mapdisto Version 2 (see Fig 4).

For Fe content, its single QTL was located on chromosome 9 at position 1.8cM, with 3.65%

variance (p< 0.05, LOD 1.24). For Zn content, two QTLs were located on chromosomes 4

and 5 at positions 8.5 and 26.7cM, respectively, with QTL.Zn.4 contributing higher variance

(5.89%, p< 0.01 and LOD 1.71). For protein content, one QTL, QTL.pro.1, located on chro-

mosome 1 at position 94.9 cM contributed a maximum 7.89% variance (p< 0.01, LOD 2.02).

For amylose, 4 QTLs (QTL.amy.6, QTL.amy.7, QTL.amy.8 and QTL.amy.11) were identified.

In particular, QTL.amy.8 revealed on chromosome 8 exhibited 7.2% variance (p< 0.01, LOD

1.83), followed by QTL.amy.11 (LOD 1.49), QTL.amy.7 (LOD 1.45) and QTL.amy.6 (LOD

1.11).

3. Discussion

Plant breeding programs for biofortification of staple food crops (like rice or wheat) require

screening of germplasm and varieties and/or elite lines having Fe, Zn, protein, and amylose

dense grains to be used as donor parents [28]. An increase in concentration of these elements

in grain is a high-priority research area. For example, maximum micronutrients are frequently

present in some landraces and /or genetically distant wild varieties [29]. As such, exploitation

of large genetic variation for Fe, Zn, amylose, and protein existing in cereal germplasm

Table 2. Significant marker-trait associations indicating quantitative trait loci for Fe, Zn, amylose and protein content in 113 rice genotypes.

Traits QTL name Marker Chromosome Position (cM) LOD R2 (%) p-value

Fe QTL.Fe.9 RM215 9 1.8 1.24 3.65 0.0424

Zn QTL.Zn.4 RM551 4 8.5 1.71 5.89 0.0095

QTL.5n.5 RM413 5 26.7 1.18 4.54 0.0234

Amylose QTL.amy.6 RM190 6 7.4 1.11 4.41 0.0256

QTL.amy.7 RM125 7 63.5 1.45 5.7 0.0109

QTL.amy.8 RM284 8 83.7 1.83 7.2 0.0041

QTL.amy.11 RM144 11 68.6 1.49 5.9 0.0095

Protein QTL.pro.1 RM5 1 94.9 2.02 7.89 0.0026

https://doi.org/10.1371/journal.pone.0234395.t002

Fig 4. QTL map showing eight significant markers for four phenotypic traits in 113 aromatic rice germplasm.

https://doi.org/10.1371/journal.pone.0234395.g004
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represents an important strategy for minimizing the extent of Fe and Zn deficiencies in devel-

oping world.

In our study, the frequency distribution was normal for Fe, Zn, amylose, and protein con-

tent with maxima found in the Radhuni pagal, Kalobakri, Hatisail, and Thakurbhog genotypes,

respectively. While the reasons for variably high-content varieties remain to be determined

exactly, similar findings have been reported in other varieties of rice [30, 31]. One study

obtained normal frequency distribution for Zn content and skewed distribution for Fe content

in a recombinant inbred lines (RILs) population obtained from Madhukar×Swarna [27]. That

study identified higher concentrations of Fe and Zn in Swarna (22.5ppm) and Madhukar

(53.7 ppm), respectively. Moreover, pH, organic matter content, inherent Fe/Zn levels of

native soil, environment, genotype, and genotype×environment interaction have all shown sig-

nificant effects on rice grain Fe and Zn content [30, 31].

For genetic improvement of aromatic rice accessions in Bangladesh, a broader genetic base

is required. Cluster analysis, which indicates the diversity and distances among experimental

germplasm, offers a key tool in this effort. In this study, the 113 germplasms were grouped into

four distinct clusters based on Mahalanobis D2 distances. Previous research clustered 113 aro-

matic and fine rice genotypes into ten groups based on 19 quantitative traits [17], ten clusters

in rice genotypes [32, 33], and clusters of 58 rice varieties in groups based on 18 morphological

traits with a genetic distance of approximately 0.75 [34].

In this study, cluster III consisted of 37 genotypes, with a higher number of genotypes

exhibiting variable genetic distances. While the other clusters also exhibited variable genetic

distances, the highest inter-cluster was observed between III and IV. Genotypes having distant

clusters offer the best opportunity for hybridization in order to achieve a higher heterotic

response.

The eight significant marker trait associations (MTA) were assayed using a general linear

model (GLM). Most of these loci were similar to the major loci reported for these traits [35–

42]. In the genotypic analysis, seven out of the 119 SSR markers used were linked to known

major-effect drought grain yield QTLs identified at International Rice Research Institute

(IRRI) [38]. Here, we identified several novel loci for Fe, Zn, amylose, and protein content in

rice.

The most significant QTL protein content was QTL.pro.1 located on chromosome 1 in posi-

tion 94.9 cM with LOD 2.02 and 7.89% variance. This QTL is useful for marker assisted breed-

ing (MAB) for higher protein content in rice. Several consistent minor-effect QTLs were also

identified for amylose content, with the most significant QTL located on chromosome 8.

QTLs are considered significant when above the threshold LOD score 3.0 [43]. Other research

reported two QTLs on chromosomes 1 (markers RM8111-RM14323, LOD 2.03) and 9 (mark-

ers RM219-RM23914, LOD 2.88) for amylose content [44], as well three QTLs on chromo-

somes 8 (RM506-RM1235, LOD 2.57), 9 (RM219-RM23914, LOD 2.66) and 10

(RM24934-RM25128, LOD 6.13) for protein content in 120 doubled haploid (DH) rice popu-

lation. For nutrient content itself, three QTLs were identified (one for Fe and two for Zn con-

tent) [44]. In particular, the highly significant QTL.Zn.4 located on short arm of chromosome

4 with LOD 1.71 contributed a considerable amount of variability (R2 = 5.89%) [44].

Other studies obtained 42 and 3 SSR markers association with grain Fe and Zn content,

respectively. Using a GLM model with r2 > 0.10 and p� 0.05 filters, they reported novel QTLs

qFe3.3 and qFe7.3 for grain Fe and qZn2.2, qZn8.3 and qZn12.3 for Zn in 485 germplasm lines

of milled rice [45]. Also, one study reported QTL qSDW3, associated with stem dry weight and

a significant LOD score of 10.7, that explained approximately 7.5% of the phenotypic variation

[46], as well as another two QTLs located on chromosomes 3 and 4 with LOD scores 5.3 and

4.8 explaining 4.5% and 12.5% variance. In the same study, another locus between
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RM119-RM518 was also observed on chromosome 4 that shared about 2.45% in phenotypic

variance [46]

Overall, these results demonstrate that association mapping represents a feasible option for

identifying major-effect QTLs for traits studied. Indeed, genome-wide association analysis

(GWAS) for complex traits using molecular markers like simple sequence repeats (SSRs) are

becoming a more efficient tool for identifying loci or genes for a particular trait in crop plants.

In the present study, using this technique, we have identified potential candidate QTLs for bio-

fortification of rice for four key micronutrient traits.

4. Materials and methods

4.1 Plant materials

In this study, 113 aromatic rice germplasm representing landraces, fine rice genotypes, elite

cultivars, and exotic genotypes preserved in the genebank of Bangladesh Rice Research Insti-

tute (BRRI), Gazipur, Bangladesh were used. Names for the 113 aromatic rice germplasm,

along with quantitative phenotypic traits, have been previously described [17]. Amylose and

protein content were measured at the BRRI, Grain Quality and Nutrition Division, while

micronutrient Fe and Zn were determined at the BRRI, Plant Breeding Division.

4.2 Measurement of protein content

The Micro-Kjeldahl method was used for the determination of nitrogen [47]. Fifty milligrams

of powdered sample were introduced into a 30 ml Kjeldahl flask. The catalyst mixture (K2SO4,

CuSO4 and Selenium powder) of 1.95 g was added followed by 2.3 ml concentrated H2SO4.

Digestion was continued until the mixture became clear. After digestion, the flask was con-

nected to a distillation set up. An Erlenmeyer flask (125 ml) containing 10 ml boric acid solu-

tion plus one drop of mixed indicator was placed under the condenser with the tip of the

condenser extending below the surface of the solution. Then 9 ml of NaOH-Na2S2O3 solution

was added slowly to the digest. The flask was connected to the steam source and distilled until

about 30 ml distillate was collected. The distillate was immediately titrated against a standard

HCl solution to the first appearance of a violet or reddish color. A blank determination was

made simultaneously.

% N ¼
ml HCl for sample � mL HCl for bank

weight of sample ðgÞ
� N HCl� 0:014� 100

Crude protein ð%Þ ¼ % N � 5:95

4.3 Measurement of amylose content

Juliano’s method was used for the analysis of amylose content [48]. A milled rice sample of 100

mg was placed in a 100 ml volumetric flask. One ml of 95% ethanol and 9 ml of 1N NaOH

were added to it. The contents were heated on a boiling water bath to gelatinize the starch.

After cooling for one-hour, distilled water was added and the contents were mixed well. Five

ml of the starch solution was put in a 100 ml volumetric flask. One ml of 1N acetic acid and 2

ml of iodine solution were added. Then distilled water was added to bring the volume up to

the mark. The sample solution was set at 620 nm with a spectrophotometer. Absorbance values

were plotted and a calculation was made with the help of a standard curve, available for rice

samples of predetermined amylose content. Results were expressed as per cent amylose con-

tent in milled rice weight.
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4.4 Measurement of Fe and Zn content (mg/kg)

Polished grain was analyzed by Inductively Coupled Plasma (ICP) from the Plant Breeding

Division Laboratory at BRRI. For each treatment, 0.6 g of powder were weighed accurately

and placed in high-pressure digestion vessels (125 ml Erlenmeyer flask). A 10 ml mixture of

HClO4:HNO3 (1:10) was added to each flask and covered loosely with a plastic film label “per-

chloric” and kept overnight or longer in the fume hood. Pre-digested samples were mixed well

by swirling and placed onto a hotplate and the temperature increased gradually to 225 ˚C.

Then 2 ml of 2:5 mixture of HClO4:HNO3 were added to each sample. When digests were

clear to light yellow, the temperature was increased up to 240 ˚C and heated until 1 ml of digest

(sample) was left. After cooling, the samples were diluted in 10 ml of 0.5N HCl. The digested

samples were used for the quantification of Fe and Zn by inductively coupled plasma-optical

emission spectrophotometer (ICP-OES) using a modified procedure [49]. The concentrations

of Fe and Zn were determined and presented as mg/kg (ppm). The seed-Fe and Zn contents of

germplasm were estimated, and statistical analysis done using their average values.

4.5 Molecular characterization

We used 52 well-distributed SSRs for the molecular characterization (S1 Data). The cM posi-

tions, repeat motifs, and chromosomal positions for the SSR markers can be found in the rice

genome database [50]. Out of these 52 SSR markers, 45 were polymorphic, while 7 were mono-

morphic. The 45 polymorphic markers selected for analysis were distributed across the 12

chromosomes, from those 3 linked to aromatic traits, 4 related to cooking and eating quality

traits, and 31 were listed in the panel of 50 standard SSR markers used for marker-trait analy-

sis; the remainder of SSRs were selected randomly.

DNA was extracted from the young leaves of 21-day-old plants using the miniscale method

[51]. Each PCR was carried out in a 20 μl reaction volume containing 1 μl of MgCl2 free

10 × PCR buffer with (NH4)2SO4, 1.2 μl of 25 mM of MgCl2, 0.2 μl of 10 mM of dNTPs, 0.2 μl

of 5 U/μl Taq DNA polymerase, 0.5 μl of 10 μM forward and reverse primers, and 3 μl (10 ng)

of DNA using a 96-well thermal cycler. An additional 10 μl of mineral oil was added in each

well to prevent evaporation. Amplification was carried out using a G-storm PCR machine

(Gene Technologies Ltd., England). Amplification conditions were one cycle at 94˚C for 5

minutes (initial denaturation) followed by 35 cycles at 94 ˚C for 1 minute (denaturation), 55

˚C for 1 minute (annealing), 72 ˚C for 2 minutes (extension), with a final extension for 7 min-

utes at 72 ˚C at the end of 35 cycles. After mixing with the loading dye, PCR products were run

through polyacrylamide gels. A 50 bp DNA ladder was used to determine the amplicon size.

Three 4 μl PCR products were resolved by running gel in 1X TB buffer for 1.5 to 2.5 h depend-

ing upon the allele size at approximately 90 volts and 500 mA electricity. Gels were then

stained with 1 μg/mL of ethidium bromide and documented using a Molecular Imager gel

documentation unit (XR System, BIO-RAD, Korea).

4.6 Statistical analysis

Phenotypic analysis. All data used to analyse and presented in this paper are provided as

supplementary files (S1 Fig and S1 Table). The diverse statistical parameters, including mean,

standard deviation, coefficient of variation (CV), analysis of variance (ANOVA), frequency

distribution and Pearson’s correlation coefficient, regression co-efficient of seed Fe, Zn, amy-

lose, and protein contents among accessions were measured using SPSSv17.0. A UPGMA clus-

ter dendrogram of 113 aromatic rice germplasm based on 4 physio-chemical traits was

constructed using PAST software package [52] following Ward’s hierarchical clustering

method.
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Molecular marker-trait association analysis. The size of the band for each 45 polymor-

phic markers was scored by AlphaEaseFC 4.0 software. The summary statistics, including the

number of alleles, major allele size, and frequency was determined using PowerMarker version

3.25 [53]. The allele frequency data from PowerMarker was used to export the data in binary

format (allele presence = “1” and allele absence = “0”) for analysis with NTSYS-pc version 2.2

[54]. Association mapping was conducted for four quantitative traits viz., Fe, Zn, amylose, and

protein content in rice grain. A general linear model (GLM) was used for assessment of

marker-trait associations (MTA) in R version 5.2.2 [55]. The molecular marker-trait associa-

tions were calculated using the binary data. To detect the association of Fe, Zn, amylose, and

protein content in the rice genome, logarithm of odds (LOD) thresholds were calculated using

1000 permutations with a significance threshold of p = 0.05 used as a criteria for QTL analysis

of markers with the trait [56]. Here, Composite Interval Mapping (CIM), one of the most fre-

quently used quantitative trait loci (QTL) analysis method [57], was used. Using CIM, putative

QTLs were identified using the phenotypic and SSR marker by R/qtl package [58] in R.

The QTL map was constructed using MAPdisto version 2.0 [59]. During this analysis, the

derived genetic map, missing phenotypes and frequency of other phenotypic data presented

as S1 Fig.
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