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Abstract
Background and Objective This study aimed to develop and evaluate a population pharmacokinetic model and limited 
sampling strategy for isoniazid to be used in model-based therapeutic drug monitoring.
Methods A population pharmacokinetic model was developed based on isoniazid and acetyl-isoniazid pharmacokinetic data 
from seven studies with in total 466 patients from three continents. Three limited sampling strategies were tested based on 
the available sampling times in the dataset and practical considerations. The tested limited sampling strategies sampled at 
2, 4, and 6 h, 2 and 4 h, and 2 h after dosing. The model-predicted area under the concentration–time curve from 0 to 24 h 
(AUC 24) and the peak concentration from the limited sampling strategies were compared to predictions using the full phar-
macokinetic curve. Bias and precision were assessed using the mean error (ME) and the root mean square error (RMSE), 
both expressed as a percentage of the mean model-predicted AUC 24 or peak concentration on the full pharmacokinetic curve.
Results Performance of the developed model was acceptable and the uncertainty in parameter estimations was generally 
low (the highest relative standard error was 39% coefficient of variation). The limited sampling strategy with sampling at 2 
and 4 h was determined as most suitable with an ME of 1.1% and RMSE of 23.4% for AUC 24 prediction, and ME of 2.7% 
and RMSE of 23.8% for peak concentration prediction. For the performance of this strategy, it is important that data on both 
isoniazid and acetyl-isoniazid are used. If only data on isoniazid are available, a limited sampling strategy using 2, 4, and 
6 h can be employed with an ME of 1.7% and RMSE of 20.9% for AUC 24 prediction, and ME of 1.2% and RMSE of 23.8% 
for peak concentration prediction.
Conclusions A model-based therapeutic drug monitoring strategy for personalized dosing of isoniazid using sampling at 
2 and 4 h after dosing was successfully developed. Prospective evaluation of this strategy will show how it performs in a 
clinical therapeutic drug monitoring setting.
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Key Points 

Model-informed precision dosing may aid in optimizing 
tuberculosis treatment

We developed a population pharmacokinetic model for 
isoniazid and its metabolite based on the largest and 
most diverse dataset thus far and thoroughly validated its 
suitability for purposes of dose individualization

We found that sampling at 2 and 4 h with data on both 
isoniazid and acetyl-isoniazid, or sampling at 2, 4, and 
6 h without the metabolite could be used to predict expo-
sure (area under the concentration–time curve)
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1  Background

Although the disease burden of tuberculosis (TB) is falling, 
it remains one of the top ten causes of death globally and 
is the leading cause of death from a single infectious agent 
[1]. The average global treatment success rate for drug-
susceptible TB was estimated at 85% in 2017 [1]. Despite 
this high success rate, it still means that one out of every 
seven patients treated for TB has an unfavorable treatment 
outcome. This shows that a significant part of the patients 
does not respond adequately to treatment. A possible reason 
for not responding to treatment is suboptimal anti-TB drug 
exposure [2].

Isoniazid (INH) is one of the pillars on which treatment 
of drug-susceptible TB is based and is listed as an essential 
medicine by the World Health Organization [3]. Low INH 
concentrations compared to the median in a population have 
been reported to be common and are often a result of high 
inter-individual variability (IIV) in the pharmacokinetics 
of this drug [4–7]. A large part of this variability can be 
attributed to the polymorphic N-acetyltransferase 2 (NAT2) 
enzyme that catalyzes the acetylation of INH into its acetyl-
INH metabolite [8].

Large inter-individual variability in pharmacokinet-
ics is one of the motives and prerequisites for therapeutic 
drug monitoring (TDM) [2]. Therapeutic drug monitoring 
is an approach to personalize drug dosing by measuring a 
patient’s drug exposure and comparing it to a drug-specific 
target level and adjusting the dose if needed. The exposure 
is approximated by sampling at drug-specific planned times. 
This strategy is called a limited sampling strategy (LSS). 
The area under the concentration–time curve over a dosing 
interval (0–24 h, AUC 24) in relation to a minimal inhibitory 
concentration has been proposed to be the most important 
predictor of treatment outcome for the first-line TB drugs 
[9–12]. However, many different pharmacokinetic (PK) tar-
get suggestions exist [2, 9, 13–16]. Some of these have a 
peak concentration (Cmax) target while others use AUC 24. 
Lacking anything more precise, a population median AUC 
24 value of INH corrected for acetylator status could serve 
as a PK target as it is known that the standard dose is gener-
ally effective [2].

We propose the use of a model-based TDM method using 
individual predictions from a population PK model for INH. 
Using a model-based method for TDM has several advan-
tages: it can use flexible sampling times, it allows exposure 
predictions following dose adjustments, and it can use data 
from previous sampling occasions for the same patient in 
the prediction. Available models for INH are often based 
on data from a single-center study with a limited sample 
size limiting the generalizability of their use for dose indi-
vidualization [4, 5, 17–22]. The aim of this study was to 

develop and evaluate a model-based TDM approach for INH 
in adult patients with pulmonary TB using a population-PK 
model suitable for dose individualization in programmatic 
treatment.

2  Methods

2.1  Data

The data originated from seven previously conducted stud-
ies, including data from both clinical trials and TDM [14, 
23–28]. All studies included patients with pulmonary TB. 
The study data are presented in Table 1. In total, data of 
466 patients from three continents were used to develop 
the PK model. These PK data consisted of 2546 INH and 
2236 acetyl-INH concentrations collected during an interval 
range of 0–24 h. Of these concentrations, 6.0% of the INH 
and 10.9% of the acetyl-INH observations were measured 
as ‘below the limit of quantification’ (BLQ), which ranged 
from 0 to 27.3% depending on the study.

Four studies involved intensive PK sampling with at least 
nine samples taken after a dose of INH [14, 24, 26, 27], two 
studies involved limited sampling with two to three sam-
ples taken [23, 28], and one study involved limited sampling 
with one sample taken for all except nine individuals who 
were sampled intensively [25]. Five studies only included 
measurements of a single occasion [14, 24–27], one study 
included some measurements of second occasions [28], and 
one included measurements for second occasions for all indi-
viduals [23]. One study included data that were collected 
during TDM practice [28]. Five studies included PK data 
on both INH and acetyl-INH [24–28], while the other two 
studies included PK data on INH [14, 23].

The analysis of INH and acetyl-INH concentrations was 
performed in The Netherlands for all studies, using either 
ultra-performance liquid chromatography with ultraviolet 
detection or liquid chromatography–tandem mass spec-
trometry [29]. Both methods were extensively validated 
in accordance with European Medicines Agency and US 
Food and Drug Administration guidelines. Accuracy was 
between 99.4 and 108.8% and between 95.6 and 111.3% 
and the intra- and inter-assay coefficients of variation 
(CVs) were less than 12.6% and 10.5% for the ultra-per-
formance liquid chromatography with ultraviolet detection 
and liquid chromatography–tandem mass spectrometry 
methods, respectively, dependent on the concentration. 
The lower limits of quantification for INH and acetyl-INH 
for the ultra-performance liquid chromatography method 
were 0.0253 mg/L and 0.162 mg/L, and these were 0.0452 
mg/L and 0.0450 mg/L for the liquid chromatography-
tandem mass spectrometry method. Performance of the 
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assays was externally evaluated by participation in an 
international proficiency testing program [30].

2.2  Software

R version 3.4.3 was used for data management, statistics, 
and plotting [31]. Model development was performed using 
the nonlinear mixed-effects modeling program, NONMEM 
version 7.4 with Pirana as an interface [32, 33]. The first-
order conditional estimation method with interaction was 
used for estimation. PsN version 4.7 was used as an aid for 
advanced functionalities [33]. The Xpose4 R package ver-
sion 4.6.1 was used for graphical visualization of the visual 
predictive checks (VPCs) [33].

2.3  Pharmacokinetic Model Development

The PK model was developed with a stepwise approach [34]. 
The INH concentration data were included one study at a 
time, starting with the studies that had the most informative 
and dense sampling. After finishing the base INH model, 

the acetyl-INH data were added to the model. One- and two-
compartment disposition models were explored to describe 
the pharmacokinetics of INH and acetyl-INH. A well-stirred 
liver model was tested instead of first-order elimination to 
describe the first-pass effect of INH. The molecular weight 
of INH and acetyl-INH was used to transform drug con-
centrations to molar concentrations to model the formation 
of acetyl-INH from INH. The bioavailability of INH was 
assumed to be 100% and all estimated PK parameters should 
be interpreted as apparent oral PK parameters. All volume 
and clearance parameters were allometrically scaled with 
total body weight using an exponent of 1 or 0.75, respec-
tively [35]. Allometric scaling based on fat-free mass was 
not considered because height is not always readily avail-
able in TDM practice. NAT2 genotypic data were not deter-
mined in the included studies. A mixture model to distin-
guish between different groups of NAT2 metabolizers in 
the absence of genotypic data was applied [36]. It is known 
that the distribution of NAT2 metabolic function is trimodal 
[8]. The mixture model was tested with two as well as three 

Table 1  Overview of the included study data

BLQ below limit of quantification, h hour, INH isoniazid, LC-MS or liquid chromatography-mass spectrometry, PK pharmacokinetics, TDM 
therapeutic drug monitoring, UPLC ultra-performance liquid chromatography
a While the patients from these studies were treated in The Netherlands, the TB population in The Netherlands is very heterogenous with many 
different ethnical backgrounds

Semvua [23] Tostmann [24] Burhan [25] Aarnoutse [26] Magis-Escurra 
[14]

Boeree [27] Van Beek [28] Total

Included 
patients

23 40 180 62 14 97 52 466

Observed data points
 Total 92 619 534 1189 154 1804 390 4782
 INH 92 309 263 619 154 898 211 2546
 Acetyl-INH 0 310 271 570 0 906 179 2236

Data points BLQ, n (%)
 Total 2 (2.2) 54 (8.7) 1 (0.2) 40 (3.4) 42 (27.3) 249 (13.8) 7 (1.8) 395 (8.3)
 INH 2 (2.2) 27 (8.7) 0 (0) 5 (0.8) 42 (27.3) 72 (8.0) 4 (1.9) 152 (6.0)
 Acetyl-INH – 27 (8.7) 1 (0.4) 35 (6.1) – 177 (19.5) 3 (1.7) 243 (10.9)

Typical sam-
pling hours

2 and 6 h Full PK, 9 
samples

0–24 h

2 h, full PK
for 9 patients

Full PK, 11 
samples

0–24 h

Full PK, 11 
samples 
0–24 h

Full PK, 9 
samples 
0–24 h

2, 4, and 6 h –

Samples, 
median 
(range)

4 (4–4) 8 (4–9) 1 (1–13) 10 (7–11) 11 (10–11) 9 (5–10) 4 (1–8) –

Number of 
occasions

2 1 1 1 1 1 1 (2 for 14 
patients)

–

Bioanalysis 
method

UPLC-UV UPLC-UV UPLC-UV UPLC-UV LC-MS/MS UPLC-UV LC-MS/MS –

Country of 
origin

Tanzania Tanzania Indonesia Tanzania The 
 Netherlandsa

Tanzania and
South Africa

The 
 Netherlandsa

–

Setting Clinical trial Clinical trial Clinical trial Clinical trial TDM Clinical trial TDM –
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metabolizer groups as it can be difficult to distinguish the 
three mixture groups as is seen in other models [4, 17]. In 
case two, metabolizer groups were used, the fast and inter-
mediate metabolizers were grouped, as metabolization rates 
of these groups are closer together than those of the slow 
metabolizers, which have more deviant metabolization rates.

Inter-individual variability in the pharmacokinetics of 
INH was assumed to be log-normally distributed. Inter-
occasion variability was not assessed because the number 
of individuals who were sampled on multiple occasions was 
limited. For residual variability, additive, proportional, and 
combined models were tested for both INH and acetyl-INH. 
Below the limit of quantification data were handled using 
the M6 method as described by Beal [37]. The M3 method 
was tested but did not perform better than the M6 method 
and increased numerical instability. Using this method, in 
the elimination phase, the first datapoint BLQ is replaced 
by the lower limit of quantification/2, and subsequent BLQ 
points are ignored. In the absorption phase, it is the last 
datapoint BLQ that is replaced and all previous BLQ points 
that are ignored. The minimum additive error for data BLQ 
was fixed to 50% of the lower limit of quantification values.

The number of potential covariates tested was kept low 
because of the purpose of our model; the covariates available 
in TDM practice are generally quite limited. It was opted to 
include only the allometric scaling with total body weight to 
not hamper a general implementation of the model in routine 
TDM. Although we did test the impact of formulation dif-
ferences, but no effect could be identified.

Pharmacokinetic parameter uncertainty was assessed 
using sampling importance resampling [38, 39]. Sampling 
importance resampling is a fast method to determine param-
eter uncertainty which is free of distributional assumptions, 
a good alternative to the bootstrap. The initial estimates 
for the SIR were based on a successful covariance step and 
inflated by factor 1.5. The samples per iteration were 1000, 
1000, 1000, 2000, and 2000, the re-samples per iteration 
were 200, 400, 500, 1000, and 1000. Parameter precision 
was presented using the calculated 95% confidence intervals 
(CIs). The predictive performance of the final model was 
assessed using VPCs and goodness-of-fit plots. The VPCs 
were prediction corrected and the PsN mixture option was 
used [40, 41].

2.4  Comparison of Limited Sampling Strategies

The performance of three LSSs was tested. These LSSs had 
sampling times at 2 h, 2 and 4 h, and 2, 4, and 6 h after dos-
ing. These LSSs were chosen considering that sampling at 
2 and 6 h, introduced by Peloquin et al., is common for TB 
drugs, and we have added a 4-h sampling point in our TDM 
service [2, 42]. In addition, samples with these sampling 
times were available within most of the datasets. Sampling 

at 2 and 6 h was not included as it does not offer any benefit 
over sampling at 2 and 4 h, which is more feasible to perform 
in clinical practice. For each LSS, the performance of AUC 24 
and Cmax prediction was determined using the patients who 
had a full PK curve including samples at 2, 4, and 6 h after 
dosing (169 patients from five studies) [14, 24–27]. The per-
formance of the LSSs was also compared to the performance 
of the model without any sampling to assess the added value 
of sampling in TDM. The most suitable LSS was selected 
based on predictive performance and clinical practicality. 
The performance of predicting the AUC 24 was regarded as 
more important than that of the Cmax. In these assessments, 
the mean error (ME) and root mean square error (RMSE) 
and their 95% CIs of the prediction of AUC 24 and Cmax were 
calculated as measures of bias and precision [43, 44]. The 
ME and RMSE were expressed as a percentage of the mean 
of the corresponding model-estimated parameter using the 
full PK curve.

The most suitable LSS was used to perform a fit-for-pur-
pose analysis, meaning that it was investigated how well the 
pharmacokinetics of INH could be predicted from a previ-
ous measurement [45]. The patients including data of a sec-
ond occasion and the sampling times for the selected LSS 
were used for this. Apart from the most suitable LSS, ‘no 
sampling’ was tested as well to evaluate the amount of vari-
ability explained by the most suitable LSS. Suitable data for 
this analysis were available from 13 patients from only one 
study [28]. The performance of predicting the AUC 24 for the 
second occasion was determined using the ME and RMSE.

2.5  Importance of Acetyl‑INH Data and Mixture 
Component for the Predictive Performance

The added value of both the acetyl-INH metabolite data and 
inclusion of a mixture model accounting for the polymorphic 
NAT2 clearance was assessed for the most suitable LSS. 
The selected LSS was used to provide AUC 24 predictions 
using only the INH data. These predictions were compared 
to model predictions using the full dataset, including the 
acetyl-INH data. To determine the added benefit of a mixture 
model to the performance of predicting the AUC 24, the mix-
ture component was removed, and model parameters were 
re-estimated. The performance was again compared using 
the ME and RMSE.

3  Results

3.1  Pharmacokinetic Model

The final model is depicted in Fig. 1. It included four transit 
absorption compartments going into a well-stirred liver model 
[46]. The pharmacokinetics of INH was best described by 
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a two-compartment disposition model. Acetyl-INH pharma-
cokinetics was characterized using a single compartment and 
first-order elimination. Metabolization in the liver compart-
ment could either clear INH or transform it into acetyl-INH. 
It was not possible to estimate INH clearance as a trimodal 
distribution using a mixture model and thus a bimodal mix-
ture model was included. The volume of the liver compart-
ment and hepatic plasma flow were fixed to 1 L and 49.5 L/h, 
respectively, and allometrically scaled on total body weight 
like other volume and clearance parameters.

The final model parameter estimates and their uncertainty 
are shown in Table 2. Uncertainty in the parameter estimates 
was generally low (relative standard error, RSE < 12%CV), 
except for the IIV of the central volume of acetyl-INH (RSE = 
40%CV) and the correlation between the IIV of the clearances 
(RSE = 71%CV). The absorption processes were variable 
between individuals with an IIV estimated at 83.2%CV (95% 
CI 78.1–91.7). The proportion of fast NAT2 acetylators in 
the studies was estimated at 43.4% (95% CI 38.4–48.9). Slow 
acetylators typically had 13% of the intrinsic NAT2 clearance 
of fast acetylators. The second clearance pathway, not through 
NAT2, typically made up 74% of the total clearance for slow 
acetylators and 27% of the clearance for fast acetylators. A 
correlation was found between the clearance through acetyla-
tion and through other pathways, but the uncertainty of this 
correlation was quite high (0.143, 95% CI − 0.0620, 0.325). 
Additionally, a correlation between the proportional residual 
errors of INH and acetyl-INH was found.

The VPCs, shown in Fig. 2, generally describe the model 
well. Some limitations of the model can be discerned 

from this figure. The model does not describe the median 
observed peak perfectly. Furthermore, the model simulates 
concentrations that are slightly too high on the upper end of 
the concentration range for acetyl-INH at timepoints after 
8 h. The VPCs of the model were deemed satisfactory for 
TDM using the AUC 24. The performance of the model for 
TDM using the Cmax should be explored further. Other good-
ness-of-fit plots are shown in Fig. 3 and do not show any 
obvious misspecifications. The full code of the final model is 
included in the Electronic Supplementary Material (ESM).

3.2  Comparison of Limited Sampling Strategies

The AUC 24 and Cmax predicted by the LSSs were compared 
to the AUC 24 and Cmax predicted by the model based on full 
PK curves. Scatterplots of this are shown in ESM 1. The bias 
and precision of these strategies are shown in Table 3. The 
LSS using only one sample performed substantially worse 
in both bias and precision than the strategies with two or 
three sampling points. The strategies employing sampling 
at 2 and 4, and 2, 4, and 6 hours after dosing have a similar 
performance. Based on bias, precision, clinical practical-
ity, and conformity with a previously developed strategy for 
rifampicin [28], the strategy using sampling at 2 and 4 hours 
after dosing was selected as the most suitable.

To assess if the model and LSS is fit for purpose, the 
AUC 24 of a second sampling occasion was predicted using 
data from a first sampling occasion. The fit-for-purpose 
analysis of the model using the 2- and 4-h sampling strategy 
resulted in an ME of 25.7% and an RMSE of 37.2%. Without 

Fig. 1  Schematic overview of the final isoniazid (INH) population 
pharmacokinetic model. The dose enters the well-stirred liver com-
partment via a four-compartmental transit model. Absorption con-
stant (KA) is defined as the number of transit compartments plus 1, 
divided by the mean transit time (MTT). From the liver compartment, 
the drug can be distributed to the central INH compartment or be 
metabolized into acetyl-isoniazid (AcINH) or other metabolites. From 
the central AcINH compartment, the drug is cleared through first-
order elimination. Isoniazid pharmacokinetics are described using a 

two-compartment disposition model and AcINH pharmacokinetic 
by a one-compartment disposition model. CL clearance into acetyl-
isoniazid, CL other clearance into other metabolites than acetyl-iso-
niazid, CLM clearance of the acetyl-isoniazid metabolite, EH hepatic 
extraction ratio, Q inter-compartmental clearance, QH hepatic plasma 
flow, V central volume of isoniazid, VH hepatic volume, VM central 
volume of the acetyl-isoniazid metabolite, VP peripheral volume of 
isoniazid
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sampling in the first occasion, the ME was 82.7% and the 
RMSE 117.9%.

3.3  Importance of Acetyl‑INH Data and Mixture 
Component for the Predictive Performance

The final model using the 2- and 4-h LSS without the acetyl-
INH data had an ME of − 1.8% and an RMSE of 28.9% 
for estimating the AUC 24. For estimation of the Cmax, the 
ME was 0.1% and the RMSE 23.5%. Comparison to data 
in Table 3 shows that the prediction of the model without 
acetyl-INH data is less precise compared to the predictions 
including acetyl-INH for the 2- and 4-h sampling strategy. 
For the 2-, 4-, and 6-h strategy without acetyl-INH data, the 
estimation of the AUC 24 had an ME of 1.7% and an RMSE 
of 20.9%. For estimation of the Cmax, the ME was 1.2% and 
the RMSE 23.8%. This is comparable to the performances 
of the 2-, 4-, and 6-h and 2- and 4-h strategies including 
acetyl-INH data. ESM 2a shows the effect of removing the 
acetyl-INH data on the performance of predicting the AUC 
24 for the 2- and 4-h sampling strategy.

The re-estimated model without a mixture component 
using the 2- and 4-hour LSS had an ME of − 1.1% and 
RMSE of 24.6% for AUC 24 estimation, and an ME of 7.7% 
and RMSE of 23.3% for estimation of the Cmax, meaning that 
the mixture component was not essential for the predictive 
performance of the model. The estimated PK parameters 
for the model without a mixture component were similar 
to those of the final model, except for the clearance repre-
senting both metabolization groups and their IIV. The new 
clearance has a value of 9.12 L/h and lies in between the 
clearances of the slow and fast metabolizers as estimated 
by the final model. The estimated IIV of this clearance has 
increased drastically by more than two-fold to 115.8%CV. 
ESM 2b shows the effect of removing the mixture model on 
the performance of predicting the AUC 24.

4  Discussion

In this project, we have developed a model describing the 
pharmacokinetics of INH based on a large and diverse data-
set. The model should have a wider applicability and be 

Table 2  Final model parameter 
estimates

CI confidence interval, CV coefficient of variation, h hour, IIV inter-individual variability, L liter, RSE rela-
tive standard error
a The clearances for fast and slow acetylators shared one estimated IIV

Parameter Estimate 95% CI RSE (%CV)

Isoniazid
Central volume, V (L) 57.5 54.9–59.4 2.2
Absorption constant, KA (/h) 5.42 5.40–5.44 0.1
Proportion fast acetylators 0.434 0.384–0.489 6.6
Clearance (L/h)
 Fast acetylators, CLF 32.7 28.6–37.6 7.7
 Slow acetylators, CLS 4.31 3.85–4.75 7.4
 Other clearance pathways, CLO 12.1 11.2–13.1 4.3

Peripheral volume, VP (L) 18.7 16.8–20.5 4.2
Inter-compartmental clearance, Q (L/h) 2.48 2.10–2.87 8.2
IIV V (%CV) 26.4 23.4–29.3 6.5
IIV KA (%CV) 83.2 78.1–91.7 4.9
IIV CLF/CLS (%CV)a 57.5 51.9–63.3 5.0
IIV CLO (%CV) 37.9 34.4–41.0 5.1
Proportional error (%) 37.5 36.4–38.7 3.0
Acetyl-isoniazid
Central volume, VM (L) 39.2 36.1–42.2 4.3
Clearance, CLM (L/h) 6.65 6.10–7.22 4.5
IIV VM (%CV) 10.3 5.98–14.2 37
IIV CLM (%CV) 36.7 34.2–40.4 5.3
Proportional error (%) 23.3 22.8–24.0 2.8
Correlations
Acetylation-other clearance pathways 0.143 −0.0620; 0.325 39
Parent error-metabolite error 0.601 0.556-0.656 2.9
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better suited for TDM in various populations compared to 
previously published models, which were all based on stud-
ies from a single country [4, 5, 17–22]. We also introduced 
and evaluated a model-based TDM approach for personal-
ized dosing of INH using sampling at 2 and 4 h or 2, 4, 
and 6 h after dosing. These approaches will allow for dose 
adjustments of INH in programmatic TB treatment.

The structure of the final PK model is comparable to 
those previously described [5, 17, 21]. The estimated clear-
ances and proportion of fast NAT2 acetylators described in 
this model are very similar to those previously described 
[17]. As in other published INH models, our model could 
only separate two of the three acetylator subgroups [17, 18]. 
We did not differentiate between acetylator proportions for 
different ethnicities, which are known to vary [47]. The other 
model parameters are also mostly similar to those described 
previously [5, 17]. The estimates for the peripheral volume 
and intercompartmental clearance for INH vary between the 
different models. During the model building process, we 
encountered instability problems, making it difficult to esti-
mate some of the model parameters. Explanations for this 
could be the large number of different data sources included 
in the model building dataset and the model complexity. The 
VPCs of the model are acceptable and it has been shown 

that the model performs well for the purpose of TDM. As 
such, we do not see the instability as a sign of an underlying 
problem. We opted to have a limited inclusion of covariates 
in view of the purpose of this model. For other purposes, 
the model could probably be improved by the inclusion of 
additional covariates. While inter-occasion variability is 
known to be present for INH, we were unable to identify it in 
our model [4, 17]. It has been described that inter-occasion 
variability may impact the predictive performance of model-
based dosing algorithms [48]. Despite this, we showed in the 
fit-for-purpose evaluation using multiple occasions that the 
model performed well.

The LSS with sampling at 2 and 4 h after dosing was 
selected as the most suitable strategy. Previously, we 
introduced a model-based TDM approach for rifampicin, 
just like INH a pillar within the TB treatment [28]. This 
approach also uses a LSS with sampling at 2 and 4 h after 
dosing, which means that the method described here and for 
rifampicin are compatible in clinical practice. In this study, 
we decided to develop a new PK model rather than evaluate 
existing models like we did for the model-based approach 
for rifampicin. This decision was based on the added value 
of a model built on a large and diverse dataset. A better LSS 
could potentially have been found using an optimal design 

Fig. 2  Basic goodness-of-fit plots for the final isoniazid population 
pharmacokinetic model. a, b The observed concentrations plotted 
against the model-predicted concentrations or the individual model-
predicted concentrations. The black lines represent the line of unity, 
and the blue lines represent the local polynomial regression fit. c The 
conditionally weighted residuals plotted against the time after dose. 

The solid lines are the y = 0 lines, and the dashed lines define the 
range between which you want the majority of the observations to lie. 
d The normalised prediction distribution errors plotted against the 
time after dose. The solid lines are the y = 0 lines and the blue lines 
are the means per time bin
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Fig. 3  Visual predictive checks of the final isoniazid population phar-
macokinetic model for a slow metabolizers and b fast metabolizers. 
The visual predictive checks are based on 1000 simulations and pre-
diction corrected. The PsN mixture option was used and the plots are 
based on the individual probability for belonging to a subpopulation 

[36]. The solid lines represent the mean of the observed concentra-
tions and the dashed lines represent the 2.5th and 97.5th percentiles. 
The shaded areas represent the 95% confidence interval of the 2.5th, 
50th, and 97.5th percentiles of the simulated concentrations

Table 3  Predictive performance comparison of the limited sampling strategies

Both the ME and RMSE are depicted as a percentage of the mean of the corresponding model-estimated parameter using the full pharmacoki-
netic curve
AcINH acetyl-isoniazid, AUC 0–24 area under the concentration–time curve from 0 to 24 h, CI confidence interval, Cmax peak concentration, INH 
isoniazid, ME mean error, RMSE root mean square error, SD standard deviation

Data used for prediction Sampling strategy AUC 0–24 Cmax

RMSE, % (SD) ME, % (95% CI) RMSE, % (SD) ME, % (95% CI)

No data No sampling 73.7 (4.0) 55.8 (48.5, 63.1) 44.1 (2.4) 25.3 (19.9, 30.8)
INH + AcINH 2, 4, and 6 h 21.8 (1.2) 1.6 (−1.7, 4.8) 24.2 (1.3) 4.2 (0.6, 7.8)

2 and 4 h 23.4 (1.3) −1.1 (−4.6, 2.4) 23.8 (1.3) 2.7 (−0.9, 6.3)
2 h 34.0 (1.8) 10.0 (5.1, 14.9) 26.5 (1.4) 6.0 (2.1, 9.9)

INH 2, 4, and 6 h 20.9 (1.1) 1.7 (−1.5, 4.8) 23.8 (1.3) 1.2 (−2.4, 4.8)
2 and 4 h 28.9 (1.6) −1.8 (−6.2, 2.6) 23.5 (1.3) 0.1 (−3.5, 3.7)
2 h 59.1 (3.2) 36.1 (29.1, 43.2) 27.0 (1.5) 11.7 (8.0, 15.4)
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experiment. However, by sticking to predefined sampling 
times, we were able to evaluate the proposed strategy using 
the existing time points in the dataset.

For unbiased predictions using the 2- and 4-h LSS, 
acetyl-INH concentration data were needed. If using this 
LSS without acetyl-INH PK data input, the performance of 
predicting the AUC 24 will be lower. However, if acetyl-INH 
data are not available, it can be compensated for by adding 
a 6-h sampling time. Removing the mixture component and 
re-estimating the model parameters shows that not account-
ing for the polymorphic clearance of INH does not have a 
major impact on performance of the exposure prediction. 
After removing the mixture component, the variability 
caused by the polymorphic NAT2 clearance is described 
by an IIV more than two times the size before removing the 
mixture component. This increase in variability probably 
compensates for the lack of mixture model and prevents a 
significant drop in performance of the LSS.

While we present a sampling strategy using 2- and 4-h 
sampling times, deviation from these sampling times does 
not mean exposure prediction is not trustworthy anymore. 
The presented strategy should be seen as a flexible sam-
pling strategy. Using sampling times that deviate from the 
LSS is one of the benefits of using a model-based approach. 
However, we did not evaluate the impact of deviating from 
the proposed sampling times as such sampling time devia-
tions were not sufficiently present in the data because of the 
regulated nature of the included studies. It would have been 
possible to simulate deviating sampling times as input for 
the sampling strategies, but this was beyond the purpose of 
this study.

We tested if the LSS was fit for purpose by assessing the 
performance of predicting the exposure of a future sampling 
occasion. We showed that the strategy is able to explain most 
of the variability in the pharmacokinetics by comparing its 
performance to that without sampling. The explained vari-
ability is determined by IIV as inter-occasion variability was 
not included in the model. By incorporating inter-occasion 
variability in the model, the performance of predicting a 
future occasion could be further improved [48]. Prospective 
evaluation of this method is needed to show how well it will 
perform in a real TDM setting.

The model-based TDM approach has advantages, but is 
also a complex methodology in terms of software usage and 
underlying theory [49]. For this reason, implementation of 
a model-based TDM approach in clinical practice should 
be combined with a user-friendly interface to improve the 
ease of use. Furthermore, the translation from the model-
based results to clinical advice is crucial for successful 
implementation.

5  Conclusions

We developed a model-based LSS using INH and acetyl-
INH data from sampling at 2 and 4 h after dosing to be used 
for individualized dosing in TDM practice. Alternatively, a 
2-, 4-, and 6-h LSS can be used if only collecting PK data on 
INH and not on acetyl-INH. Prospective evaluation of this 
strategy will show how it performs in a clinical TDM setting.
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