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Abstract: We have been studying the general aspects of the functions of H2S and polysulfides,
and the enzymes involved in their biosynthesis, for more than 20 years. Our aim has been to
elucidate novel physiological and pathological functions of H2S and polysulfides, and unravel the
regulation of the enzymes involved in their biosynthesis, including cystathionine β-synthase (EC
4.2.1.22), cystathionine γ-lyase (EC 4.4.1.1), thiosulfate sulfurtransferase (rhodanese, EC 2.8.1.1),
and 3-mercaptopyruvate sulfurtransferase (EC 2.8.1.2). Physiological and pathological functions,
alternative biosynthetic processes, and additional functions of H2S and polysulfides have been
reported. Further, the structure and reaction mechanisms of related enzymes have also been reported.
We expect this issue to advance scientific knowledge regarding the detailed functions of H2S and
polysulfides as well as the general properties and regulation of the enzymes involved in their
metabolism. We would like to cover four topics: the physiological and pathological functions of
H2S and polysulfides, the mechanisms of the biosynthesis of H2S and polysulfides, the properties of
the biosynthetic enzymes, and the regulation of enzymatic activity. The knockout mouse technique
is a useful tool to determine new physiological functions, especially those of H2S and polysulfides.
In the future, we shall take a closer look at symptoms in the human congenital deficiency of each
enzyme. Further studies on the regulation of enzymatic activity by in vivo substances may be the key
to finding new functions of H2S and polysulfides.
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1. Enzyme Production of H2S and Polysulfides

Cystathionine β-synthase (CBS) was first reported to produce H2S and polysulfides by Abe
and Kimura in 1996 [1]. Further, cystathionine γ-lyase (CGL) was reported by Hosoki et al. [2], and
3-mercaptopyruvate sulfurtransferase (MST) was reported by Shibuya et al. [3–5], Mikami et al. [6,7],
Modin et al. [8], Yadav et al. [9], Kimura et al. [10], and Nagahara et al. [11]. Thiosulfate sulfurtransferase
(TST) was reported by Mikami et al. [7] and Kimura et al. [10]. These enzymes catalyze a transsulfuration
reaction from a sulfur-donor substrate to a sulfur acceptor substrate. Then, the persulfurated or
polysulfurated substrate is reduced to produce H2S and polysulfides during this reaction.

On the other hand, Nagahara et al. [11] recently demonstrated in vitro that MST transfers a
sulfur atom from 3-mercptopyruvate (MP) to the catalytic site cysteine to form stable persulfide
(polysulfide) as a reaction intermediate. It is interesting that as an alternative production process,
thiol-containing compounds attack the persulfide (polysulfide) formed at the catalytic site and a
new persulfide (polysulfide) molecule is formed at the thiol-containing compound. Then, dithiol is
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reduced by thioredoxin (Trx) or dihydrolipoic acid to release H2S or polysufides. This process may be
autoreduction. Yadav et al. [10] performed enzyme kinetics analysis for human MST in the production
process of hydrogen disulfide.

2. Physiological Functions of H2S and Polysulfides

Kimura reviewed the physiological activities of H2S and polysulfides in 2016 [12]. The functions
of H2S and polysulfides are summarized in Tables 1 and 2, respectively, [1,2,13–32].

Table 1. Physiological function of H2S.

Function Reference

Induction of long-term potentiation in the
hippocampus as a synaptic model of memory Abe and Kimura, 1996 [1]

Effect on smooth muscle relaxant activity Hosoki et al., 1997 [2]

Protective action of nerve cells from oxidative stress Kimura and Kimura, 2004 [13]

Regulation of insulin secretion Yang et al., 2005 [14]; Kaneko et al., 2006 [15]

Oxygen sensor Olson et al., 2006 [16]; Peng et al., 2010 [17]

Antiinfection Zanardo et al., 2006 [18]

Protective action of myocardium and kidney from
ischemia reperfusion injury Elrod et al., 2007 [19]; Tripatara et al., 2008 [20]

Angiogenic effect Cai et al., 2007 [21]; Papapetropoulos et al., 2009 [22]

Protection of retinal neurons from light-induced
damage and apoptosis Mikami et al., 2011b [7]

Regulation of endoplasmic reticulum stress Krishnan et al., 2011 [23]

Bacterial resistance against antibiotics Shatalin et al., 2011 [24]

Reduction of disulfide bonds in a ligand-binding
domain of N-methyl-D-aspartic acid receptors Kimura, 2013 [25]; 2015 [26]

Amplification of the activity of N-methyl-D-aspartic
acid receptor upon activation by neurotransmitters Kimura, 2015 [26]

Activation of H+-ATPase resulting in decrease of
calcium influx into photoreceptor cells of the retina Kimura, 2016 [12]

Sulfane-sulfur binding proteins (SSBPs), ubiquitous in cells and tissues, can be regarded as
potentially H2S-releasing molecules when under proper redox conditions and affected by specific
stimuli that induce their release. Three sulfurtransferases, i.e., CGL, MST, and TST, carry sulfane sulfur,
which can be released as H2S/HS− [33]. The released H2S can be enzymatically oxidized to sulfane
sulfur by sulfide quinone oxidoreductase with an acceptor of sulfane sulfur, such as GSH [34].

To understand the physiological function of sulfane sulfur, its levels in biological samples (tissues,
cell cultures) were determined using the reaction with cyanide, and subsequently investigating the
thiocyanate yield of the complex with Fe3+, which is detectable by spectrophotometry [35]. Although
the method is not very sensitive, it showed that sulfane sulfur levels were quite similar in various
animal tissues [36,37] and in murine macrophages despite stimulation with lipopolysaccharide and
interferon-γ [38]. Thus, an argument may be put forward about homeostasis of sulfane sulfur levels in
biological systems. Moreover, a negative feedback regulation between CBS and CTH was suggested by
Nandi and Mishra [39] and confirmed by Bronowicka et al. [38]. The adaptive cellular response to
stimulation with both IFNγ and LPS caused a decreased level of H2S-associated low CBS expression
and increased CTH expression.
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Table 2. Physiological function of polysulfides.

Function Reference

Induction of calcium influx by activating a cation
channel, subfamily A, and member 1 in astrocytes Nagai et al., 2004 [27]; Kimura et al., 2013 [28]

Inhibition of tumor suppressor lipid phosphatase and
tensin homolog by changing the protein to its

oxidized form
Greiner et al., 2013 [29]

Upregulation of antioxidant genes, such as heme
oxygenase 1 and glutamate cysteine ligase Koike et al., 2013 [30]

Induction of long-term potentiation in the
hippocampus due to activation of

N-methyl-D-aspartic acid receptors
Kimura, 2015 [26]

Upregulation of antioxidant genes such as heme
oxygenase 1 and glutamate cysteine ligase Kimura, 2015 [26]

Decrease in toxic carbonyl stress in
neuroblastoma cells Koike et al., 2015 [31]

Induction of neural outgrowth and cell differentiation
of neuroblastoma cells Koike et al., 2016 [32]

The adaptive cellular response to electrophiles (electron-deficient species) represented by heavy
metal ions [40] involves sulfane sulfur atoms of numerous SSBPs. Protection against electrophilic
stresses involves persulfides rather than thiol groups because of their higher nucleophilicity [41].
Electrophiles are captured by reactive persulfide/polysulfide species, resulting in formation of their
sulfur adducts [42]. In bovine aortic endothelial cells, CSE knockdown potentiated Cd-induced
cytotoxicity but CSE overexpression provided protection [43]. In vivo experiments showed that
CSE-knockout mice were sensitive to Cd-induced hepatotoxicity [44]. Adaptive changes in the activity
and expression of CGL, MST, and TST in various frog tissues in response to exposure to lead, mercury,
and cadmium confirmed the protective function of these enzymatic proteins against electrophilic
stress [45,46].

3. Possible Production of Other Sulfur-Containing Substances, Sulfur Oxides

Physiological roles of sulfur dioxide were reported by Liu et al. [47] in 2016 and include
vasorelaxation [48–50] as well as myocardial injury [48]. MALDI-TOF-MS analysis provided supporting
evidence for sulfur oxide production (SO, SO2, and SO3) in the redox cycle of sulfane sulfur as a reaction
intermediate of MST by Nagahara et al. [51] in 2012. The persulfurated catalytic site cysteine was
oxidized to form Cys-thiosulfenate (Cys-Sγ-SO), Cys-thiosulfinate (Cys-Sγ-SO2), and Cys-thiosulfonate
(Cys-Sγ-SO3). Reducing agents such as DTT and Trx produce sulfur oxides [51].

4. Knockout of H2S and Polysulfides-Producing Enzymes

Knockout (KO) technique is a good tool to clarify the physiological functions of proteins. Congenial
deficiency of CBS causes hyperhomocysteinemia or homocystinuria in humans. Watanabe et al.
produced CBS-KO mice [52], and the mice were afflicted with chronic renal dysfunction. The mice
showed growth retardation and died within 5 weeks.

Congenial deficiency of CGL causes cystathioninuria in humans. CGL-KO mice were produced
by Yang et al. [53], and the mice displayed low levels of H2S associated with hypertension.

Congenial deficiency of MST causes mercaptolactate-cysteine disulfidria in humans. MST-KO
mice were produced by Nagahara et al. [54]; however, mercaptolactate-cysteine disulfiduria has not
been examined. Peleli et al. [55] recently reported that MST-KO mice were protected against ischemic
reperfusion of the heart. Nasi et al. [56] reported that mice showed accelerated joint calcification
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and osteoarthritis due to an increase in chondrocyte mineralization. Interestingly, these two findings
indicate that MST demonstrates both good and bad effects on living organisms.

TST-KO mice have not been obtained; however, a double KO mouse for both TST and MST has
been produced (unpublished data).

5. Regulation of Enzymatic Activity by In Vivo Substances

These four enzymes have been reported to regulate enzymatic activities in vivo. CBS activity
is inhibited by CO [57], NO [58], L-cystathione [59], and L-homocysteine [60]. On the other
hand, CBS activation by in vivo substances has not been reported. CGL activity is inhibited by
acetoacetate [61], alanine [62], cysteine [63], glycine [62], serine [62], Cd2+ [64], Cu2+ [64], H2O2 [61],
and O2 [65]. It is interesting that oxidative stress inhibits CBS activity. However, CGL is activated by
L-cysteine [66] and 2-mercaptoethanol (probably other reducing agents also reactivate) [62]. Thus,
reducing conditions reactivate CBS. TST activity is inhibited by Ca2+ [67], Zn2+ [67], Cu2+ [68],
oxaloacetate [69], pyruvate [69], H2S [70], SO3

2− [67], SO4
2− [69], sulfide [71], sulfite [72], and H2O2 [73].

Oxidative stress also inhibits TST activity. On the other hand, TST is activated by L-cysteine [74],
glutathione [75], and reduced glutathione [75,76]. Thus, reducing conditions also reactivate TST. MST
activity is inhibited by alpha-ketobutyrate [77], alpha-ketoglutarate [77], pyruvate [78], cysteine [78],
sulfite [6], glutathione [78], and H2O2 [79]. Oxidative stress also inhibits MST activity, while MST is
activated by thioredoxin [79,80]. Thus, reducing conditions also reactivate MST. In the three enzymes,
these enzymatic activities are regulated by the redox state.

6. Conclusions

Four cysteine-containing enzymes (CBS, CGL, MST, and TST) produce H2S and polysulfides via
the reduction of persulfurated or polysulfurated substrates. MST is also produced via the reduction of
stable persulfide (polysulfide) formed at a catalytic-site cysteine as a reaction intermediate. Sulfur
oxide can also be produced from a catalytic site cysteine of MST. These products play an important
role in living organisms. Furthermore, studies using KO mice of each enzyme have clarified the
physiological function of these enzymes, which cannot be assessed in wild-type animals. Regulation of
enzymatic activity by in vivo substances may be related to the functions of H2S and polysulfides.
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