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Abstract: Accumulating studies show that the host microbiome influences the development or
progression of many diseases. The eukaryotic virome, as a key component of the microbiome,
plays an important role in host health and disease in humans and animals, including research
animals designed to model human disease. To date, the majority of research on the microbiome
has focused on bacterial populations, while less attention has been paid to the viral component.
Members of the eukaryotic virome interact with the commensal bacterial microbiome through trans-
kingdom interactions, and influence host immunity and disease phenotypes as a collective microbial
ecosystem. As such, differences in the virome may affect the reproducibility of animal models, and
supplementation of the virome may enhance the translatability of animal models of human disease.
However, there are minimal empirical data regarding differences in the virome of mice from different
commercial sources. Our hypotheses were that the mice obtained from pet store sources and lab mice
differ in their eukaryotic virome, and that lab mice from different sources would also have different
viromes. To test this hypothesis, the ViroCap platform was used to characterize the eukaryotic virome
in multiple tissues of mice from different sources including three sources of laboratory mice and
two pet stores. As expected, pet store mice harbored a much greater diversity within the virome
compared to lab mice. This included an ostensibly novel norovirus strain identified in one source
of these mice. Viruses found in both laboratory and pet store populations included four strains
of endogenous retroviruses and murine astrovirus with the latter being restricted to one source of
lab mice. Considering the relatively high richness virome within different samples from healthy
humans, these data suggest that mouse models from alternative sources may be more translational
to the human condition. Moreover, these data demonstrate that, by characterizing the eukaryotic
murine virome from different sources, novel viruses may be identified for use as field strains in
biomedical research.

Keywords: gut microbiome; virome; laboratory mice; pet store mice; translatability; reproducibility;
novel virus

1. Introduction

Animal models, especially mouse models, are used in biomedical research to investi-
gate conditions (including chronic diseases such as autoimmune diseases, cancer, human
immunodeficiency virus infection) and acute conditions (such as many infectious diseases).
While the advantages of using mouse models are appreciated, there are limitations to be
considered in terms of their reproducibility and accurate recapitulation of the human con-
ditions they are used to study [1–4]. For example, one clinical study using the same drugs
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that worked very well in experimental treatment in an established mouse model of human
amyotrophic lateral sclerosis (ALS) disease [5] was unable to reproduce these preclinical
results when applied to a human population [3]. This example of therapeutic failure of a
promising drug during clinical trials, combined with other study results [6–8] related to
the reproducibility or translatability of rodent studies, suggests a need for a more thorough
characterization and consideration of the mouse models used in biomedical research.

The bacterial microbiome has gained extensive attention among the biomedical re-
search community because of its influence on many physiological parameters, and asso-
ciation with many adverse health outcomes. For instance, the bacterial gut microbiome
is important for metabolism [9], mucosal barrier function [10], defense against certain
pathogens [11], and regulation of the immune system [12,13]. Certain compositional
features of the microbiome have also been associated with specific diseases such as inflam-
matory bowel disease [14], colorectal cancer [15] and obesity [16], among others [17]. In
contrast to research on the bacterial microbiome, there are relatively few studies focused on
the viral portion of the microbiome, i.e., the virome (including prokaryotic and eukaryotic
viruses), a fundamental component of the host-associated microbiome [18,19]. Investi-
gations of the eukaryotic virome are hindered by the lack of an efficient technique for
untargeted detection of all viral nucleic acid present within a sample, with high sensitivity
and specificity.

Previous studies comparing the bacterial gut microbiota of mice from different com-
mercial sources showed significant differences in diversity and composition between the
suppliers, and dramatically increased viral pathogen loads in mice obtained from non-
traditional sources of mice such as pet stores [20–22]. Therefore, in the present study, we
hypothesized that pet store mice would harbor a more complex eukaryotic virome than
mice from traditional sources of research mice, and that lab mice from different sources
would also differ in their virome. We also hypothesized that both sources (pet store and
lab) of mice may contain novel viruses.

To characterize the eukaryotic virome (including both DNA and RNA viruses) present
in multiple tissues of mice from different sources, weaning age mice were purchased from
three commercial suppliers of laboratory mice (Jackson, Taconic, and Envigo) and two local
pet stores, and multiple tissues (ileum, perianal skin, and lung) were collected and analyzed
with a robust, virus isolation-independent, probe-based targeted nucleic acid enrichment
approach, ViroCap [23]. ViroCap is a targeted sequence capture panel containing specific
probes that target the complete genomes of 337 viral species and enables the detection
of known viruses, as well as novel viruses based on sequence similarity to viral probe
sequences. Using this approach, we provided a comprehensive assessment of the virome
in these tissues, and characterized the viral components in the microbiome between lab
mice and pet store mice.

2. Materials and Methods
2.1. Ethical Approval and Informed Consent

All studies were conducted in accordance with the recommendations put forth in the
Guide for the Care and Use of Laboratory Animals and were approved by the University
of Missouri Institutional Animal Care and Use Committee.

2.2. Animals

C57BL/6 mice (JAX, 4 males and 4 females) were directly purchased from Jackson
Laboratory (Sacramento, CA, USA and Bar Harbor, ME, USA), C57BL/6NHsd mice (HSD,
4 males, 4 female) from Harlan Laboratory (Harlan Sprague Dawley, Indianapolis, IN, USA)
and C57BL/6NTac mice (TAC, 4 males and 4 females) from Taconic (Taconic Biosciences,
Inc., La Jolla, CA, USA, IN facilities). Pet store mice were purchased from Petco pet store
(PS, 2 males and 2 females) and Columbia Pet Center (2 males and 2 females). All mice
were around 4 weeks old and were post-weaning.
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2.3. Tissue Collection

All mice were euthanized by carbon dioxide asphyxiation and tissues including
respiratory tissue (lungs; whole pluck), dermal tissue (glabrous perianal skin), and gas-
trointestinal tissue (ileum) were collected and flash-frozen in liquid nitrogen and stored in
cryovials at −80 ◦C.

2.4. RNA, DNA Extraction and cDNA Synthesis

Qiagen RNeasy kit (Cat #74104) and Qiagen DNeasy blood and tissue kit (Cat #69506)
were used for RNA isolation and DNA isolation, respectively. The Agencourt AMPure
XP kit (Beckman Coulter, Brea, CA, USA) was applied for cDNA purification after cDNA
synthesis. A hundred µL of cDNA was processed by adding 100 µL of the AMPure XP
beads. Forty µL of elution buffer was added to dilute the purified cDNA according to
the manufacturer’s recommendations. The quality and quantity were measured by Qubit.
Only one tissue type was used at a time to prevent cross-contamination of samples.

2.5. Primer Information

Primer A: GTTTCCCAGTCACGATANNNNNNNNN a random primer used for
cDNA synthesis in the first round and the specific primer B: GTTTCCCAGTCACGATA
used for the generated template application. (Primers purchased from Integrated DNA
Technologies, Coralville, IA, USA).

2.6. Library Preparation

For the sequence library construction preparation, every 4 samples of the same type
were pooled in equal volume for a single sequencing library. For instance, 4 DNA samples
from the female mice sampled at the skin were pooled together and treated as one single
pooling group.

Automated dual-indexed libraries were constructed with 100–250 ng cDNA or gDNA
using the KAPA HTP Library Kit (KAPA Biosystems, Wilmington, MA, USA). 250 bp length
inserts were targeted by using the SciClone NGS instrument (Perkin Elmer, Waltham, MA,
USA). Twenty-four cDNA libraries were pooled pre-capture generating an 18 µg library
pool. Twenty-four gDNA libraries were pooled pre-capture generating a 27 µg library pool.

2.7. Virome Sequencing

Both library pools were hybridized with a custom Nimblegen probe set (Roche),
termed “ViroCap”, targeting a pan-virome space [23]. The concentration of each captured
library pool was accurately determined through qPCR (KAPA Biosystems) to produce clus-
ter counts appropriate for the Illumina HiSeq4000 platform. One lane of 2 × 125 sequence
data was generated per library pool yielding an average of 4 Gb of data per sample. Vi-
ral sequences were identified as previously described [23]. Briefly, both nucleotide and
translated sequence alignments were used to identify viral reads, and data were manually
reviewed. For sequence coverage determination, we used RefCov (http://gmt.genome.
wustl.edu/packages/refcov/ accessed on 15 December 2018). Viral genomes were assem-
bled with IDBA-UD [24], and they were manually reviewed with Tablet [25]. SAMtools [26]
was used for sequence alignment evaluation.

2.8. Statistical Analysis

Two-way analysis of variance (ANOVA) followed by Holm-Sidak for pairwise multi-
ple comparisons, two factors: sex and source. p < 0.05 was considered significant difference.

3. Results
3.1. Comparison of the Eukaryotic Virome of Mice from Laboratories and Pet Stores

A subjective review of viruses detected in each group of mice revealed two clear
patterns. First, pet store (PS) mice harbored a rich virome in multiple tissues while lab mice
harbored a limited diversity of eukaryotic viruses. Second, several eukaryotic retroviral

http://gmt.genome.wustl.edu/packages/refcov/
http://gmt.genome.wustl.edu/packages/refcov/
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sequences were detected in all groups. Twenty-one virus species in total were detected in
samples from PS mice, including both DNA and RNA viruses belonging to ten families.
Within those 21 species, there were 9 DNA and 12 RNA viruses. As expected, RNA viruses
(i.e., Picornaviridae, Arteriviridae, Astroviridae, Coronaviridae, and Caliciviridae) were detected
from sequenced cDNA reverse-transcribed from sample RNA. In contrast, DNA viruses
(i.e., Parvoviridae, Herpesviridae, Adenoviridae, and Papillomaviridae) were detected in both
DNA and RNA extracted from samples, suggesting active replication by many of these
viruses. Sequences matching Retroviridae were detected in both DNA and RNA from all
tissues, suggesting that the former represents proviral DNA within the host genome with
some active gene transcription (Figure 1).
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Aside from the Retroviridae, the remaining viruses detected in pet store mice reflected
three different assigned orders, five different unassigned orders, and nine different families
of viruses, ranging from Picornaviridae to Caliciviridae (Table 1).

Table 1. Categorization of viruses identified (retroviruses excluded). Table shows the summary of the identified viruses that
belong to different viral families based on the common taxonomy for the classification of viruses. Besides the retrovirus
family that was shared by both pet store mice and lab mice, the listed 9 viral families in this table were only found in pet
store mice. * Astrovirus as the only virus found in lab mice.

DNA/RNA Virus Family Virus Species

RNA Picornaviridae Aichi Virus
RNA Picornaviridae Skihote alin virus
RNA Picornaviridae Theilers encephalomyelitis virus
RNA Arteriviridae Lactate dehydrogenase elevating virus
RNA Astroviridae * Murine astrovirus
RNA Coronaviridae Murine coronavirus
RNA Coronaviridae Murine hepatitis virus
RNA Caliciviridae Murine norovirus
DNA Parvoviridae Lull virus
DNA Parvoviridae Minute virus of mice
DNA Parvoviridae Mouse parvovirus
DNA Parvoviridae Adeno associated virus
DNA Herpesviridae Murid herpesvirus 1
DNA Herpesviridae Murine cytomegalovirus
DNA Herpesviridae Muromegalovirus
DNA Adenoviridae Murine adenovirus 2
DNA Papillomaviridae Mus musculus papillomavirus. Type 1
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Analysis of the PS mice based on sex revealed that lactate dehydrogenase elevating
virus (LDEV) and mus musculus papillomavirus 1 were only detected in samples from
the male mice (Figure 2). In addition, the heat map of vertebrate viruses showed there is
difference between sex even among the same source such as pet store mice. Based on our
knowledge, there is limited data documented on the characterization of differences on the
virome between sex in lab mice.
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The number of retrovirus sequences detected differed between lab mice and PS mice.
The four detected retroviruses included xenotropic murine leukemia virus-related virus
(XMRV), murine leukemia virus (MLV), Moloney murine sarcoma virus, and Mus musculus
mobilized endogenous polytropic provirus. Within the retrovirus, while not absolutely
quantitative because the samples are pooled so not evaluated on a per-animal basis and the
amplification steps in the protocol can introduce bias. Even so, the number of sequences
detected suggested a trend in viral load among the retroviruses comprising greater amounts
of XMRV and MLV relative to Moloney murine sarcoma and the polytropic provirus, in
both lab mice and PS mice. Two-way ANOVA followed by Holm-Sidak post hoc tests
detected significant differences between male JAX and male PS samples, in the number
of sequences mapped to MLV (p = 0.008) and Moloney murine sarcoma virus (p = 0.045)
(Figure 3).

Based on the abundance of sequences detected, the six most abundance detected
viruses included mouse parvovirus, minute virus of mice, murine adenovirus 2, murine
coronavirus, murine hepatitis virus, and Theiler’s encephalomyelitis virus.

3.2. Comparison of the Eukaryotic Virome within Laboratory Mice

Within samples from laboratory mice, one difference in the abundance of retrovirus
sequences was found between mice from different vendors. Specifically, MLV was detected
more frequently in samples from JAX compared to samples from HSD (p = 0.037) (Figure 3).

Aside from the Retroviridae, astrovirus was the only other virus detected in samples
in lab mice. Murine astrovirus was detected in only one of the three lab mouse suppliers
(Envigo) (Figure 1).
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3.3. Comparison of the Viruses in Specific Tissues/Tropisms

From each mouse, samples were collected of respiratory tissue (lungs; whole pluck),
dermal tissue (glabrous perianal skin), and gastrointestinal tissue (ileum). The skin is the
representative tissue tropic that exposure to the environment at large degree considering
the environment is one of the sources that the host was contracted with different virus.
The lung is the representative tissue for respiratory organ in the host, and the ileum is
the representative tissue from the gastrointestinal which serves as reservoir for intestinal
virus infection. Within the more diverse PS virome, tissue tropisms were readily apparent.
The recently identified Mus musculus papillomavirus, was detected only in skin tissue
(Table 2). All three members of the Herpesviridae (MHV1, MCMV, and muromegalovirus)
were detected in skin and lung, but not the ileum, while murine adenovirus 2 and adeno-
associated viruses were detected in the ileal and skin samples, but not the lung. Endogenous
retroviruses (ERVs) were present in all tissue types.

3.4. Potential for Novel Virus Identification

In an effort to identify putative novel viruses, sequence of the norovirus found in
PS mice from male gastrointestinal tissue sample and female gastrointestinal tissue and
skin sample was compared to known murine noroviruses (Figure 4). This virus was
found to share 92% sequence identity with the most-closely related strain found in Gen-
Bank. Given that noroviruses are highly mutable RNA viruses, this finding was not
surprising, but reinforces that screening tools such as ViroCap can yield data on novel
strains that may be worthy of further characterization and pursuit. (BioProject ID: PR-
JNA733600). The other viruses that were assembled did not differ greatly from previously
identified/sequenced genomes.
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Table 2. Tissue specificity vertebrate viruses in pet store mice and laboratory mice.

Tissue Specificity Vertebrate Virus in Pet Store Mice

Viral Family Viral Species GI Lung Skin

Retroviridae XMRV 4/4 (100%) 4/4 (100%) 4/4 (100%)
Retroviridae Murine leukemia viruses 4/4 (100%) 4/4 (100%) 4/4 (100%)
Retroviridae Moloney murine sarcoma virus 1/4 (25%) 1/4 (25%) 2/4 (50%)
Retroviridae Mus musculus mobilized endogenous polytropic provirus 4/4 (100%) 4/4 (100%) 4/4 (100%)
Astroviridae Murine astrovirus 2/4 (50%) 0/4 None 2/4 (50%)

Picornaviridae Aichi Virus 2/4 (50%) 1/4 (25%) 2/4 (50%)
Picornaviridae Skihote alin virus 2/4 (50%) 0/4 None 1/4 (25%)
Arteriviridae Lactate dehydrogenase elevating virus 1/4 (25%) 1/4 (25%) 1/4 (25%)
Parvoviridae LuIII virus 3/4 (75%) 3/4 (75%) 2/4 (50%)
Parvoviridae Minute virus of mice 3/4 (75%) 3/4 (75%) 2/4 (50%)
Parvoviridae Mouse parvovirus 3/4 (75%) 3/4 (75%) 2/4 (50%)

Herpesviridae Murid herpesvirus 1 0/4 None 4/4 (100%) 3/4 (75%)
Adenoviridae Murine adenovirus 2 4/4 (100%) 0/4 None 1/4 (25%)
Parvoviridae Adeno associated virus 4/4 (100%) 0/4 None 2/4 (50%)

Papillomaviridae Mus musculus papillomavirus. Type 1 0/4 None 0/4 None 2/4 (50%)
Coronaviridae Murine coronavirus 2/4 (50%) 0/4 None 2/4 (50%)
Coronaviridae Murine hepatitis virus 2/4 (50%) 0/4 None 1/4 (25%)
Caliciviridae Murine norovirus 2/4 (50%) 0/4 None 1/4 (25%)

Picornaviridae Theilers encephalomyelitis virus 2/4 (50%) 0/4 None 1/4 (25%)

Tissue Specific Vertebrate Viruses in Laboratory Mice

Retroviridae XMRV 12/12 (100%) 12/12 (100%) 12/12 (100%)
Retroviridae Murine leukemia viruses 12/12 (100%) 12/12 (100%) 12/12 (100%)
Retroviridae Moloney murine sarcoma virus 6/12 (50%) 8/12 (67%) 8/12 (67%)
Retroviridae Mus musculus mobilized endogenous polytropic provirus 12/12 (100%) 11/12 (92%) 12/12 (100%)
Astroviridae Murine astrovirus 2/12 (17%) 0/12 None 1/12 (8%)
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4. Discussion

While the majority of microbiota research focuses on the bacterial component, char-
acterization of the eukaryotic virome has lagged due to the lack of efficient methods to
comprehensively survey viromes. Viruses, unlike bacteria, lack a universal conserved
gene (such as the 16S rRNA gene in bacteria) enabling the identification and classification
of different community members based on variable regions within that conserved gene.
Virome identification, on the other hand, is complicated by the large diversity of viral
genomes which do not share any universal phylogenetic marker, can be made from RNA
or DNA, and can vary greatly in size and structure [27,28]. While shotgun metagenomic
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sequencing has been used to identify eukaryotic viral sequences, capture-based methods
like ViroCap enrich the pool of nucleic acid for viral DNA and RNA prior to sequencing,
and allows investigation of the eukaryotic virome in greater detail [23]. Importantly, be-
cause the probes in ViroCap tile the complete genomes of the targets, we are subsequently
able to carry out comparative analysis of the enriched, sequenced genomes. Our results
are in agreement with previous reports regarding the differences in virome composition
between laboratory, pet store [29,30] and wild mice [31,32] and confirm that while most
murine viral pathogens have been eradicated from lab mouse production facilities, these
agents are abundant in non-laboratory populations [33].

The virome in mammalian hosts includes prokaryotic viruses (bacteriophages) that
infect resident bacteria, eukaryotic viruses which transiently infect the host cells, and viral
elements including retroviruses that are integrated into the host genome [34]. There is
increasing evidence of a relationship between the eukaryotic virome and susceptibility to
immune-mediated diseases such as inflammatory bowel disease (IBD) [35] and rheumatoid
arthritis [36,37]. Furthermore, studies on the interaction between viruses and bacteria sug-
gest direct inter-kingdom communication, and synergistic influences on the development
of host immunity and susceptibility to various conditions [38]. The eukaryotic virome as a
key component of the virome likely plays a critical role in host health and disease, including
unidentified, subclinical viruses which may influence host physiology, immune system
development, and disease/model susceptibility. As a consequence, there are potential
influences on preclinical research investigating disease mechanisms, and development of
novel therapeutics. All of these issues highlight the importance of a deeper understanding
of the eukaryotic virome of mouse models [39,40].

To optimize mouse models of disease, a better understanding of the role of the micro-
biome, including the virome, in model phenotypes is needed. However, the variability in
endogenous retroviruses remain. This finding was not unexpected given recent studies by
Lee et al. [41] that used a TREome probe from murine leukemia virus-type endogenous
retroviruses to survey C57BL/6J mice. They noted marked variability in the MLV-ERV
landscape that depended on several factors, including individual mouse, sex, tissue, and
cell type. What remains to be determined is the impact of such variation on individual
mice as well as mouse models of disease in general.

Our study also identified murine astrovirus in both laboratory and pet store mice.
Murine astrovirus was first found in nude mice in 1985, followed by the complete genome
sequence from a wild mouse in 2011 [42,43]. The first complete murine astrovirus genome
sequence that obtained from immunocompetent lab mice and published in 2012 [44].
Subsequent reports have confirmed the existence of astrovirus in laboratory mice [44,45],
but the true prevalence in most research colonies remains unknown as it is not on many
health monitoring profiles.

It has been speculated that the high prevalence of murine astrovirus in lab mice
coupled with the diversity of virus strain [45] and asymptomatic infection could contribute
to phenotypic differences between mice used in research.

This study also identified a murine norovirus in pet store that shared 92% nucleotide
sequence identity to the next most-closely related strain. Murine noroviruses have been
proposed as model agents for the study of human noroviruses [46,47]. However, unlike
their human counterparts, which are a leading cause of non-bacterial epidemic gastroenteri-
tis, murine noroviruses are asymptomatic unless infections occur in mice lacking anti-viral
defense mechanisms [48]. However, their study has revealed novel putative roles for these
viruses in intestinal homeostasis. For example, germ-free mice infected with MNV have
increased the numbers of CD4+, CD8+ T cells and IFN-γ when compared to norovirus-free
mice [49]. To this end, MNV-CR6 infection suppresses the expansion of group 2 innate lym-
phoid cells, a function similar to that of commensal bacteria [50]. In addition, MNV-CR6
infection of antibiotic-treated mice protected against DSS-induced intestinal injury. These
findings suggest that noroviruses may play a physiological beneficial role in intestinal
homeostasis. The identification of additional noroviruses such as that identified in this
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study provides further tools to understand the complex role of this family of viruses in
health and disease.

5. Conclusions

Characterization of the microbiome of lab mice, pet store mice and wild mice stands to
greatly aid our understanding of the crucial roles the microbiome play in host physiology
and disease. Moreover, ensuring that the murine microbiome is representative of that seen
in humans can yield more informative and translational mouse models of disease. Critical
to this characterization and refinement is inclusion of the virome in discussions of the
microbiome. Because lab mice are relatively free of viral pathogens, inclusion of studies of
pet store or wild mice is needed to better incorporate the role of viruses. Collectively, such
studies will also enhance our understanding of inter-kingdom interactions between viral
and bacterial communities and the host.
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