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Abstract: With respect to their genome and their structure, the human hepatitis B virus (HBV) and
hepatitis C virus (HCV) are complete different viruses. However, both viruses can cause an acute and
chronic infection of the liver that is associated with liver inflammation (hepatitis). For both viruses
chronic infection can lead to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Reactive oxygen
species (ROS) play a central role in a variety of chronic inflammatory diseases. In light of this, this
review summarizes the impact of both viruses on ROS-generating and ROS-inactivating mechanisms.
The focus is on the effect of both viruses on the transcription factor Nrf2 (nuclear factor erythroid
2 (NF-E2)-related factor 2). By binding to its target sequence, the antioxidant response element
(ARE), Nrf2 triggers the expression of a variety of cytoprotective genes including ROS-detoxifying
enzymes. The review summarizes the literature about the pathways for the modulation of Nrf2 that
are deregulated by HBV and HCV and describes the impact of Nrf2 deregulation on the viral life
cycle of the respective viruses and the virus-associated pathogenesis.
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1. Introduction

Cells harbor effective antioxidant, detoxifying and cytoprotective mechanisms to maintain cellular
homeostasis. One key factor regulating electrophilic and oxidative stress is Nrf2 (nuclear factor
erythroid 2 (NF-E2)-related factor 2) that is ubiquitously expressed in many tissues and cell types [1]
and is involved in the expression of 1055 target genes [2]. Thus, besides its role in cellular detoxification,
Nrf2 has been described as being involved in various cellular processes including proliferation and
differentiation [3–5], iron homeostasis [6], immune response [7], cell signaling, metabolism [5,7], cell
cycle, cell survival [2], wound repair [8], liver regeneration [9,10], cancer and drug resistance [11–14].

Chronic infection by hepatitis B virus (HBV) and hepatitis C virus (HCV) leads to a chronic
inflammation of the liver (hepatitis). For many chronic inflammatory diseases a deregulation of the
intracellular level of reactive oxygen species (ROS) has been described. This review describes the effect
of HBV and HCV on ROS-generating and -inactivating systems with a focus on the interference of
these viruses with the Nrf2/ARE-dependent gene expression. The relevance for the viral life cycle and
virus-associated pathogenesis is summarized.

2. The Hepatitis C Virus (HCV)

The hepatitis C virus (HCV) is a major cause of chronic liver diseases worldwide, including
chronic hepatitis, fibrosis, cirrhosis and hepatocellular carcinoma (HCC). According to the World
Health Organization (WHO), an estimated 71 million people are persistently infected with HCV [15].
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The improvement of therapeutic approaches with new oral direct-acting antivirals (DAAs) enables
95% of infected individuals to be cured, reducing the risk of HCV-associated liver diseases. However,
due to the high costs of these therapies, the limited availability and the lack of a protective vaccine,
HCV will remain a global health burden [16].

HCV is an enveloped virus with a positive-orientated RNA genome that belongs to the Hepacivirus
within the Flaviviridae family. The HCV virion displays an icosahedral structure with an average
diameter of 50–80 nm [17]. The association with neutral lipids (triglycerides, cholesterol and
cholesterol ester) and host lipoproteins (apoB, apoE, apoC1, C2, C3) termed these hybrid particles as
lipoviroparticles (LVPs). In line with this, LVPs exhibit a low density in a range between 1.03 g/cm3 to
1.20 g/cm3, with low-density fractions being more infectious [18–22]. The host-derived, lipid-bilayer
envelope harbors the viral glycoproteins E1 and E2 and surrounds the nucleocapsid that is composed
of the homo-oligomerized core proteins associated with the viral RNA [23]. The viral RNA genome
has a size of 9.6 kb and is flanked by high structured untranslated regions (UTRs). The IRES (internal
ribosomal entry site)-mediated translation yields a polyprotein precursor of approximately 3010 amino
acids (aa) that is co- and/or post-translationally processed by viral or cellular proteases into 10 mature
polyproteins. These include the structural proteins core, E1 and E2 and the non-structural (NS)
proteins p7, NS2, NS3, NS4A, NS4B, NS5A and NS5B. Together with the viral RNA the structural
proteins form the viral particle, whereas the NS proteins are involved in viral morphogenesis [24,25].
HCV replication occurs in the cytoplasm in replicon complexes (RCs) at the so-called “membranous
web” (MW), a characteristic hallmark of flavivirus-infected cells. These virus-induced compartments
consist of lipid droplets (LDs) and rearranged ER (endoplasmatic reticulum)-derived membranes
including single-, double-, and multi-membrane vesicles that allow a spatiotemporal separation of
viral RNA translation, replication and assembly [26–28]. The double membrane vesicles (DMVs) are
highly enriched in cholesterol and sphingolipids. In line with this, it has been described recently that
HCV hijacks lipid transfer proteins to guarantee the establishment of cholesterol-enriched DMVs to
maintain viral replication [29]. The assembly of the virions starts on the surface of core-associated
cytosolic LDs (cLDs) in close proximity to the RCs [20]. Based on their heavy association with lipids and
lipoproteins, the release of HCV virions has been linked to the lipoprotein pathway [25,30]. However,
recent work indicated an exosome-dependent release via multivesicular bodies (MVBs), independent
of the very-low-density lipoprotein (VLDL)-pathway [31,32].

3. Nuclear Factor Erythroid 2 (NF-E2)-Related Factor 2 (Nrf2)

Nrf2 was first described in 1994 by Moi et al. as a factor that binds to NF-E2 (nuclear factor
erythroid 2) and AP-1 (activating protein 1) sites of the β-globin gene promoter [1]. Nrf2 belongs to the
CNC (cap’n’collar) subfamily of bZIP (basic-region leucine zipper) transcription factors that bind to
short cis-acting sequences, called ARE (antioxidant-response element) and EpRE (electrophile-response
element), in the promoter regions of detoxifying genes encoding for phase I and phase II drug
metabolizing enzymes, as well as phase III enzymes involved in cellular efflux [33–38]. Moreover,
Nrf2 regulates the expression of proteins involved in the proteasomal pathway by binding to ARE
sequences in the promoter region of the catalytic subunits PSMB5 and PSMB6 of the 20S proteasome [37,39,40].
Other members of the bZIP protein family are NF-E2 (nuclear factor erythoid 2) p45 [41,42], Nrf1 (NF-E2
related factor 1) [42,43], Nrf3 [42,44,45], Bach1 (BTB (Broad-complex, Tramtrack and Bric-à-brac) and
CNC homology 1) [42,46] and Bach2 (BTB and CNC homology 2) [42,47].

3.1. Domain Structure of Nrf2

Human Nrf2 has a size of 605 amino acids and is composed of seven Neh (Nrf2-Ech homology)
domains (Neh 1–7). Neh1 contains the CNC bZip domain that is essential for DNA binding and
heterodimerization with sMaf (v-maf avian musculoaponeurotic fibrosarcoma) proteins (MafK, MafF,
MafG) [48]. sMaf proteins are bZIP transcription factors that are classified as sMaf family based on their
small size (160 aa, 18 kDa). They form heterodimers with CNC transcription factors (p45 NF-E2, Nrf1,
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Nrf2, Nrf3) and transcription factors of the Bach family (Bach1 and Bach2). As CNC and Bach proteins
are not able to interact with DNA as homodimers, heterodimerization with sMaf proteins is required
for their transcriptional regulation. sMaf proteins can also form homodimers that act as transcriptional
repressors [49]. The Neh2 domain mediates Nrf2 degradation by binding of the repressor Keap1
(Kelch-like Ech-associated protein 1), an adaptor for the Cul3 (Cullin 3)-RBX1 (Ring-box-1)-dependent
E3 ubiquitin ligase complex through its DLG and ETGE motifs [11,48,50]. Neh3, Neh4 and Neh5
act as transactivation domains through binding of CDH6 (chromo-ATPase/ helicase DNA-binding
domain 6) [51], CBP (CREB (cAMP response element-binding protein)-binding protein) [52] and Rac3
(receptor-associated coactivator 3) [53]. Like Neh2, the Neh6 domain is involved in Nrf2 degradation
by recruitment of the dimeric ubiquitin ligase βTrCP (β-transducin repeat-containing protein) through
its DSGIS and DSAPGS motifs. This process is enhanced by phosphorylation of the DSGIS motif by
GSK3β (glycogen synthase kinase 3β) [50,54]. The Neh7 domain is involved in repression of Nrf2
through binding to the RXRα (retinoid X receptor α) protein [55].

3.2. Nrf2 Regulation

Nrf2 is tightly controlled by a complex transcriptional/ epigenetic and (post-)translational
network [7]. However, modulation of protein stability reflects the major regulatory mechanisms
controlling Nrf2 activity [7]. Transcriptional activation occurs via autoregulation [56] and other
transcription factors such as NF-κB (nuclear factor κB) [57], AhR (aryl hydrocarbon receptor) [58],
PPARγ (peroxisome proliferator-activated receptor γ) [59], p53 [60], MEF2D (myocyte enhancer
factor 2d) [61], c-Jun, c-Myc [62] and BRCA1 (breast cancer 1) [63], through binding to ARE- and XRE
(xenobiotic response element)-like elements in its promoter region. In addition, miR (microRNA)-based
mechanisms have been described as regulating Nrf2 activity through targeting Nrf2 mRNA and
mRNAs that encode for proteins that regulate Nrf2 activity [64]. Epigenetic control of Nrf2 expression
is mediated through hypermethylation of CpG sequences in its promoter region. In line with this,
Nrf2 expression in prostate tumor of TRAMP (transgenic adenocarcinoma of mouse prostate) mice is
repressed due to CpG methylation and H3 histone methylation [65].

Regarding translational control, under basal conditions, Nrf2 cap-dependent translation is
suppressed whereas exposure to oxidative stress increases Nrf2 IRES-mediated expression [66].
Post-translational regulation can be divided into the classical canonical mechanism and the non-canonical
mechanism [67,68].

3.2.1. Canonical Nrf2 Activation

Keap1-Mediated Activation of Nrf2

Nrf2 regulation through the canonical mechanism is mainly mediated by Keap1. Keap1 belongs
to the BTB (bric-a-brac) Kelch family that associates with the Cul3-RBX1-dependent E3 ubiquitin
ligase complex [69]. Under basal conditions, dimeric Keap1 binds to the ETGE and the DLG motif
within the N-terminal Neh2 domain of Nrf2. This complex constantly polyubiquitinates seven lysine
residues within the Neh2 domain following proteasomal degradation via the 26S proteasomal pathway,
to ensure low basal Nrf2 levels [48,50,67]. In addition, the ubiquitin-targeted ATP-dependent segregase
p97 extracts ubiquitinated Nrf2 from the Cul3-RBX1 E3 complex for 26S proteasomal degradation [70].
Oxidative/ electrophilic stress triggers Nrf2 activation through oxidation of cysteine residues resulting
in a conformational change of Keap1. The major cysteine residues involved in stress-sensing are
Cys151, Cys273 and Cys288 [71]. It has been suggested that modifying Cys151 inhibits Keap1 under
stress conditions whereas Cys273 and Cys288 regulate Keap1 under basal and stress conditions.
In addition, further cysteine residues including Cys226, Cys434 and Cys613 are targeted by different
stress inducers. However, the data are conflicting and need to be further investigated [69,72,73].
Keap1-cysteine oxidation results in an impaired Nrf2 ubiquitination, protecting Nrf2 from further
proteasomal degradation. De novo synthesized Nrf2 accumulates and is translocated to the nucleus
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where it forms heterodimers with sMaf proteins that bind to ARE-sequences in the promoter region
of its target genes. Nuclear translocation of Nrf2 through karyopherin α1 and karyopherin β1 is
triggered by phosphorylation of Ser40 by PKC (protein kinase C) [74], Ser558 by AMPK (AMP-activated
protein kinase) and AMPK-mediated inhibition of GSK3β [75] as well as other (undefined) kinases.
To enhance binding with basic-region leucine zipper proteins, acetylation by CBP acetylase [76] and
p300/CBP [77] and SUMOylation by UBC9 (E2 SUMO (small ubiquitin-like modifier)-conjugating
enzyme) [78] of nuclear Nrf2 occurs. Binding of the co-activators CDH6 [51] and Rac3 [53] further
enhances Nrf2 activity.

βTrCP-Mediated Activation of Nrf2

Alternatively, Nrf2 activity is controlled by the dimeric ubiquitin ligase βTrCP that acts as an
adaptor for the Skp1 (S-phase kinase-associated protein 1)-Cul1-Rbx1 E3 ubiquitin ligase complex.
Phosphorylation of a group of serine residues within the Neh6 domain by the constitutive active
serine/threonine kinase GSK3β results in the formation of a phosphodegron, which tethers the
Skp1-Cul1-Rbx1 E3 ligase complex resulting in Nrf2 ubiquitination and subsequent proteasomal
degradation. βTrCP association is mediated through the DSGIS and DSAPGS motifs within Neh6 of Nrf2.
Additional phosphorylation of the DSGIS motif (Ser344, Ser347) by GSK3β thereby promotes inhibition
of Nrf2 activity. Inhibitory phosphorylation of GSK3β occurs via the PKB (phosphatidylinositol
3-kinase (PI3K) kinase B)/AKT (protein kinase B) pathway, thus activation of the PI3K or PKB/AKT
mediates Nrf2 activation [54,67,79,80]. In addition, GSK3β indirectly triggers nuclear export of Nrf2
followed by subsequent ubiquitination and proteasomal degradation through targeting the subcellular
localization of the tyrosine kinase Fyn that catalyzes Nrf2-phosphorylation (Tyr576) [81].

Hrd1-Mediated Activation of Nrf2

Another ligase involved in Nrf2 regulation is the E3 ubiquitin ligase Hrd1 that is part of the IRE1
(inositol-required protein 1) pathway of the UPR (unfolded protein response). Upon induction of
ER-stress, IRE1 catalyzes the splicing of XBP1 (X box-binding protein 1) to form the active transcription
factor sXBP1 (spliced XBP1) and transcriptional upregulation of Hrd1. It has been described recently
that patients with chronic liver cirrhosis fail to inactivate high levels of ROS (reactive oxygen species) due
to impaired Nrf2/ARE-signaling. In cirrhotic livers, the XBP1-Hrd1 pathway is upregulated resulting
in increased Nrf2 ubiquitination and proteasomal degradation, hence Nrf2-mediated protection is
inhibited [82].

3.2.2. Non-Canonical Nrf2 Activation

Recently, the non-canonical pathway of Nrf2 activation has been described. Nrf2 activation in
this pathway is mediated by proteins that compete with Nrf2 for Keap1 binding, thus stabilizing Nrf2.
These proteins harbor a motif similar to the ETGE motif in the Neh2 domain of Nrf2. Nrf2-binding
proteins known so far are p21 and BRCA1 (breast cancer type 1 susceptibility protein); Keap1-binding
proteins are p62/SQSTM1 (sequestosome 1), DPP3 (dipeptidyl peptidase III), WTX (Wilms tumor gene
in chromosome X), ProTα (Prothymosin α) and PALB2 (partner and localizer for BRCA2) (for a detailed
review of Nrf2- and Keap1-binding proteins see [67,68]). The best studied protein involved in the
non-canonical Nrf2 regulation is the Keap1-binding protein p62/SQSTM1 (hereafter referred to as p62).
p62 is a stress-inducible multi-domain protein that acts as a signaling hub for a variety of cellular
processes. p62 is ubiquitiously expressed in various cell types and can be found in the cytoplasm
of the cell as well as in the nucleus, autophagosomes and lysosomes. During selective autophagy,
p62 serves as cargo receptor for autophagic degradation and ubiquitinated cargo through interaction
with its LIR (LC3 interacting region) and UBA (ubiquitin-associated) domains [83,84]. Binding of
ubiquitinated proteins and damaged mitochondria leads to formation of p62 inclusion bodies that
are degraded via autophagy [85–87]. Besides, p62 competes with Nrf2 for binding to Keap1 through
its KIR (Keap1-interacting region) domain. Phosphorylation of Ser349 by mTORC1 (mammalian
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target of rapamycin complex 1), TAK1 (transforming growth factor β-activated kinase 1) and other
undefined kinases enhances binding of p62 to Keap1 [88,89]. p62-Keap1-association sequesters
Keap1 in p62 inclusion bodies, guiding them towards autophagosomal degradation. Hence, Nrf2 is
withdrawn from proteasomal degradation resulting in nuclear translocation and expression of its target
genes [81]. Other kinases involved in p62-mediated autophagosomal clearance are CK2 (casein kinase
2) (Ser403) [90], TBK-1 (TANK-binding kinase 1) (Ser403) [91], Sestrin2-ULK1 (Unc-51-like kinase 1)
complex (Ser403) [92] and ULK1 (Ser407) [93], that increase the affinity of p62 to ubiquitin. In addition,
TRIM16 (tripartite motif containing 16) has been described as being essential for phosphorylation
of p62 on Ser349. TRIM16 is involved in protein turnover as it interferes with components of the
autophagosomal pathway involved in autophagy initiation (ULK1), phagophore elongation (ATG16L1)
and LC3 [94].

Upon increased levels of ROS, Nrf2 activates p62 expression as it harbors an ARE sequence in
its promoter region. Otherwise, p62 mediates Nrf2 expression, thereby creating a positive feedback
loop [95]. However, p62-dependent activation of Nrf2 induces expression of cytoprotective genes,
thus protecting the cell from oxidative stress [96]. In addition, Keap1 competes with LC3 for
binding to p62, and thereby inhibits autophagic degradation of p62 [81]. Hence, increased p62
levels indicate an impaired autophagic flux [97,98]. In line with this, Nrf2 activation due to a defect
in the autophagic pathway following p62 accumulation has been associated with cancer and drug
resistance [13,14,88,97,99].

Summing up, the p62-mediated non-canonical activation of Nrf2 is tightly connected to the
autophagosomal pathway based on a direct interaction of p62 and Keap1 [88,95,97,98]. Interaction of
p62 with ubiquitinated proteins mediates the formation of protein aggregates that are finally degraded
via the autophagosomal pathway. In line with this, p62 triggers autophagosomal turnover of Keap1
following activation of Nrf2. Based on the tight connection of these two mechanisms, the autophagic
pathway will be described in more detail in the following.

4. Autophagy

Autophagy (“self-eating”) is a highly regulated catabolic process to maintain cellular homeostasis
by degrading intracellular components such as long-lived proteins, protein aggregates, damaged
organelles and pathogens as a response to different stress signals, such as nutrient deprivation,
viral infection and ROS [100]. Formation of the autophagosome can be divided into three steps including
nucleation, expansion and closure [101], starting with the formation of an IM (isolation membrane)
(originally termed the phagophore) at PAS (phagophore assembly sites) which increase to enclosed
double-membrane vesicles known as autophagosomes. Autophagosomal membranes originate from
different sources including recycling endosomes, Golgi Apparatus, plasma membrane, mitochondria
and ER [102–104]. The autophagosomes directly fuse with lysosomes to form autophagolysosomes
where the cargo is digested by lysosomal hydrolases and the acidic environment [105]. Alternatively,
autophagosomes fuse with MVBs (multivesicular bodies) to form an amphisome that finally can
fuse with a lysosome [106]. The degraded cargo is released into the cytoplasm where it serves as
energy source or de novo synthesis of molecules [107]. Autophagic turnover is tightly regulated by
a set of >30 autophagy-regulated genes (Atg) [102,108]. Autophagy initiation is controlled by the
mammalian target of rapamycin complex 1 (mTORC1). Under nutrient-rich conditions, mTORC1
phosphorylates the ULK1/2-complex (Unc-51-like kinase 1 and 2), hence, inhibiting autophagy. During
nutrient deprivation, autophagy is induced due to inhibition of mTORC1 by AMPK (AMP-activated
protein kinase) following mTORC1 release from the ULK1/2-complex and subsequent activation of
ULK1 and ULK2 kinases. The activated ULK1/2-complex is shuttled to the phagophore nucleation
site where it activates the PI3K-complex (composed of PI3K, Vps34 (vacuolar protein sorting 34),
p150, ATG14L and BCLN1 (Beclin1), catalyzing an PI3P (phosphatidylinositol-3-phosphate)-enriched
environment [103,109]. PI3P further recruits DFCP1- (double FYVE-containing protein 1) and WIPI-
(WD-repeat domain phosphoinositide-interacting) proteins triggering phagophore nucleation. In
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addition, mammalian Atg9 (mAtg9) initiates binding of DFCP1 to autophagosomes. mAtg9, the only
multi-spanning transmembrane protein of the core autophagic machinery, cycles between the PAS
and multiple organelles and is essential for expansion of the IM [110–113]. Two ubiquitin-like
conjugation systems Atg5-Atg12-Atg16L and Atg4-Atg3-LC3II/GABARAP (gamma-aminobutyric
acid receptor-associated protein participate) catalyze the expansion of the IM to finally create an
enclosed autophagosome. At first, Atg12 is conjugated to Atg5 by an ubiquitin-like reaction through
Atg7 (E1-like) and Atg10 (E2-like). The Atg5-Atg12 conjugate then binds to Atg16L to generate the
membrane-associated Atg12-5-16L complex (E3-like). In a next step, LC3 (microtubule-associated
protein 1 light chain 3) and GABARAP are cleaved by Atg4 at the C-terminus. Finally, the cleaved
cytosolic LC3-I/GABARAP-I is activated by Atg7 (E1-like), transferred to Atg3 (E2-like) and conjugated
to PE (phosphatidylethanolamine) to gain the lipidated LC3-II/GABARAP-II that is localized to
autophagosomal membranes. The lipidated LC3/GABARAP remains membrane-associated until
it gets degraded in the autophagolysosome or is removed by Atg4-mediated cleavage [114–116].
The maturation of the enclosed autophagosomes further involves the release of Atg proteins from the
autophagosomal membranes, triggered by PI3P turnover [117] and fusion of the autophagosome with
lysosomes to form an autophagolysosome. Autophagosomes may also fuse with MVBs to form an
amphisome that finally fuse with a lysosome (for a detailed review of autophagy and components/
molecules involved in membrane trafficking of autophagosomal membranes see [101,104]).

5. Reactive Oxygen Species (ROS) in HCV-Infected Cells

HCV is associated with oxidative stress in liver cells that results in increased levels of ROS that
encompass superoxide anions (O2−•), hydroxyl radical (OH•) and hydrogen peroxide (H2O2). To date,
the viral proteins core, E1, E2, NS3, NS4B and NS5A, has been described to interfere with pathways
and enzymes that trigger production of ROS [118,119]. These include mitochondrial dysfunction due
to Ca2+-redistribution, activation of NADPH (nicotinamide adenine dinucleotide phosphate ) oxidases
(NOX1 and 4), enhanced CYP2E1 (cytochrome P450 2E1) and Ero1α (ER oxidoreductin 1α) expression
and induction of ER stress and the UPR (Figure 1.). The HCV core and NS5A proteins are considered to
be main activators of ROS production [118,120]. They can be found on the surface of LDs, the nucleus,
the ER, mitochondria and MAMs (mitochondrial-associated membranes) [121–124]. ROS-mediated
mitochondrial dysfunction in HCV-infected cells is mainly caused by core, NS5A and marginal by other
viral proteins [125–128]. Although the ER presents the main intracellular Ca2+-storage, mitochondria
as well have a high Ca2+-storage capacity [129]. In line with this, mitochondria participate in
Ca2+-signaling and intracellular Ca2+-homeostasis. Increased mitochondrial Ca2+ concentrations
are associated with increased electron transport, production of ROS, and opening of the mPTP
(mitochondrial permeability transition pore) [130]. Binding of the HCV core protein to the OMM (outer
mitochondrial membrane) with its hydrophobic C-terminus triggers mitochondrial Ca2+-influx via
the MCU (mitochondrial Ca2+-uniporter) that is located in the IMM (inner mitochondrial membrane).
This results in an increased MPT (mitochondrial permeability transition), inhibition of complex I
of the respiratory chain and release of cytochrome c which in turn activates apoptosis [131–134].
Mitochondria are tightly connected to the ER via MAMs that facilitate Ca2+-fluxes and the transfer
of membrane bound lipids [135]. It has been described that expression of the core protein triggers
ER Ca2+-efflux through induction of ER-stress and inhibition of SERCA (sarcoplasmic/endoplasmic
reticulum calcium ATPase 2) [136]. Likewise, NS5A induces ER Ca2+-efflux [137,138]. Moreover,
interaction of NS5A with the ER-localized lipid kinase PI4K4 (phosphatidylinositol 4-kinase IIIα)
tethers the ER with mitochondria and triggers mitochondria fragmentation [127,139,140]. Ca2+-fluxes
are further controlled by the oxidase Ero1α that is enriched in MAMs. Ero1 proteins, together with the
PDI (protein disulfide isomerase), are ER-resident proteins involved in protein folding as they catalyze
the formation of disulfide bonds, thereby generating H2O2 as a by-product. Expression of these proteins
is increased after activation of the UPR [141,142]. Recently the core protein was found to increase Ero1α
expression following enhanced ER Ca2+-efflux, mitochondria Ca2+-influx and formation of superoxide
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anions [143]. In addition, the viral proteins E1 and E2 [144] and NS4B [145,146] have been reported
to induce ER-stress and the UPR and possibly interfere with Ca2+-homeostasis [119]. Formation of
ROS in HCV-infected can be further triggered by increased expression of NADPH oxidases (NOX).
The NOX family of NADPH oxidase is a multisubunit transmembrane enzyme complex that catalyzes
the formation of ROS in form of superoxide anions (O2−•) and hydrogen peroxide (H2O2). The
superoxide anions are generated by the transfer of electrons from NAD(P)H to O2, hydrogen peroxide
through dismutation of the superoxide [147]. In HCV-infected cells the NS5A and core protein induce
NOX1 and NOX4 expression resulting in elevated ROS formation. This is mediated by HCV-induced
nuclear localization of NOX4 and accumulation of TGF-β1 (transforming growth factor beta-1) in
HCV-infected cells [143,148–150]. Furthermore, NS3 has been reported to induce the expression of
NOX in human monocytes [128]. Another mechanism in HCV-induced ROS formation is the enhanced
expression of CYP2E1. CYP2E1 is highly expressed in the liver, where HCV morphogenesis takes place.
The enzyme is localized on the ER and the Golgi and is involved in the metabolism of drugs, hormones
and xenobiotics [151]. In addition, CYP2E1 is a major component of the MEOS (microsomal ethanol
oxidizing enzymes) that catalyzes the conversion of ethanol to acetaldehyde resulting in production
of superoxide anions (O2−•) and hydrogen peroxide (H2O2) [152]. In HCV-infected cells, core and
NS5A have been described to induce expression of CYP2E1 thereby contributing to elevated levels
of oxidative stress [143,150]. Moreover, it has been described by Wen et al., that in stably core- and
CYP2E1-overproducing HepG2 cells increased ROS formation and sensitization to cell injury due to
GSH (glutathione) depletion can be detected [153].

Figure 1. Interference of hepatitis C virus (HCV) with the nuclear factor erythroid 2 (NF-E2)-related
factor 2 (Nrf2)/ Keap1-signaling pathway. Lines labelled with an “X” represent blocked processes,
dotted lines describe indirect processes, solid lines describe translocations or direct effects.HCV is
associated with oxidative stress in liver cells that results in increased levels of ROS. ROS in HCV infected
hepatocytes can be related to ER-stress and the UPR, mitochondrial dysregulation, Ca2+ redistribution,
activation of NADPH oxidases and enhanced expression of CYP2E1 and Ero1α. The increased
ROS-levels further trigger phosphorylation of p62 on Ser349 that activates Nrf2. Based on the impaired
Nrf2/Keap1-signaling pathway in HCV-infected cells, the oxidative stress cannot be compensated. This
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mechanism is based on a core-mediated delocalization of sMaf-proteins from the nucleus to the
ER-associated RCs, where they are trapped by binding to NS3. As a consequence, the delocalized
sMaf-proteins bind to Nrf2 and prevent the translocation of Nrf2 into to the nucleus resulting in impaired
expression of cytoprotective genes. In addition NS5A interferes with Nrf2-activation via a crosstalk
with the MAPK-signaling cascade. NS5A recruits cRaf to the ER-associated RCs resulting in activation
of cRaf and NS5A phosphorylation. However, despite cRaf activation no activation of the MAPK
signaling cascade could be observed resulting in impaired Nrf2-activation. The elevated ROS-levels
further interfere with mechanisms involved in liver regeneration. Impaired Nrf2 activation results
in a decreased tyrosine phosphorylation and enhanced serine/threonine-phosphorylation of IRS-1
and -2 that may contribute to the development of insulin resistance and impaired liver regeneration.
However, the mechanisms regulating increased ROS-levels in HCV-infected cells are conflicting.
UPR, unfolded protein response; NOX, NADPH oxidase; CYP2E1, cytochrome P450 E1; Ero1α, ER
oxidoreductin 1α; MAPK, mitogen-activated protein kinase; IRS1/2, insulin receptor substrate; IR,
insulin receptor; IGF-1, insulin-like growth factor 1; IGF-1R, insulin-like growth factor 1 receptor; JNK,
c-Jun-N-terminal kinase; NQO1, NAD(P)H:quinone oxidoreductase 1; GPx, glutathione peroxidase;
γ-GCS, γ-glutamylcysteine synthetase.

6. Interference of HCV with the Nrf2/Keap1-Signaling Pathway

Cells have evolved efficient strategies to counteract ER- and oxidative-stress. An imbalance in
protein-homeostasis at the ER triggers the induction of the UPR to increase expression of genes encoding
for proteins involved in ERQC (ER protein quality control), and to reduce the influx of proteins to ensure
proper protein folding. The UPR signaling network includes three stress sensors: the IRE1, PERK
(protein kinase (PKR)-like ER kinase), and ATF6 (activating transcription factor 6) (for a detailed review of
the UPR see [154,155]). ER-stress further triggers activation of autophagy [100,156]. In addition, activation of
the UPR due to elevated oxidative stress levels results in a direct PERK-dependent Nrf2-activation [157]
or indirect Nrf2-activation via the IRE1α/JNK (c-Jun-N-terminal kinase) pathway [158]. Infection
with HCV is accompanied by a massive rearrangement of ER-derived membranes and dysfunctional
ER protein-homeostasis of the host cell. Based on this, it is described that HCV infection leads to
induction of ER-stress and the UPR in vitro and in vivo (for a detailed review see [159–161]). Besides,
HCV-infection interferes with the autophagosomal pathway. Activation of autophagy in HCV-infected
cells occurs either by direct interaction of HCV proteins with components of the autophagy machinery
or indirectly through induction of ER- and oxidative stress (for a review see [162,163]).

Another signaling-pathway involved in maintaining cellular homeostasis in response to
oxidative/electrophile stress is the Nrf2/Keap1-signaling pathway [7,68,164,165]. Infection with
HCV is associated with oxidative stress in liver cells that results in increased levels of ROS [119]. In this
regard, HCV has been described as interfering with the Nrf2/Keap1-signaling pathway. However,
the data regarding Nrf2-modulation are conflicting. Interestingly, Carvajal-Yepes et al. identified a
defect in this pathway in HCV-infected cells, based on a core-mediated delocalization of sMaf-proteins
from the nucleus to the ER-associated RCs, where they are trapped by binding to NS3. As a
consequence, the delocalized sMaf-proteins bind to Nrf2 and prevent the translocation of Nrf2 into
the nucleus resulting in impaired expression of cytoprotective genes [166]. The increased ROS levels
further trigger the phosphorylation of p62 on Ser349 (pS(349) p62) [88]. Due to the defect in the
Nrf2/Keap1-signaling pathway, the pS(349) p62-mediated activation of Nrf2 cannot compensate the
increased ROS levels resulting in activation of autophagy that favors the release of HCV particles [167]
(see Figure 1). In addition, NS5A interferes with Nrf2-activation via a crosstalk with the MAPK
(mitogen activated protein kinase) signaling cascade. The MAPK/ERK (extracellular signal-regulated
kinase) signaling pathway triggers phosphorylation of Nrf2 that leads to Keap1-Nrf2 dissociation
and subsequent Nrf2-activation [37]. In this regard, it has been described that NS5A recruits cRaf
to the ER-associated RCs resulting in activation of cRaf and NS5A phosphorylation that is essential
for efficient HCV replication. However, despite cRaf activation, no activation of the MAPK signaling
cascade could be observed resulting in impaired Nrf2-activation [168–170] (see Figure 1). In line with
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this, transcriptome analysis HCV-infected cells revealed a decreased expression of the Nrf2-regulated
genes NQO1 (NAD(P)H: quinone oxidoreductase 1), ephx1 (epoxide hydrolase 1), cat (catalase), GCLC
(glutamate-cysteine ligase catalytic subunit) and other enzymes of the glutathione metabolism [171,172].
Furthermore, in liver-biopsy samples of HCV-infected patients and stably core-producing HepG2 cells,
a decreased expression of the Nrf2-regulated HO-1 could be detected [173].

Conversely, Burdette et al. revealed an HCV-mediated Nrf2-activation due to an impaired
ER-Ca2+-homeostasis, increased ROS levels and Nrf2-phosphorylation through activated MAP
kinases [174]. A study by Jiang et al. described an activation of Nrf2 in HCV-infected Huh7.5.1
cells and liver biopsy samples from CHC (chronic hepatitis C) patients based on the inhibitory GSK3β
phosphorylation [175]. In addition, Ivanov et al. identified the HCV-proteins core, E1, E2, NS4B and
NS5A to mediate Nrf2-activation with core and NS5A being the key regulators. Expression of NS5A
and the core protein resulted in transcriptional and translational upregulation of HO-1 and NQO1
via two mechanisms [120]: PKC catalyzes phosphorylation of Nrf2 upon elevated oxidative stress
levels, whereas CK2 and PI3K trigger Nrf2-phosphorylation by ROS-independent mechanisms [118].
In addition, an activation of HO-1 and NQO1 in HCV-replicating cells and patients with chronic liver
diseases has been described [176–179]. The conflicting results in literature may be ascribed to different
HCV models and experimental setups. In this context, the extent of oxidative-stress differs during
the acute and chronic HCV-infection and thereby contributes to a different induction of the cellular
stress response. In line with this, Anticoli et al. observed high ROS levels during the acute phase of
infection that are accompanied with high rates of viral replication and transcriptional NQO1-activation.
In contrast, the chronic phase of HCV-infection is characterized by reduced ROS production to favor
the establishment of a chronic infection. Thereby, induction of the Nrf2/Keap1-signaling pathway is
a crucial requisite to overcome the HCV-induced oxidative stress as the establishment of a chronic
infection requires the survival of the hepatocytes [160,174,179].

Thus, based on the non-canonical p62-mediated activation of Nrf2, the Nrf2/Keap1-signaling is
linked to the autophagosomal pathway [88,95,97,98]. A defect in the autophagic pathway in hepatocytes,
mediated by deletion of Atg5 and Atg7, resulted in accumulation of p62 in ubiquitin-containing inclusion
bodies accompanied by increased levels of oxidative stress, DNA damage, liver inflammation, fibrosis
and the development of liver tumors [180]. In line with this, liver-specific Atg7 knockout (KO) mice
exhibit a massive accumulation of p62 and subsequent Nrf2-activation [181]. However, simultaneous
deletion of p62 and Atg7 suppressed the size of liver tumors and deletion of Nrf2 in Atg5 KO mice
restored the above described pathological phenotype [180,182].

The expression of p62 is increased in many human cancers and chronic liver diseases [84].
In 40%–50% of patients suffering from HCC (hepatocellular carcinoma) an increase of mTORC1 activity
has been detected, resulting in enhanced p62 phosphorylation and enhanced Nrf2 activation. However,
this phenotype is associated with poor prognosis [183,184]. Furthermore, an association between a
dysfunctional autophagy and Nrf2 activation in HCC has been described [99]. In this regard, persistent
activation of Nrf2 is associated with accumulation of p62 and development of HCC [185].

7. Impact of ROS in HCV-Associated Pathogenesis

Chronic infection with HCV is a leading cause of the development of hepatocellular carcinoma
(HCC) [186]. However, the development of an HCV-associated HCC arises after decades and requires
persistent inflammation of the liver that is accompanied by chronic cycles of hepatocytic cell death and
liver regeneration that finally lead to liver damage and loss of liver function [186,187]. Remarkably, the
liver and the skin are the only organs of the body that have the ability to fully regenerate (“The myth
of Prometheus”). After liver injury the loss of functional liver tissue is compensated by proliferating
hepatocytes to reconstitute the original mass. Liver regeneration can be divided into three phases:
activation, proliferation, and termination. Upon liver damage, 95% of the quiescent hepatic cells
re-enter the cell-cycle from the G0, through the G1, to the S phase. This is triggered by the release of
pro-inflammatory cytokines, such as TNF-α (tumor necrosis factor α) and IL-6 (interleukin 6) and
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the subsequent activation of the transcription factors NFκB, AP-1 and STAT3 (signal transducer and
activator of transcription 3) [188]. Proliferation of the hepatocytes is further stimulated by growth
factors such as HGF (hepatocyte growth factor) [189], ligands of the EGFR- (epidermal growth factor
receptor), with EGF (epidermal growth factor) and TGF-α being the most prominent [190,191], and FGF
(fibroblast growth factor) [192]. In addition, IGF-I (insulin-like growth factor I) has been described to
participate in liver regeneration [193]. After reconstitution of the liver mass, TGF-β and activin inhibit
hepatocyte proliferation returning the liver into a quiescent state [194].

In addition, hepatic fibrosis as a wound-healing process is involved in liver repair that is
characterized by deposition of ECM (extracellular matrix) (e.g., collagen, proteoglycans) by activated
HSC (hepatic stellate cells) and myofibroblasts [195]. Activation of HSCs is promoted by cytokines such
as TGF-β1, PDGF (platelet-derived growth factor) and CTGF (connective tissue growth factor) [196].
Persistent HCV-infection triggers an excessive production of ECM leading to liver fibrosis that,
over decades, results in replacement of functional hepatocytes by non-functional scar tissue and the
establishment of liver cirrhosis and HCC [187]. In light of this, it has been described that the HCV core,
NS3/4A, NS4B, NS5A induce production of TGF-β1 through increased ROS-levels and interference
with the mitochondrial Ca2+-homeostasis which leads to progression of liver fibrosis [197]. Wu et al.
reported that free core-protein triggers activation of HSCs via an ObR (obese receptor)-dependent JAK2
(Janus kinase 2)/STAT3, AMPKα (AMP-activated protein kinase), and AKT-signaling pathway [198].
In addition, the HCV E2-protein triggers proliferation of HSCs through a JAK-dependent upregulation
of collagenα-I and oxidative stress [199]. Increased oxidative stress in hepatocytes can be further
induced via CYP2E1 [200]. HCV core and NS5A induce CYP2E1-mediated oxidative stress that
in turn triggers HSC proliferation [143,150]. However, the main factor that triggers the onset of
HCV-associated pathogenesis is the induction of oxidative stress. Increased ROS-levels result in DNA
damage and accumulation of DNA damage may lead to genetic mutations and mutagenesis [201].
In line with this, the Nrf2/Keap1-signaling pathway plays an essential role in maintaining cellular
redox-homeostasis. However, dysregulation of the Nrf2/Keap1-signaling pathway is associated with
the progression of cancer [202,203]. Over time, a dual role of Nrf2 in carcinogenesis has evolved.
During the early stage of carcinogenesis, Nrf2 functions as a tumor suppressor as it eliminates
increased ROS levels and stimulates GSH synthesis to promote cell survival under physiological
conditions [204]. In the tumor microenvironment, activation of Nrf2 is promoted by the tumor
suppressor genes BRCA1 and protein p21 [205,206] and is blocked by Fyn-mediated degradation [207].
The cyclin-dependent kinase inhibitor p21/waf1 plays an essential role in controlling the cell-cycle,
DNA repair, cell differentiation, apoptosis and senescence. Under physiological conditions, induction
of p21/waf1 results in cell-cycle arrest [208–210]. The p21-mediated Nrf2-activation is weakened by
HCV core- and NS5A-proteins that interact with the p21/waf1 protein and thus downregulate its
expression resulting in cell proliferation [211–213].

However, persistent and constitutive Nrf2-activation has been associated with the progression of
liver cancer [83,214]. Persistent activation of Nrf2 is promoted by at least five different mechanisms:
(1) impaired Nrf2/Keap1-interaction due to somatic mutations in Nrf2, Keap1 or Cul3 or Nrf2 exon
skipping, (2) increased Nrf2-transcription, (3) reduced Keap1-levels, and (4) stabilization of Nrf2 by
proteins that compete with Nrf2 for Keap1 binding e.g., p62 or (5) Keap1 succination (for a detailed
review see [204]).

Besides its role in the cellular stress response, Nrf2 plays an essential role in tissue repair [10].
In Nrf2 knockout mice, liver regeneration was significantly delayed after partial hepatectomy. This effect
is based on a ROS-mediated resistance of the insulin/IGF-1 (insulin growth factor-1) receptor signaling.
The ability of insulin to stimulate glucose uptake is essential in controlling glucose homeostasis [215].
In healthy individuals, uptake of glucose into muscle and adipose tissues induces the secretion of
insulin from β-cells of the pancreatic islets of Langerhans. A simplified model of the basal system acts
as follows: insulin binds to its receptor followed by subsequent phosphorylation and activation of the
IRS-1/ IRS-2, activation of the (PI3K)/AKT pathway and translocation of GLUT4 (glucose transporter
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4) to the PM (plasma membrane). HCV interferes with different steps of this pathway. Increased
ROS-levels activate serine/threonine kinases that catalyze phosphorylation of both IRS-1 and IRS-2
(insulin receptor substrate) resulting in insulin/IGF resistance. Ser/Thr-phosphorylated IRS dissociates
from the insulin receptor, thereby preventing the activation of IRS by Tyr-phosphorylation and leads to
an impaired (PI3K)/ AKT signaling [216]. Further downstream in this pathway, JNK has been proposed
as one of the inhibitory Ser/Thr kinases, as it is known to respond to enhanced ROS-levels [217,218].
Due to the impaired Nrf2/ Keap1-signaling during HCV-infection the increased ROS-levels may
contribute to the development of insulin resistance through JNK-mediated Ser/ Thr-phosphorylation
of IRS-1 and IRS-2 (Figure 1.).

Accordingly, chronic infection with HCV is associated with insulin resistance and the progression
of T2DM (type 2 diabetes mellitus), hepatic steatosis and liver fibrosis and resistance to antiviral
treatments [219]. Alongside ROS-mediated insulin resistance, several other mechanisms have been
identified as a HCV-induced cause for this pathogenic effect. In HCV core tg (transgenic) mice, higher
levels of plasma glucose and resistance to insulin could be detected. This effect was deduced to increased
TNFα-levels, which inhibit Tyr-phosphorylation of IRS-1 and are consistent with previous results of
patients suffering from chronic CHC [220]. In addition, expression of the core protein increases SOCS3
(suppressor of cytokine signaling 3) and thereby promotes proteasomal degradation of IRS-1 and IRS-2
in core tg mice and transiently core-transfected human hepatocytes [221]. It has been described recently
that HCV core activates JNK- and MAPK-pathways. In line with this, core induces phosphorylation
of IRS-1 on Ser312 (JNK-mediated) accompanied by decreased glucose uptake and degradation of
IRS-1 [222]. The HCV-dependent impairment of the (PI3K)/AKT-signaling pathway further modulates
translocation and activation of FoxO1 and FoxA2 (Forkhead box transcriptional regulators) and
regulates their metabolic functions. FoxO1 regulates the expression of genes involved in glucose and
lipid metabolism. Insulin-mediated AKT-dependent phosphorylation of FoxO1 interferes with its
DNA-binding. In contrast, insulin inhibits phosphorylation of FoxA2 that mediates lipid metabolism
during fasting [223]. Moreover, infection with HCV has been proposed to suppress expression of
TSC-1/ TSC-2 (tuberous sclerosis complex) and activate the mTOR/S6K1 pathway resulting in IRS-1
degradation through Ser1102 phosphorylation. HCV-dependent effects on glucose-metabolism is further
established via interference with GLUT4 and PCK2 (phosphoenolpyruvate carboxykinase 2) [224].
In line with this, expression of PGC1α (peroxisome proliferator-activated receptor-gamma co-activator
1α), a key transcription factor in gluconeogenesis, was found to be strongly induced in HCV-infected
cells due to increased oxidative stress in HCV-infected cells [225–227].

Furthermore, interference of HCV with insulin signaling seems to be genotype-specific as HCV
core of genotype 3a induced IRS-1 degradation via downregulation of PPARγ and upregulation of
SOCS-7, whereas the HCV core of genotype 1b activates the mTOR-pathway [228,229].

In addition, p62 has been identified to interfere with liver regeneration. Liver regeneration in
liver-specific Atg5 KO mice was significantly delayed after partial hepatectomy (PH) [230]. KO of Atg5
was associated with massive accumulation of p62 and subsequent Nrf2-activation [182]. In line with
this, constitutive Nrf2 activation impaired hepatocyte proliferation after PH and increased apoptosis
due to an increase in the cyclin-dependent kinase inhibitor p15 and the pro-apoptotic protein Bcl2l 1
(Bim) [231]. In contrast, PH in mouse steatotic livers resulted in decreased expression of p62 and less
Nrf2-activation. Consequently, the elevated ROS levels further trigger liver damage and impair liver
regeneration [232].

8. The Hepatitis B Virus (HBV)

The human hepatitis B virus (HBV) belongs to the family of Hepadnaviridae. HBV infects with
high tissue and species specificity human hepatocytes. The HBV virion is a spherical particle, 42 nm in
diameter, HBV is an enveloped virus. The envelope is composed by host cell derived lipids and HBV
surface antigen (HBsAg), which encompasses three different surface proteins: the large HBV surface
protein (LHBs), the middle surface protein (MHBs) and the small surface protein (SHBs) [233,234].
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The envelope surrounds the icosahedral nucleocapsid that is formed by the core protein. In the intact
virion the nucleocapsid harbours the partially double-stranded circular DNA genome with a size
of about 3.2 kB. The HBV genome encodes at least for four open reading frames: the polymerase,
the surface proteins (LHBs, MHBs and SHBs), the core protein, including its secretory variant HBeAg,
and the regulatory protein HBx.

In addition to virions subviral particles, exclusively assembled by HBsAg in the shape of spheres
(also designated as 22 nm particles) and filaments lacking any capsid and viral DNA, are released by
the infected cell. While spheres are almost exclusively formed by SHBs the filaments are characterized
by a larger amount of LHBs [235,236]. The length of filaments varies between 50 and 200 nm. While
spheres are secreted by the general secretory pathway, the release of virions and filaments depends on
the ESCRT (endosomal sorting complex required for transport)-system and occurs via MVBs [237–239].

Although a prophylactic vaccine was developed in the early 1980s, there are at present two billion
people who underwent an acute infection by HBV and about 240 million patients suffering from chronic
infection with HBV worldwide [233,240]. Chronic HBV infection can cause liver fibrosis and ultimately
cirrhosis [241,242]. Chronic hepatitis B virus infection is the leading cause for the development of
human hepatocellular carcinoma (HCC). There are more than 700,000 deaths annually associated with
chronic HBV infection. In many cases chronic HBV infection is characterized by a weak and inefficient
cellular immune response which fails to clear completely HBV from the liver [243,244]. Thus, a circle
between inefficient elimination of infected cells, regeneration of hepatocytes reinfection and again
inefficient elimination/control of the infection starts that later gets out of control. Functional liver tissue
is replaced by fibroblast leading to the excessive formation of connective tissue and subsequent fibrosis,
cirrhosis and HCC [245].

9. Generation of ROS in HBV-Replicating Cells

The mechanisms leading to the generation of ROS in HBV replicating cells are not fully understood.
HBx, HBsAg and HbcAg are described as viral proteins that are involved in ROS formation [119].

HBx is considered as an important factor triggering the formation of ROS. This is supported by the
observation that HBx, in addition to its localization in the nucleus and in the cytoplasm, was found to
be associated with mitochondria [246,247]. Several domains of HBx, aa 68–117 [248], aa 111–117 [249]
and aa 121–154 [250] were described to mediate the interaction of HBx with the outer mitochondrial
membrane. In this context, it is reported that the association of HBx with the outer mitochondrial
membrane leads to membrane permeabilization [251]; the interaction of HBx with cardiolipin is
described as causative factor for the loss membrane integrity [252]. Membrane permeabilization
causes a breakdown of the mitochondrial membrane potential and thereby can lead to enhanced ROS
production. Moreover, it was reported that HBx affects the activity of respiratory complexes I, II, IV
and V by decreasing the expression of their subunits [253]. This was reported to be associated with a
loss of the mitochondrial membrane potential. Apart from the effect on the expression of subunits of
the respiratory chain, HBx was described to directly bind to COXIII (cytochrome c oxidase) that is part
of the cytochrome c oxidase respiratory complex IV based on yeast-two-hybrid experiments [247,254].
However, it has to be considered that HBx seems to be localized on the outer mitochondrial membrane
while COXIII is localized at the inner membrane.

In addition, voltage-dependent anion channel 3 (VDAC3) was described as binding partner of
HBx [255]. VDAC3 is localized at the outer mitochondrial membrane and is involved in the regulation
of the PTP [256,257]. Dysregulation of PTPs is a well established mechanism for ROS induction.
In addition, there are reports that HBx triggers a significant increase of Ca2+ levels in the cytoplasm
and in the mitochondria that might dysregulate PTP function in addition [258,259].

Overexpression of LHBs was found to be associated with its retention in the ER and intracellular
accumulation [260,261]. Due to the strong ER overload, the formation of so called ground glass
hepatocytes occurs. ER overload is associated with ER-stress and induction of the UPR [262]. The UPR
leads to the release of Ca2+ into the cytoplasm that triggers the induction of ROS. In addition, there were
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reports that C-terminally truncated forms of the middle hepatitis B virus surface protein (MHBst) that
are retained at the ER, trigger ROS production due to ER overload [262–264]. This was considered as a
causative factor for the subsequent activation of NF-κB [263,265]. Further analyses however revealed
that the ER retention seems to be less relevant for the NF-kB activation by these C-terminally truncated
variants [266–269]. Moreover, analysis of JNK2 activity in MHBst producing cells or transgenic mice
provided no evidence for the induction of cell stress due to ER overload or elevated ROS levels as
investigated by oxyblots or determination of the 8-OHdG-level [268,269]. Detailed analyses identified
the PreS2 domain as the minimal domain that is causative for the function as regulatory protein.
As the PreS2 domain is not associated with the ER membrane and represents a cytoplasmic protein,
this argues against ER overload and subsequent stress response leading to an activation of NF-kB.
The membrane topology is crucial for the functionality of the PreS2 domain to serve as regulatory
protein [267–269]. If the PreS2 domain faces the lumen of the ER, as in case of MHBs, N-glycosylation
at Asn4 in the PreS2 domain occurs and no transcriptional activator function is exerted [267,268].
For LHBs a dual membrane topology was described due to a posttranslational translocation of the
PreS1PreS2 domain [270–272]. Moreover, these C-terminal-truncated MHBs proteins (MHBst) that exert
a transcriptional activator function, display a cytoplasmic orientation of the PreS2 domain [267,268].
In accordance to this, overproduction of the PreS2 domain that lacks any membrane association,
was found to be sufficient for the function as regulatory protein [267]. In the cytoplasm, the PreS2
domain interacts with the classic PKC isoforms a and b and thereby induces the activation of PKC that
is transduced via the c-Raf-MEK-Erk signal transduction cascade [269,273].

10. Interference of HBV with the Nrf2/Antioxidant Response Element (ARE) System

Recent reports revealed that a loss of Nrf2 is associated with an impaired liver regeneration [9,274–277].
The lack of Nrf2 prevents the expression of a variety of cytoprotective genes that in part are involved
in the detoxification of reactive oxygen species [37,278].

Further analyses provided evidence that the impaired liver regeneration in Nrf2-deficient mice
is associated with an elevated ROS level. The elevated ROS level trigger an activation of JNK that
triggers a phosphorylation of IRS-1/-2 at the Ser/Thr-residues 303. Dependent on its phosphorylation,
IRS-1/-2 acts as a switch mediating insulin receptor-dependent signal transduction pathways. Tyrosine
phosphorylation of IRS-1/-2 is involved in the transduction of proliferative signals induced by activated
insulin receptor (IR). In contrast to this, Ser-phosphorylation of IRS-1/-2 leads to a block in the
IR-dependent induction of proliferative signals [9].

In light of the relevance of the Nrf2/ARE system for the process of liver regeneration and of the
pathogenesis of an active chronic HBV infection that is associated with fibrosis and cirrhosis [278], it is
obvious that the effect of HBV on the Nrf2/ARE system is of major interest. The literature describing this
point is conflicting but this depends in part on the experimental systems that were used [119,279–282].
Therefore, several experimental settings have to be distinguished. Data obtained from HBV replication
in cell culture in the absence of an immune response might differ from biopsy material of an acute
or chronic active infection with a variety of effects triggered i.e., by the immune response. Moreover,
analysis of HBV-associated HCCs reflects an endpoint and does not automatically represent processes
affected on the way to the HCC.

Cell-culture data based on HBV-replicating cells generated either by transfection of overgenomic
constructs or by infection of susceptible cells, provide evidence that HBV has the potential to induce
an activation of NRF2/ARE-dependent gene expression. Further analyses revealed that the regulatory
proteins HBx and LHBs (PreS2 activator) have the potential to activate the Nrf2/ARE-dependent
gene expression [281,283]. This was observed based on reporter gene assays expressing a luciferase
under the control of Nrf2-dependent minimal promoters, expression analyses using rtPCR for the
quantification of transcripts of NQO1, GPx, GCLC or PSMB5 that all harbor Nrf2-dependent ARE
sites in their promoter, and on Western blot analyses and immunofluorescence microscopy using GPx,
GCLC, PSMB5 and NQO1-specific antisera. The elevated expression of these cytoprotective genes
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correlates with an enhanced capacity to detoxify ROS that disappears if a tdn (transdominant negative)
mutant of Nrf2 is coexpressed [281,283,284].

Both regulatory proteins trigger via different initial steps an activation of c-Raf. Activation of
c-Raf was described as being causative for the HBV-dependent activation of Nrf2 [281] (Figure 2).
Inhibition of Nrf2 by a small molecule inhibitor (sorafenib) as well as by coexpression of a tdn mutant
abolishes HBV-dependent activation of Nrf2. It was also reported that HBx triggers activation of Nrf2
by formation of a ternary complex consisting of p62, HBx and Keap1 [283].

Figure 2. Effect of hepatitis B virus (HBV) on reactive oxygen species (ROS) production and inactivation.
Dotted arrows describe indirect processes, solid lines describe translocations or direct effects.

HBx was described to interact with the outer mitochondrial membrane and thereby to destroy
the membrane integrity of the outer mitochondrial membrane. Moreover, HBx binds to VDAC3
and thereby affects the permeability transition pore (PTP). HBx was described to increase the Ca2+

concentration in the cytoplasm and mitochondria that affects the PTP function. In addition, HBx
decreases the activity of the respiratory chain complex by an inhibitory effect on the expression of
subunits of the respiratory complexes I, II, IV and V. All these steps can finally cause a breakdown of
the mitochondrial membrane potential and thereby lead to ROS production.

Overexpression of LHBs leads to retention and accumulation in the ER that is associated with ER
stress and induction of the UPR. The UPR leads to a release of Ca2+ in the cytoplasm that can trigger
the induction of ROS.

HBx and LHBs (if the PreS2-domain faces the cytoplasm) are transcriptional activators.
Both regulatory proteins cause an activation of c-Raf that was described as crucial for the HBV-dependent
activation of Nrf2. The HBV-dependent activation of Nrf2 triggers the expression of cytoprotective
genes harboring ARE sequence(s) in their promoter. The increased expression of cytoprotective genes
in HBV expressing cells enables the detoxification of ROS.

Moreover, there are conflicting data about the expression of NQO1 in HBV replicating cells.
In contrast to the described HBV-dependent induction of the NQO1 expression [281] there are
reports that HBx has the capacity to suppress the expression of NQO1 and of MTH1/MTH2
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due hypermethylation of its promoter [285,286]. The HBx-mediated recruitment of DNMTA3
methyltransferase can lead to hypermethylation of the respective promoter [287,288]. Moreover,
there are reports about a HBX-dependent repression of GSTM3 (glutathione-S-transferase M3) [289] and
GSTP1 (glutathione-S-transferase P1). An interesting aspect in this context is that the HBV-dependent
repression of GSTP1 expression seems to depend on the HBV genotype. While HBV genotype D was
described to suppress the expression this was not found for the genotypes A to C [280]. This fits
to recent observations that the HBV genotypes differ with respect to their potential to modulate
the Nrf2/ARE-dependent gene expression. Cell-culture experiments provided evidence that HBV
genotype D leads to a significantly weaker induction of the Nrf2/ARE-dependent gene expression as
compared to genotype A or genotype G compared to A [284]. It is tempting to speculate whether
differences in the Nrf2/ARE-dependent gene expression have an impact on the differences between
the HBV genotypes regarding their tendency to establish chronic infections and with respect to the
virus-associated pathogenesis.

11. HBV Regulatory Proteins

A variety of functions is ascribed to HBx. While there is an activating effect of HBV on the
Nrf2/ARE system there is no evidence that activation/ inhibition of Nrf2 has a direct effect on HBV
replication as evidenced by coexpression of constitutive active (ca) or tdn mutants in HBV-replicating
cells. However, in the context of a natural infection leading to an immune response the HBV-dependent
activation of Nrf2 could represent a viral strategy to escape from the immune response [281]. In the
context of a cellular immune response, induction of ROS is frequently found in order to contribute to the
elimination of the infected cell and to suppress viral replication. The Nrf2/ARE-dependent induction
of cytoprotective genes leads to and inactivation of ROS and thereby counteracts the ROS-dependent
effect [37,278].

Among the Nrf2-ARE-regulated genes there are in addition catalytical active subunits of the
constitutive proteasome i.e., PSMB5 and PSMB3 [37,39]. In accordance with this, an elevated level
of the activity of the constitutive proteasome was found in HBV-expressing cells as compared to the
negative control. As the elevated activity of the constitutive proteasome was found to be associated
with a decreased activity of the immunoproeasome, it was speculated that this might represent an
additional escape strategy from the cellular immune response. It has been observed that the elevated
Nrf2-activity leads to an elevated activity of the constitutive proteasome that is associated with a
decreased activity of the immunoproteasome [281]. Based on this, it is hypothesized that the decreased
activity of the immunoproteasomal system leads to a reduced processing of HBV-specific antigens
and subsequent presentation of HBV-specific peptides that finally leads to a reduced cellular immune
response. The experimental proof for this hypothesis, however, is still open.

Apart from the effect on the Nrf2/ARE system, HBV affects further antioxidant defense systems.
Among these are two GST isoforms (GSTO1 and GSTK1) that are not Nrf2/ARE-dependent regulated.
For both isoenzymes an elevated expression is found in HBV-replicating cells [290]. In addition, this is
observed for peroxiredoxin 2 in patients suffering from chronic HBV infection. There are conflicting
data about the effect of HBV on SOD2 (superoxide dismutase) that could depend on the chosen
experimental systems [282,291,292].

12. Effect of ROS on the HBV Life-Cycle

There is a recent report that described that H2O2 leads to an enhanced replication of HBV.
Interestingly, there is in addition a promoting effect of H2O2 on the capsid assembly. It is suggested
that H2O2 favors the formation of core Hsp90 complexes that support capsid assembly [293].

NAC (N-acetylcysteine) was described to exert an inhibitory effect on HBV. The inhibitory effect
of NAC on HBV replication could be due to an indirect effect. NAC prevents the proper formation of
disulfide bond formation in the HBsAg and thereby leads to an impaired release of subviral and viral
particles [294,295].
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13. ROS, Nrf2 and the Virus-Associated Pathogenesis

Although there is evidence that HBV per se does not directly lead to an elevated level of ROS,
there is evidence that in many cases in patients suffering from chronic HBV infection, an elevated ROS
level can be found as evidenced i.e., by quantification of the 8-OH dG level in liver samples [296–298].
Elevated ROS levels in patients suffering from acute or chronic HBV infection might be a multifactorial
process. As described HBV i.e., HBx has the capacity to induce the formation of ROS [119,299].
However, in principle this could be compensated for by the induction of cytoprotective mechansims.
In light of this, elevated ROS levels in HBV-positive patients could reflect an impaired induction of
cytoprotective mechanisms or—more likely—an overload of the detoxifying system. Apart from the
direct HBV-dependent induction of ROS i.e by HBx, there are indirect mechanisms. Both regulatory
proteins of HBV (HBx and LHBs) have the capacity to activate NF-kB [268,300–302]. On the one hand,
the HBV-dependent activation of NF-kB leads to the induction of proinflammatory cytokines like
TNFα, lymphotoxin-α or IL-6 and on the other hand HBx was described to suppress the expression of
anti-inflammatory cytokines [302–306]. Major sources of ROS are infiltrating NKs and CTLs. In case of
a chronic HBV infection that is frequently characterized by an inefficient cellular immune response,
there is a permanent but insufficient immune response that might significantly contribute to the
formation of ROS.

Elevated ROS level are a major factor for the development of liver carcinogenesis. ROS affect
the integrity of the genomic and of the mitochondrial DNA. In accordance to this, in HBV positive
tissues an elevated level of 8-OH dG can be found and on the one hand an increased expression of
OGG1 (8-oxoguanine glycosylase 1), a DNA repair enzyme [296,299,307,308]. On the other hand, a
decreased expression of APE-1 is described to be associated with HBV infection [309]. Moreover,
there is evidence that oxidative damage of DNA in HBV-infected cells is associated with DNA single
strand breaks [310,311]. In accordance to this, an activation of the ATM-Chk2 pathway in HBV-infected
cells that is involved in the repair of DNA strand breaks was described [312].

According to the classic two-step model of carcinogenesis that encompasses two steps (initiation
and promotion) [313,314] elevated ROS level could fulfill the function of an initiator leading to an
accumulation of critical mutations in the DNA. Expression of the regulatory proteins could act in a
tumor promoter-like function [269,315,316] by activation of pathways that mediate a positive selection/

growth advantage of these cells.
Moreover, induction of strand breaks can be a factor mediating the integration of viral DNA into

the host genome [310,317,318]. The effect of the various HBV genotypes on the ROS level and the
impact of the ROS level on formation of DNA integrates is still unclear.

Almost all HBV-associated HCCs harbor chromosomally integrated DNA [319,320]. Due to the
circular structure of the HBV genome, no formation of infectious viral particles can occur based on the
integrated DNA, but the expression of regulatory proteins occurs. Moreover, there are reports about
insertion of HBV-DNA thereby affecting the expression/ function of key enzymes controlling cell-cycle
and proliferation [321–325]. Although there are interesting integrates identified and characterized,
there is no evidence that deregulation of cell-cycle control by integration of HBV-specific DNA is a
general phenomenon. In contrast to this, in case of WHV infection integration of WHV DNA into the
c-Myc gene can be frequently found supporting the cis-hypothesis for the WHV system [326]. In case
of HBV infection there is no preferred insertion into the c-Myc region observed, although a recent study
observed that in 12.4% of early-onset HCCs an integration of c-Myc and PVT-1 occurs [327].

14. Liver Regeneration

It is an established model that elevated ROS levels lead to insulin resistance [328]. In light
of the prominent role of insulin/IR-dependent signaling for the process of liver regeneration,
elevated ROS levels are considered as a major factor contributing to impaired liver regeneration
and fibrosis/cirrhosis induction.
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However, in in vitro cell culture models of HBV-replicating cells, insulin resistance was observed
although no elevated level of ROS was found [276]. Further analyses revealed that in HBV-replicating
cells insulin resistance can be mediated by a novel mechanism. In HBV positive cells an elevated
expression and formation of α-taxilin is found [329]. α-taxilin initially was described as a syntaxin 4
binding protein [330,331]. However, α-taxilin exclusively binds to free syntaxin 4 that is not part of
the SNARE-complex. Thus, α-taxilin acts as a negative regulator of SNARE-complex formation and
thereby can act as an inhibitor of intracellular transport pathways. Indeed, overexpression of α-taxilin
leads to an impaired transport of the IR to the cell surface and thereby uncouples the cell from the
insulin signaling that finally contributes to an impaired liver regeneration process [276].

Many data characterizing the effect of HBV on the Nrf2/ARE system are based on the analysis of
HBV-associated HCCs. It should be considered that the HBV-associated HCC stands at the end of a
long process starting with the acute infection. A variety of factors contributes to the formation of an
HCC. Interpreting data based on the analysis of HBV-associated HCC, it should be considered that the
tumor represents a specific physiologic situations and that the positive selection of the tumor tissue
can be due to the activation of escape strategies and cytoprotective mechanisms of the tumor that favor
the growth of the tumor and do not automatically reflect the impact of HBV on the healthy tissue.

A further critical point that should be considered are the data that are based on selective
overexpression of the regulatory proteins. Especially HBx is produced in small amounts during the
natural infection process, as evidenced for WHV—a situation that differs from the strong overexpression
systems [332,333]. To consider this is of special importance for the evaluation of functional data that
are based on the formation of stoichiometric complexes of HBx with abundant cellular proteins. Due to
the low amount of HBx the general physiological relevance of these data has to be interpreted carefully.

Finally, we learn that the HBV genotypes differ with respect to their geographic distribution [334],
to their molecular virology and to their associated pathogenesis. In light of this, it will be challenging
to establish a closer correlation between these different factors that might strongly deepen our
understanding of virus–host interaction and, thereby, could contribute to the development of novel
prognostic markers and therapeutic tools.

15. Conclusions

Apart from the effect of the cellular immune response on the intracellular ROS level in infected
cells, both viruses strongly differ with respect to their effect on radical generating and detoxifying
systems. For HCV-positive cells there are a variety of reports describing the stimulating effect of HCV
on radical producing systems on the one hand and an inhibitory effect on detoxifying systems as the
Nrf2/ARE-dependent gene expression. The elevated ROS level can be correlated with insulin resistance
that finally contributes to the development of fibrosis, cirrhosis and HCC. With respect to the viral life
cycle the elevated ROS level is involved in the induction of autophagy that is crucial for the HCV life
cycle. An open question is whether the elevated ROS level is a causative factor for the high genetic
variability of HCV by affecting the integrity of the RNA genome.

In contrast to this, the situation for HBV seems to be even more complex. On the one hand there
is the effect of the cellular immune response and of the viral regulatory proteins that have the potential
i.e., by interfering with the mitochondrial integrity to increase the intracellular ROS level. On the
other hand, however, there are reports describing the activation of the Nrf2/ARE-dependent gene
expression and increased production of cytoprotective enzymes in HBV-positive cells. The activation of
the Nrf2/ARE system could represent an escape strategy i.e., by combatting ROS that are produced as
part of the immune response to eliminate HBV-positive cells. There might be an equilibrium between
ROS-inducing and ROS-inactivating mechanisms that changes over the long period from an acute to
chronic infection and HCC development. At some steps an increased Nrf2-activation could impair
the virus elimination at other steps an elevated Nrf2 activity could prevent the elimination of an
HBV-associated HCC. Regarding this point, there are still a variety of open questions. Moreover,
it turns out that the HBV genotypes differ with respect to the activity of their regulatory proteins and



Int. J. Mol. Sci. 2019, 20, 4659 18 of 37

the virus-associated pathogenesis. It might be interesting to investigate the relation between HBV-
genotype, impact on the ROS level and pathogenesis.
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Abbreviations

AhR aryl hydrocarbon receptor
AKT protein kinase B
AMPK AMP-activated protein kinase
AMPKα AMP-activated protein kinaseα
AP-1 activating protein 1
ARE antioxidant-response element
ATF6 activating transcription factor 6
Atg autophagy-regulated genes
Bach1/2 BTB and CNC homology 1/2
BCLN1 Beclin1
BRCA1 breast cancer type 1 susceptibility protein
BTB Broad-Complex, Tramtrack and Bric a brac
bZIP basic-region leucine zipper
cat catalase
CBP CREB (cAMP response element-binding protein)-binding protein
CDH6 chromo-ATPase/ helicase DNA-binding domain 6
CHC chronic hepatitis C
CK2 casein kinase 2
CNC cap´n´collar
COX cytochrome c oxidase
CTGF connective tissue growth factor
CYP2E1 cytochrome P450 2E1
DAA direct-acting antivirals
DFCP1 double FYVE-containing protein 1
DMV double membrane vesicle
DNMTA3 DNA methyltransferase
DPP3 dipeptidyl peptidase III
ECM extracellular matrix
EGF epidermal growth factor
EGFR epidermal growth factor receptor
ephx1 epoxide hydrolase 1
EpRE electrophile-response element
ER endoplasmatic reticulum
ERK extracellular signal-regulated kinase
Ero1α ER oxidoreductin 1α
ERQC ER protein quality control
FGF fibroblast growth factor
GABARAP gamma-aminobutyric acid receptor-associated protein participate
GCLC glutamate-cysteine ligase catalytic subunit
GLUT4 glucose transporter 4



Int. J. Mol. Sci. 2019, 20, 4659 19 of 37

GPx glutathione peroxidase
GSH glutathione
GSK3β glycogen synthase kinase 3β
GSTM3 glutathione-S-transferase M3
GSTP1 glutathione-S-transferase P1
HBsAg surface antigen
HBV hepatitis B virus
HCC hepatocellular carcinoma
HCV hepatitis C virus
HO-1 heme oxygenase-1
HSC hepatic stellate cells
IGF-I insulin-like growth factor I
IL-6 interleukin 6
IM isolation membrane
IRE1 inositol-required protein 1
IRES internal ribosomal entry site
JAK2 Janus kinase 2
JNK c-Jun-N-terminal kinase
Keap1 Kelch-like Ech-associated protein 1
KIR Keap1-interacting region
LC3 microtubule-associated protein 1 light chain 3
LD lipid droplets
LHBs large HBV surface protein
LIR LC3 interacting region
LPS lipopolysaccharide
LVP lipoviroparticle
MAM mitochondrial-associated membrane
MAPK mitogen activated protein kinase
MCU mitochondrial Ca2+-uniporter
MEF2D myocyte enhancer factor 2d
MEOS microsomal ethanol oxidizing enzymes
MHBs middle surface
MPT mitochondrial permeability transition
mPTP mitochondrial permeability transition pore
mTORC1 mammalian target of rapamycin complex 1
MVBs multivesicular bodies
MW membranous web
NAC N-acetylcysteine
Neh Nrf2-Ech homology
NF-κB nuclear factor κB
NOX NADPH oxidases
NQO1 NAD(P)H quinone oxidoreductase 1
Nrf1 NF-E2 related factor 1
Nrf2 nuclear factor erythroid 2 (NF-E2)-related factor 2
NS non-structural
ObR obese receptor
OGG1 8-oxoguanine glycosylase 1
PALB2 partner and localizer for BRCA2
PAS phagophore assembly sites
PCK2 phosphoenolpyruvate carboxykinase 2
PDGF platelet derived growth factor
PDI protein disulfide isomerase
PE phosphatidylethanolamine
PERK protein kinase (PKR)-like ER kinase
PGC1α peroxisome proliferator-activated receptor-gamma co-activator 1α
PI3K phosphatidylinositol 3-kinase
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PI3P phosphatidylinositol-3-phosphate
PI4K4 phosphatidylinositol 4-kinase IIIα
PKB phosphatidylinositol 3-kinase (PI3K) kinase B
PKC protein kinase C
PM plasma membrane
PPARγ peroxisome proliferator-activated receptor γ
ProTα Prothymosin α

Rac receptor-associated coactivator
ROS reactive oxygen species
RXRα retinoid X receptor α
SERCA sarcoplasmic/endoplasmic reticulum calcium ATPase 2
SHBs proteinsmall surface protein
Skp1 S-phase kinase-associated protein 1
sMaf v-maf avian musculoaponeurotic fibrosarcoma
SOCS3 suppressor of cytokine signaling 3
SOD2 superoxide dismutase
SQSTM1 sequestome 1
β-TrCP β-transducin repeat-containing protein
STAT3 signal transducer and activator of transcription 3
SUMO small ubiquitin-like modifier
TAK1 transforming growth factor β-activated kinase1
TBK-1 TANK-binding kinase 1
tg transgenic
TGF-β1 transforming growth factor beta-1
TNF-α tumor necrosis factor α
TRAMP transgenic adenocarcinoma of mouse prostate
TRIM16 tripartite motif containing 16
TSC tuberous sclerosis complex
UBA ubiquitin-associated
ULK1 Unc-51-like kinase 1
UPR unfolded protein response
UTR untranslated region
VDAC3 voltage-dependent anion channel 3
VLDL very-low-density lipoprotein
Vps34 vacuolar protein sorting 34
WIPI WD-repeat domain phosphoinositide-interacting
WTX Wilms tumor gene in chromosome X
XBP1 X box-binding protein 1
XRE xenobiotic response element
γ-GCS γ-glutamylcysteine synthetase
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