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ABSTRACT
Aberrant expression of coding genes of the V-ATPase subunits has been reported in glioma 
patients that can activate oncogenic pathways and result in worse prognosis. However, the 
predictive effect of a single gene is not specific or sensitive enough. In this study, by using 
a series of bioinformatics analyses, we identified five coding genes (ATP6V1C2, ATP6V1G2, TCIRG1, 
ATP6AP1 and ATP6AP2) of the V-ATPase that were related to glioma patient prognosis. Based on 
the expression of these genes, glioma patients were sub-classified into different prognosis 
clusters, of which C1 cluster performed better prognosis; however, C2 cluster showed more 
malignant phenotypes with oncogenic and immune-related pathway activation. The single-cell 
RNA-seq data revealed that ATP6AP1, ATP6AP2, ATP6V1G2 and TCIRG1 might be cell-type 
potential markers. Copy number variation and DNA promoter methylation potentially regulate 
these five gene expressions. A risk score model consisted of these five genes effectively predicted 
glioma prognosis and was fully validated by six independent datasets. The risk scores also showed 
a positive correlation with immune checkpoint expression. Importantly, glioma patients with high- 
risk scores presented resistance to traditional treatment. We also revealed that more inhibitory 
immune cells infiltration and higher rates of “non-response” to immune checkpoint blockade (ICB) 
treatment in the high-risk score group. In conclusion, our study identified a five-gene signature 
from the V-ATPase that could sub-classify gliomas into different phenotypes and their abnormal 
expression was regulated by distinct mechanisms and accompanied with immune microenviron-
ment alterations potentially act as a biomarker for ICB treatment.
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Introduction
Glioma is a kind of incurable disease with highly 
heterogeneous and infiltrative features, which 
accounts for more than 70% of the intracranial 
malignant tumors [1]. Maximum resection in 
a safe degree with postoperative chemotherapy 
and radiotherapy have been considered as stan-
dard treatment strategies for glioma patients [2]; 
however, despite decades of exploration in surgical 
techniques and chemotherapy medicine, there is 
still limited progress in the choice of treatment 
regimens and the prognosis after standard treat-
ment still remains clear distinctions [3]. The mole-
cular events in glioma have been discovered 
gradually, which brought us with novel insights 
into treating this dismal disease. Therefore, it is

still urgent to investigate in detail the molecular 
mechanisms of glioma and to find out new poten-
tial targets for therapy [3].

Concurrently, mounting evidence indicates that 
the tumor microenvironment (TME) plays impor-
tant roles in glioma prognosis and therapeutic resis-
tance [4,5]. TME mainly consists of cellular 
components and an extracellular matrix, which con-
stitutes the heterogeneous features of cancers 
accounting for the immune resistance [6,7]. The 
interplay between TME and its regulatory factors 
has caught more attention over the years. The vacuo-
lar ATPase (V-ATPase) is a macromolecular com-
plex that is highly conserved and usually 
overexpressed in cancer cells [8,9]. It consists of 
two functional domains, the V0 domain, embedded
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in the cellular membranes and responsible for pro-
ton translocation, and the V1 domain, cytosolic and 
responsible for the ATP hydrolysis. The V-ATPase is 
responsible for acidifying and maintaining the 
homeostasis of pH in intracellular organelles, includ-
ing the Golgi apparatus, endosome, lysosome and 
secretory vesicles, and excreting intracellular protons 
into the extracellular space. Abnormal presence of 
the V-ATPase at the plasma membrane of cancer 
cells contributes to the acidity of TME and leads to 
cancer invasion and progression [10]. The effective-
ness of V-ATPase inhibitors in cancers in vitro or 
in vivo proved that targeting the V-ATPase is pro-
mising for cancer treatment, but there is still a long 
way to go. The aberrant expression of V-ATPase 
subunits in malignant entities and cancer cell lines 
has been reported by previous studies.The overex-
pression of the V-ATPase at the plasma membrane 
of invasive cancer cells possibly facilitates the activa-
tion of proteinases under low pH conditions and 
further modifies components of the extracellular 
matrix, such as MMPs [10]. Overexpression of 
V0a2-4, V0C and V1C1 subunits has been reported 
in breast, ovarian, musculoskeletal, prostate, and 
head and neck cancers [9]. Our previous study iden-
tified that overexpression of TCIRG1 (V0a3 subunit) 
was found in glioma patients and correlated with 
immune cell infiltration in GBM [11]. Higher 
expression of TCIRG1 predicted a mesenchymal 
subtype of GBM and worse prognosis. Multi-cancer 
V-ATPase molecular signatures among different 
cancer types were identified [12,13], which were 
either used to identify cancer subtypes with distinct 
molecular events, or to function as cancer biomar-
kers as well as basis for drug development.

Since the V-ATPase plays essential roles in 
a variety of cellular processes in cancer, especially 
for tumor invasion, metastasis and activation of 
oncogenic pathways [10]. As a kind of highly 
heterogeneous tumor, glioma has specific TME 
and strong adaptability to treatment modalities. 
The prognostic value of multiple subunits of the 
V-ATPase and their roles in glioma TME altera-
tions and treatment resistance remain unclear. We 
suppose that the existence of multiple subunits of 
the V-ATPase might reflect specific compositions 
for specific cell types and pathophysiological con-
ditions in glioma patients and the comprehensive

exploration of their correlation with TME altera-
tions as well as potentially activated pathways 
might provide novel targets for glioma treatment. 
In the present study, we examined the coding 
genes of the V-ATPase subunits and chaperones, 
focusing on providing further insights into biolo-
gical basis of the V-ATPase for glioma patients.

Materials and methods

Transcriptome data collection and processing

A coding gene signature of subunits and chaper-
ones of the V-ATPase was acquired from 
a previous study [14], including 14 genes of the 
V1 subunit (ATP6V1A, ATP6V1B1, ATP6V1B2, 
ATP6V1C1, ATP6V1C2, ATP6V1C3, ATP6V1D, 
ATP6V1E1, ATP6V1E2, ATP6V1F, ATP6V1G1, 
ATP6V1G2, ATP6V1G3 and ATP6V1H), 13 
genes of the V0 subunit (ATP6V0A1, 
ATP6V0A2, TCIRG1, ATP6V0A4, ATP6V0C, 
ATP6V0B, ATP6V0D1, ATP6V0D2, ATP6V0E1, 
ATP6V0E2, RNASEK, ATP6AP1 and ATP6AP2) 
and three chaperone molecules (TMEM199, 
VMA21 and CCDC115). Transcriptome data of 
glioma patients were acquired from the Cancer 
Genome Atlas (TCGA) using the UCSC Xena 
browser (TCGA-GBMLGG dataset (n = 702), 
https://xenabrowser.net/datapages/) and the 
Chinese Glioma Genome Atlas (CGGA) database 
(CGGA-mRNA693 (n = 693), CGGA-mRNA325 
(n = 325) and CGGA-mRNA301 (n = 301), http:// 
www.cgga.org.cn/) and Gliovis platform 
(Rembrandt (n = 472) and Gravendeel (n = 284), 
http://gliovis.bioinfo.cnio.es) [15–25]. The histologi-
cal diagnosis is done at the tissue collecting insti-
tution following the 2007 WHO central nervous 
system tumor classification system [26]. The main 
clinical information in this study contains overall 
survival (OS) time, survival status, isocitrate dehy-
drogenase-1 (IDH-1) status, 1p19q co-deletion sta-
tus, gender and age, and so on. We removed the 
genes with 50% of samples having an mRNA rela-
tive expression value equal to 0, and 28 genes were 
identified for further study. Cases without relevant 
survival information or with an OS of less than 
30 days were deleted. Detailed clinical data of 
diffuse gliomas for this analysis were listed in 
Supplementary Table 1. The TCGA-PanCancer
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dataset was acquired from the UCSC Xena brow-
ser, 33 cancer types were contained, including 
acute myeloid leukemia (LAML), adrenocortical 
carcinoma (ACC), cholangiocarcinoma (CHOL), 
bladder urothelial carcinoma (BLCA), breast inva-
sive carcinoma (BRCA), cervical squamous cell 
carcinoma and endocervical adenocarcinoma 
(CESC), colon adenocarcinoma (COAD), uterine 
corpus endometrial carcinoma (UCEC), esopha-
geal carcinoma (ESCA), glioblastoma (GBM), 
head and neck squamous carcinoma (HNSC), kid-
ney chromophobe (KICH), kidney clear cell carci-
noma (KIRC), kidney papillary cell carcinoma 
(KIRP), lymphoid neoplasm diffuse large B-cell 
lymphoma (DLBC), liver hepatocellular carcinoma 
(LIHC), lower grade glioma (LGG), lung adeno-
carcinoma (LUAD), lung squamous cell carcinoma 
(LUSC), skin cutaneous melanoma (SKCM), 
mesothelioma (MESO), uveal melanoma (UVM), 
ovarian serous cystadenocarcinoma (OV), pan-
creatic adenocarcinoma (PAAD), pheochromocy-
toma and paraganglioma (PCPG), prostate 
adenocarcinoma (PRAD), rectum adenocarcinoma 
(READ), sarcoma (SARC), stomach adenocarci-
noma (STAD), testicular germ cell tumor 
(TGCT), thymoma (THYM), thyroid carcinoma 
(THCA), uterine carcinoma (UCS), which were 
used for viewing transcriptional landscape of the 
V-ATPase in multi-cancers and acquiring the 
immune phenotypes of 33 type TCGA cancers, 
including C1 (wound healing), C2 (IFN-gamma 
dominant), C3 (inflammatory), C4 (lymphocyte 
depleted), C5 (immunologically quiet) and C6 
(TGF-beta dominant) [27]. Otherwise, several 
online platforms were used and the corresponding 
information was included in the subsequent 
description.

Prognostic genes selection and a risk score 
model construction

We used the TCGA-GBMLGG dataset to identify 
prognosis-related genes. First, univariate Cox 
regression analysis was used, and then the selected 
prognosis-related genes were included for more 
functional investigation and developed possible 
risk score model using the LASSO Cox regression 
and multivariate Cox regression analyses. Tuning 
parameter (lambda) selection was applied in the

LASSO model by using 10-fold cross-validation via 
the minimum and 1-standard error (SE) criteria. 
The 1-SE criterion was then used to define a list of 
genes that potentially composed a risk score 
model; finally, through using multivariate Cox 
regression analysis, we identified five genes and 
their coefficients to comprise a risk score model. 
As the following formula, the risk score = Exp1 
*Coe1+ Exp2*Coe2+ . . . . . . + Expn*Coen, Exp 
stands for the mRNA expression value, and Coe 
indicates the coefficients calculated by multivariate 
Cox regression analysis. Receiver operator charac-
teristic curves (ROC) and the value of area under 
the curve (AUC) were used to explore the accuracy 
of risk model in evaluating OS of glioma patients. 
A nomogram was used to facilitate clinicians to 
predict the 1-, 3- and 5-year OS of glioma patients. 
“rms”, glmnet”, “survival”, and “timeROC” 
R packages were used for the data analysis.

Multi-omics validation of target gene in gliomas

The differential expression of hub genes between 
glioma samples and normal brain tissues was eval-
uated by the Genotype-Tissue Expression (GTEx) 
and TCGA datasets, and transcriptome data were 
acquired from the UCSC Xena browser (https:// 
xenabrowser.net/datapages/) [15]. The transcrip-
tion and protein levels validation of hub genes in 
glioma cell lines was performed based on Cancer 
Cell Line Encyclopedia (CCLE, https://sites.broad 
institute.org/ccle). The protein level exploration 
was performed using the Human Protein Atlas 
(HPA) database (https://www.proteinatlas.org) 
[28], which provides immunohistochemistry 
(IHC) staining of glioma samples and immuno-
fluorescence of glioma U251 cell line. The Clinical 
Proteomic Tumor Analysis Consortium (CTPAC) 
database through the UALCAN online platform 
(ualcan.path.uab.edu/index.html) [29] was used 
to explore the protein level expression of hub 
genes between normal brain tissues and glioblas-
toma samples (Glioblastoma multiforme dataset, 
including normal brain tissues (n = 10) and 
GBM (n = 99), ATP6V1C2 was not contained in 
this database). Z-values represent standard devia-
tions from the median across samples for the given 
cancer type. Log2 Spectral count ratio values from 
CPTAC were first normalized within each sample
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profile and then normalized across samples. The 
Tumor Immune Single Cell Hub (TISCH, http:// 
tisch.comp-genomics.org) [30], an interactive and 
online database that integrates single-cell tran-
scriptome profiles of millions of cells from multi-
ple high-quality cancer dataset across multiple 
cancer types. Glioma_GSE131928_10X dataset 
was used for single-cell analysis among 9 glioma 
patients consisted of 27 cell clusters and 3 cell 
types [31], including major-lineage (Astrocyte 
(AC)-like malignant cells, exhausted CD8 T cells 
(CD8Tex), mesenchymal (MES)-like malignant, 
malignant, monocytes or macrophages (Mono/ 
Macro), Neural-progenitor-like malignant cells 
(NPC-like malignant), oligodendrocyte-precursor- 
cell-like malignant cells (OPC-like malignant) and 
Oligodendrocyte), minor-lineage (AC-like malig-
nant, CD8Tex, M1 macrophage, MES-like malig-
nant, malignant, monocyte, NPC-like malignant, 
OPC-like malignant and oligodendrocyte) and 
malignancy (immune cells, malignant cells and 
others).

Tumor microenvironment investigation and 
immune checkpoints blockade (ICB) treatment 
evaluation

Estimation of Stromal and Immune cells in 
Malignant Tumor tissues using Expression data 
(ESTIMATE) is a commonly used algorithm 
that can be utilized to calculate immune scores 
and stromal scores in tumor tissues based on 
expression profiles [32]. Higher immune scores 
represent higher immune cell infiltration in 
cancer microenvironment. ImmuCellAI is an 
online tool (http://bioinfo.life.hust.edu.cn/ 
ImmuCellAI) that can be applied to estimate 
ICB effects in cancers based on gene expression 
profiles [33]. The single sample gene set enrich-
ment analysis (ssGSEA) was used to define 
a enrichment score to represent the degree of 
entire enrichment of a gene set in each sample 
within a given dataset using R package “GSVA”. 
Twenty-eight types of immune cell gene set 
signatures were obtained from the TISIDB data-
base (cis.hku.hk/TISIDB/index.php) [34], which 
also provided online correlation analysis 
between target gene expression and tumor- 
infiltrating lymphocytes (TILs).

Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analyses 
were performed to investigate the potential func-
tion of hub genes and their similar genes by the 
Database for Annotation, Visualization and 
Integrated Discovery (DAVID) online platform 
(version 6.8, https://david.ncifcrf.gov) [35,36]. 
The gene set enrichment analysis (GSEA) was 
performed using the Omicshare online tool 
(https://www.omicshare.com/tools/), a free online 
platform for data analysis, of which the 
H (hallmark) and C2 (curated) KEGG gene sets 
were selected for analysis. Only the enrichment 
pathways with a P value less than 0.05 and a false 
discovery rate (FDR) less than 0.25 were consid-
ered statistically significant.

Subgroups classification and principal 
component analysis (PCA)

Consensus clustering is a class discovery technique 
for the detection of unknown possible clusters 
consisting of items with similar intrinsic features. 
Based on a comprehensive expression of the hub 
genes, we identified distinct subgroups of 654 
tumor samples from the TCGA dataset with 
R “ConsensusClusterPlus” package 
(agglomerative km clustering with 1-pearson cor-
relation distances and resampling 80% of the sam-
ples for 50 repetitions). The optimal number of 
clusters was determined using the empirical cumu-
lative distribution function (CDF) plot. We then 
use PCA to verify the results of the grouping, 
which was performed through the ClustVis plat-
form (https://biit.cs.ut.ee/clustvis/) [37], a web tool 
for visualizing clustering of multivariate data.

GSCALite, GeneMANIA, and ChIP-X enrichment 
analysis 3 (ChEA3) online platforms analyses

GSCALite platform (http://bioinfo.life.hust.edu.cn/ 
web/GSCALite/) is an online algorithm for inte-
grating genomic and immune data of 33 cancer 
types from the TCGA, drug responses from the 
Genomics of Drug Sensitivity in Cancer (GDSC) 
and the Cancer Therapeutic Response Portal 
(CTRP) and normal tissue data from the GTEx
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[38]. The single nucleotide variation (SNV) and 
copy number variation (CNV) data (processed 
using GISTIC 2.0 method) were collected across 
33 cancer types from the TCGA database. 
GeneMANIA (http://www.genemania.org) is 
a flexible, user-friendly web interface for generat-
ing hypotheses about gene function, analyzing 
gene lists and prioritizing genes for functional 
assays [39]. Association data include protein and 
genetic interactions, pathways, co-expression, co- 
localization and protein domain similarity. We 
used the GeneMANIA to find functionally similar 
genes with our hub genes using available genomics 
and proteomics data. ChEA3 (https://amp.pharm. 
mssm.edu/ChEA3) is a web-serve to provide tran-
scription factor (TF) enrichment analysis tool that 
ranks TFs associated with user-submitted gene sets 
[40]. The ChEA3 background database contains 
a collection of gene set libraries generated from 
multiple sources including TF–gene co-expression 
from RNA-seq studies, TF–target associations 
from ChIP-seq experiments, and TF–gene co- 
occurrence computed from crowd-submitted 
gene lists. Enrichment results from these distinct 
sources are integrated to generate a composite 
rank that improves the prediction of the correct 
upstream TF compared to ranks produced by indi-
vidual libraries.

Statistical analysis

All graphic and statistical work was completed 
using GraphPad Prism software (version no. 7; 
GraphPad Software, Inc.), R language (version 
no. 3.6.3) and aforementioned online tools. 
Kaplan–Meier survival analysis was performed to 
compare OS between two cohorts using the log- 
rank test. We used unpaired t-tests to compare 
two groups and ANOVA to compare three groups. 
The median value in each step was used to define 
the high (≥median value) and low (<median value) 
groups. Correlation analysis was performed by 
Pearson’s or Spearman’s correlation coefficient 
analysis. A receiver operating characteristics 
(ROC) curve was utilized to assess the sensitivity 
and specificity, and the area under the curve 
(AUC) was used to present the efficacy. 
Univariate and multivariate Cox regression ana-
lyses were also performed to evaluate the

prognostic value and to calculate hazard ratios. 
A P < 0.05 was considered to indicate a statistically 
significant difference in all steps.

Results

Prognostic hub genes selection

We first used the TCGA Pan-Cancer dataset to 
view transcriptional landscape of the V-ATPase 
in 33 type cancers. The result indicated that the 
coding genes of the V-ATPase subunits presented 
variable patterns among different cancers 
(Figure 1(a)). To determine the prognostic value 
of subunits of the V-ATPase in glioma patients, we 
first used univariate Cox regression analysis to 
search for prognosis-related genes and found 22 
genes were correlated with the prognosis in glioma 
patients (Figure 1(b)). Then, LASSO regression 
predictive formula (Lambda.1-SE criteria) was 
used to identify the accurate prognosis-related 
genes, of which six genes were selected from the 
TCGA-GBMLGG cohort (Figure 1(c,d)). 
Moreover, multivariate Cox regression analysis 
was applied to further validate the results and 
obtained the associated coefficients. Finally, five 
genes (APT6V1C2, ATP6V1G2, TCIRG1, 
ATP6AP1 and ATP6AP2) were identified to play 
prognostic roles independently in glioma patients 
and were defined as hub genes, of which 
ATP6V1G2 showed protective effects and others 
showed oncogenes with hazard ratio >1 
(Figure 1(e)). By Pearson’s coefficient analysis, 
we revealed that the expression of ATP6V1G2 
was negatively correlated with others in transcrip-
tional level (Figure 1(f)).

Multiple platforms validation of hub genes in 
glioma samples and cell lines

In the aforementioned study, we preliminarily 
clarified the important roles of these five genes 
(ATP6V1C2, ATP6V1G2, TCIRG1, ATP6AP1 
and ATP6AP2) in glioma patients. The differential 
transcription levels between glioma patients and 
normal brain cortex tissues were performed by 
comparing the GTEx and TCGA datasets. We 
found that except for ATP6V1G2, other genes 
showed higher expression in GBM compared
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Figure 1. Coding genes expression of the V-ATPase subunits in the TCGA Pan-Cancer dataset and their prognostic value for glioma 
patients. (a) Coding genes expression profile of V1 and V2 subunits of the V-ATPase in the TCGA cancers. (b) Univariate Cox 
regression analysis for V-ATPase subunits coding genes and three chaperones in glioma patients based on the TCGA-GBMLGG 
dataset. (c,d) LASSO regression analysis for prognosis-related genes in the TCGA-GBMLGG dataset and 1-SE criterion was used to 
select candidate genes. (e) Multivariate Cox regression analysis showed that ATP6V1C2, ATP6V1G2, TCIRG1, ATP6AP1 and ATP6AP2 
played independent prognostic roles in glioma patients. (f) Correlation analysis showed that the expression of ATP6V1G2 was 
negatively correlated with other genes. LAML: acute myeloid leukemia; ACC: adrenocortical carcinoma; CHOL: cholangiocarcinoma; 
BLCA: bladder urothelial carcinoma; BRCA: breast invasive carcinoma; CESC: cervical squamous cell carcinoma and endocervical 
adenocarcinoma; COAD: colon adenocarcinoma; UCEC: uterine corpus endometrial carcinoma; ESCA: esophageal carcinoma; GBM: 
glioblastoma; HNSC: head and neck squamous carcinoma; KICH: kidney chromophobe; KIRC: kidney renal clear cell carcinoma; KIRP: 
kidney renal papillary cell carcinoma; DLBC: lymphoid neoplasm diffuse large B-cell lymphoma; LIHC: liver hepatocellular carcinoma; 
LGG: lower grade glioma; LUAD: lung adenocarcinoma; LUSC: lung squamous cell carcinoma; SKCM: skin cutaneous melanoma; 
MESO: mesothelioma; UVM: uveal melanoma; OV: ovarian serous cystadenocarcinoma; PAAD: pancreatic adenocarcinoma; PCPG: 
pheochromocytoma and paraganglioma; PRAD: prostate adenocarcinoma; READ: rectum adenocarcinoma; SARC: sarcoma; STAD: 
stomach adenocarcinoma; TGCT: testicular germ cell tumor; THYM: thymoma; THCA: thyroid carcinoma; UCS: uterine carcinoma. ***: 
P < 0.001.
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with LGG, but for ATP6V1C2 and ATP6V1G2, 
higher expression was also found in normal brain 
tissues compared with glioma samples 
(Figure 2(a)). Otherwise, we searched for the 
CCLE database, the transcription levels of five 
hub genes in 70 glioma cell lines were identified 
(Figure 2(b)), and the protein levels of 5 hub genes 
in 13 glioma cell lines were investigated 
(Figure 2(c)), which will unquestionably facilitate 
the in vitro and in vivo experiments in the future. 
Through data mining in the HPA database, posi-
tive staining intensity by IHC of hub genes was 
found in glioma samples (Figure Supplementary 1 
(a,b)). Mining data in the CPTAC database 
showed that high protein levels expression of 
ATP6V1G2, ATP6AP1 and ATP6AP2 was found 
in normal brain tissues, TCIRG1 showed high 
expression in GBM samples (Figure 2(d)). To 
characterize the intracellular localization of these 
five genes in glioma cell lines, we assessed the 
distribution of TCIRG1, ATP6V1C2, ATP6AP1 
and ATP6AP2 (ATP6V1G2 was not acquired) 
within the microtubules and nucleus in glioma 
U251 cell line. Immunofluorescence results

showed that ATP6AP2 co-localized with the 
nuclear marker, TCIRG1 was mainly localized in 
mitochondria, ATP6AP1 was mainly localized in 
plasma membrane and cytoplasm, and ATP6V1C2 
was mainly localized in mitochondria (Figure sup-
plementary 1(c)). The different localization in 
glioma cell line further identified the diverse func-
tions of these five hub genes.

Analysis of the hub genes expression at 
single-cell level and correlations with 
tumor-infiltrating lymphocytes (TILs) in glioma 
patients

Glioma is a kind of highly heterogeneous cancer 
that presents little benefit from immunotherapy 
and other treatment strategies [41]. The rapid 
development of scRNA-seq technology has been 
widely adopted to feature the TME of cancers. 
Hence, we explored the transcription levels of 
hub genes at a single-cell resolution based on 
the TISCH database [30]. According to different 
clusters and cell types, we found that immune

Figure 2. Multi-omics analysis of hub genes expression in glioma patients and glioma cell lines. (a) The differential expression of five 
hub genes between the GTEx (brain cortex) and TCGA-GBMLGG. (b) Five hub genes expression in transcription levels among 70 
glioma cell lines based on the CCLE database. (c) Protein levels validation of five hub genes in glioma cell lines based on the CCLE 
database. (d) Different protein levels expression of ATP6V1G2, ATP6AP1, TCIRG1 and ATP6AP2 between GBM and normal brain 
tissues based on CPTAC database. *:P < 0.05; **:P < 0.01; ***:P < 0.001;****:P < 0.0001.
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and malignant cells occupied the vast majority 
(Figure 3(a-d)). We then explored the expression 
of five hub genes in different cell types. The 
results indicated that ATP6AP1, ATP6AP2, 
TCIRG1 and ATP6V1G2 might be cell-type

markers (Figure 3(e-h) and Supplementary 
Table 2), but no significance was found for 
ATP6V1C2. Otherwise, we used a heatmap to 
present the relations between hub genes expres-
sion and abundance of 28 TILs (Figure 3(i)).

Figure 3. Hub genes expression at a single-cell resolution and their correlations with tumor-infiltrating lymphocytes (TILs) in glioma 
patients. (a) UMAP visualization of dataset glioma_GSE131928_10X. Colors represent the major-lineage cluster ID. (b-d) UMAP 
visualization of dataset glioma_GSE131928_10X. Colors represent the malignancy (b), major-lineage (c) and minor-lineage (d) cell- 
types. (e) Comparison of five hub genes expression at a single-cell resolution in glioma. (f-h) The grid violin plot reflects the 
expression distribution of five hub genes in different cell types of glioma. (i) The Spearman correlation analysis between five hub 
genes expression and abundance of TILs in LGG and GBM was shown in a heatmap. AC: astrocyte; CD8Tex: exhausted CD8 T cells; 
MES: mesenchymal; Mono/Macro: monocytes or macrophages; NPC: neural-progenitor-like malignant cells, OPC: oligodendrocyte- 
precursor-cell; Act: activated; Tcm: central memory T cell; Tem: effector memory T cell; Tfh: T follicular helper cell; Tgd: gamma delta 
T cell; Th: T helper cell; Treg: regulatory T cell; Mem B: memory B cell; Imm B: immature B cell; NK: natural killer cell; MDSC: myeloid 
derived suppressor cell; pDC: plasmacytoid dendritic cell; iDC: immature dendritic cell.
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The results preliminarily elucidated the correla-
tion between the five-hub genes expression and 
different cell types in glioma patients.

Five hub genes could be an applicable criterion 
to stratify glioma patients into different 
subgroups

Given the important role of five hub genes, we 
tried to figure out whether they could be utilized 
to identify the molecular subtypes and potentially 
activated pathways in glioma patients. Based on 
the expression of five hub genes, glioma patients in 
the TCGA-GBMLGG cohort can be stratified into 
two subgroups (Figure 4(a-c)). Moreover, the PCA 
showed that two subgroups could be divided into 
different directions (Figure 4(d)), which further

confirmed the classification was effective. We per-
formed survival analysis between the two groups 
and the results revealed that glioma patients in two 
groups had different OS and progression free sur-
vival (PFS). Patients in the C1 cluster had longer 
OS and PFS compared with those in the C2 cluster 
(Figure 4(e,f)). Furthermore, we used ssGSEA to 
calculate 28 immune cell infiltration scores in 
glioma patients. Most of the infiltration scores in 
the C2 cluster were higher than that in the C1 
cluster (Figure 4(g)). Glioma patients in the C2 
cluster had more malignant phenotypes 
(Figure 4(h)). By GSEA, several tumor-related 
pathways, such as angiogenesis and epithelial 
mesenchymal transition (EMT), and immune- 
related pathways might be activated in the C2 
cluster (Figure supplementary 2(a,b)).

Figure 4. Consensus cluster analysis and principal component analysis (PCA).(a-c) Cumulative distribution function (CDF) and relative 
change in the area under the CDF curve of the consensus cluster for k = 2–10 in TCGA-GBMLGG; k = 2 was presented and selected 
for further analysis. (d) PCA analysis of the RNA-seq profile of glioma patients in the TCGA-GBMLGG. (e,f) Kaplan–Meier survival 
curves for glioma patients in the TCGA-GBMLGG, patients in C1 cluster had longer OS and progression free survival (PFS). (g) Patients 
in C2 cluster had more immune cells infiltration than that in C1 cluster. (h) Heatmap and clinicopathological traits of the two clusters 
(cluster 1 and cluster 2) defined by the 5-gene consensus expression based on the TCGA-GBMLGG.
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Functional enrichment analysis of hub genes

We created a network of hub genes and their 20 related 
genes by the Gene MANIA (Figure 5(a)). Proteins that 
interact with hub genes include ATP6V1C1, 
ATP6AP1L, ATP6V1E1, ATP6V0C, ATP6V1G1, 
ATP6V0A1, ATP6V1G3, ATP6V0A2, ATP6V0A4, 
CPA3, ATP6V1A, ATP6V0D1, ATP6V1F, REN, 
CTSZ, ACE, MME, ATP6V1B2, ATP6V1E2 and 
ATP6V0D2. GO and KEGG pathways analyses of 
hub genes and their related genes were performed 
through the DAVID online database. The biological 
processes, such as GO:0033572 (transferrin transport),

GO:0090383 (phagosome acidification), GO:0072512 
(trivalent inorganic cation transport), GO:0015682 (fer-
ric iron transport), GO:0045851 (pH reduction), 
GO:0090382 (phagosome maturation), GO:0006826 
(iron ion transport), GO:0015991 (ATP hydrolysis 
coupled proton transport), GO:0015988 (energy 
coupled proton transmembrane transport, against elec-
trochemical gradient), GO:0051452 (intracellular pH 
reduction), GO:0090662 (ATP hydrolysis coupled 
transmembrane transport), GO:0006885 (regulation 
of pH), GO:0015992 (proton transport), GO:0006818 
(hydrogen transport) and GO:0000041 (transition

Figure 5. A co-expression network construction and transcription factors (TFs) regulation of five hub genes in glioma patients. (a) 
A network of five hub genes and their 20 related genes was analyzed by GeneMANIA. (b) Biological process (BP); (c) Cellular 
component (CC); (d) Molecular function (MF); (e) KEGG pathway analysis. (f,g) Top 20 TFs with strong regulatory relationships with 
five hub genes and their interaction network by ChEA3 analysis.
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metal ion transport) were remarkably regulated by the 
five hub genes and regulated genes (Figure 5(b)). For 
cellular components, GO:0033176 (proton- 
transporting V-type ATPase complex), GO:0016469 
(proton-transporting two-sector ATPase complex), 
GO:0016471 (vacuolar proton-transporting V-type 
ATPase complex), GO:0033178 (proton-transporting 
two-sector ATPase complex, catalytic domain), 
GO:0005774 (vacuolar membrane), GO:0005773 
(vacuole), GO:0044437 (vacuolar part), GO:0033180 
(proton-transporting V-type ATPase, V1 domain), 
GO:0033179 (proton-transporting V-type ATPase, V0 
domain), GO:0000323 (lytic vacuole), GO:0005764 
(lysosome), GO:0005765 (lysosomal membrane), 
GO:0098852 (lytic vacuole membrane), GO:0033177 
(proton-transporting two-sector ATPase complex, pro-
ton-transporting domain) and GO:0000220 (vacuolar 
proton-transporting V-type ATPase, V0 domain) were 
associated with these genes (Figure 5(c)). Besides, five 
hub genes and related genes potentially influence the 
molecular functions, such as GO:0036442 (hydrogen- 
exporting ATPase activity), GO:0019829 (cation- 
transporting ATPase activity), GO:0046961 (proton- 
transporting ATPase activity, rotational mechanism), 
GO:0042625 (ATPase coupled ion transmembrane 
transporter activity) and GO:0044769 (ATPase activity, 
coupled to transmembrane movement of ions, rota-
tional mechanism) (Figure 5(d)).

For KEGG pathway analyses, these pathways 
including hsa04966 (Collecting duct acid secretion), 
hsa05110 (Vibrio cholerae infection), hsa05120 
(Epithelial cell signaling in Helicobacter pylori infec-
tion), hsa04721 (Synaptic vesicle cycle), hsa05323 
(Rheumatoid arthritis), hsa00190 (Oxidative phos-
phorylation) were correlated with the functions of 
five hub genes and related genes (Figure 5(e)).

In addition, we identified the top 20 TFs with 
strong regulatory relationships with five hub genes 
and their interaction networks by ChEA3 analysis 
(Figure 5(f,g)). The GO-BP analysis showed that 
these TFs mainly enriched in gene expression regu-
lation processes, such as regulation of transcription, 
DNA-templation, and regulation of RNA biosyn-
thetic processes (Figure supplementary 2(c)).

Potential regulation mechanisms for hub genes 
and drugs sensitivity analysis

To identify the potential mechanisms that regulate 
hub gene expression in cancers, we investigate the 
copy number variation (CNV) and methylation data 
from the TCGA database. The CNV alteration 
showed that the main CNV types in glioma and 
other cancers were heterozygous amplification and 
deletion (Figure 6(a) and Figure supplementary 
3(a)). TCIRG1 and ATP6V1C2 had the higher rate 
of heterozygous amplification (10.33% and 6.07%) in 
LGG and GBM, respectively (Figure 6(b)). For the 
heterozygous deletion, ATP6AP2 (18.91%) and 
ATP6AP1 (19.41%) showed higher rate in LGG and 
GBM (Figure 6(b)). However, the rates of homozy-
gous amplification and deletion were lower (less than 
2%) in glioma patients (Figure 6(c)).

Correlation analysis indicated that mRNA expres-
sion of ATP6AP2, ATP6V1G2 and ATP6V1C2 was 
positively correlated with CNV in LGG, but TCIRG1 
showed negatively correlated with CNV in LGG. For 
GBM, only ATP6AP2 showed significant correlation 
with CNV (Figure 6(d)).

Aiming at a comprehensive understanding of 
the mechanism regulating the expression of these 
hub genes, we also investigated the pan-cancer 
dataset. CNV percentage analysis showed that het-
erozygous amplification of ATP6V1C2 in ACC, 
ESCA, KIRP, OV, LUAD and HNSC; ATP6AP2 
in ACC, UCS, KIRP and SARC; ATP6V1C2 in 
LUSC, UCS, TGCT, OV, ESCA, BLCA, LUAD 
and CESC; ATP6V1G2 in UCS, SKCM, UVM, 
OV, LIHC, LUAD, READ and BLCA; and 
TCIRG1 in LUAD, UCS, OV, ESCA, HNSC, 
LUSC and KICH were greater than 25%. 
Heterozygous deletion of ATP6AP1 in KICH, 
CHOL and SARC; ATP6AP2 in KICH, OV and 
CHOL; ATP6V1C2 in KICH; ATP6V1G2 in 
KICH; and TCIRG1 in TGCT were greater than 
40% (Figure supplementary 3(b) and 
Supplementary Table 3). Homozygous analysis 
showed that the percentage of amplified and 
deleted genes of TCGA cancers was less than
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10% (Figure supplementary 3(c)). Correlation ana-
lysis indicated that mRNA expression was posi-
tively correlated with CNV in most cancer types; 
however, the negative correlation was found for 
ATP6AP2 in KIRP, KICH, KIRC and SKCM; 
APT6AP1 in PCPG and KIRP; and ATP6V1G2

in THYM (FDR<0.05) (Figure supplemen-
tary 3(d)).

These results revealed that the CNV in five hub 
genes might mediate their abnormal expression 
and exert an important role in cancer progression. 
In addition, DNA methylation and mRNA

Figure 6. Potential regulation mechanisms of hub genes and drugs sensitivity analysis. (a) Copy number variation (CNV) distribution 
in LGG and GBM. CNV pie chart showing the combined heterozygous/homozygous CNV of each gene in each cancer. A pie chart 
representing the proportion of different types of CNV of one cancer, and different colors represent different types of CNV. (b,c) 
Heterozygous and homozygous CNV profile showing the percentage for each gene in LGG and GBM. (d) The correlation between 
CNV percentage and paired gene expression in glioma by Spearman correlation analysis. The size of the point represents the 
statistical significance, the bigger the dot size, the higher the statistical significance. (e) The correlation between DNA methylation 
and hub genes expression by Spearman correlation analysis in LGG and GBM. Blue points represent a negative correlation and red 
points represent a positive correlation. (f,g) The correlation between hub genes expression and drug IC50 in the GDSC and CTRP 
databases by Pearson correlation analysis. The top 30 drugs ranked by the Pearson correlation coefficients were listed. LGG: lower 
grade glioma; GBM: glioblastoma; GDSC: genomics of drug sensitivity in cancers; CTRP: cancer therapeutics response portal.
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expression correlation analysis revealed that most 
of the expression levels of hub genes were nega-
tively correlated with their DNA methylation 
levels, only ATP6AP1 in THYM and TGCT 
showed a positive correlation between methylation 
and gene expression (FDR<0.05) (Figure 6(e) and 
Figure supplementary 3(e)).

CNV and DNA methylation in cancers are two 
important mechanisms that critically regulate 
gene expression. Genomic abnormals influence 
the effects of clinical response to chemotherapy 
and targeted therapy treatment [42]. We searched 
the GDSC and CTRP databases to investigate the 
roles of the five hub genes in chemotherapy and 
targeted therapy. Pearson’s correlation analysis 
showed that drug sensitivity in GDSC database 
(ATP6V1G2 was not acquired in this database) 
toward BAY 61–3606, CAY10603, Camptothecin, 
FK886, GSK1070916, IPA-3, NPK76-II-72-1, SN- 
38, SNX-2112, TPCA-1, AT-7519, BMS345541, 
BX-912, CP466722, CX-5461, Cytarabine, 
Gemcitabine, Ispinesib Mesylate, MPS-1-IN-1, 
Methotrexate, PHA-793887, TAK-715, Tubastatin 
A, Vorinostat, XMD13-2, ZM-447439 and 
5-Fluorouracil was correlated with the expression 
of ATP6AP1 and ATP6AP2 (positive correlation 
with IC50); however, 17-AAg and PD-0325901 
showed negative correlation with the expression 
of ATP6AP1 and ATP6AP2. The expression of 
ATP6V1C2 was positively correlated with BAY 
61–3606, CAY10603, Camptothecin, IPA-3, 
SN38, SNX-2112, TPCA-1, Bleomycin and 
17AAG. The expression of TCIRG1 was positively 
correlated with FK886, GSK1070916 and NPK76- 
II-72-1, but negatively correlated with 
5-Fluorouracil, Bleomycin, 17-AAG and PD- 
0325901 (Figure 6(f)). Through data mining in 
the CTRP database, we found that the expression 
of ATP6AP2 and ATP6AP1 was positively corre-
lated with CD437, STF-31, BI-2536, GSK461364, 
KX2-391, LY-2183240, NSC632839, SNX-2112, 
alisertib, belinostat, clofarabine, gemcitabine, 
indisulam, parbendazole, topotecan, vincristine, 
CR-1-31B, MK-1775, PF-3758309, PHA-793887, 
SB-743921, SR-II-138A, ciclopirox, cytarabine 
hydrochloride, decitabine, leptomycin B, mitomy-
cin, narciclasine, tivantinib and triazolothiadia-
zine. However, the expression of ATP6V1G2 was 
negatively correlated with these drugs. For

ATP6V1C2, its expression was negatively corre-
lated with BI-2536, KX2-391, LY-2183240, 
NSC632839, alisertib, belinostat, indisulam, vin-
cristine, CR-1-31B, MK-1775, PF-3758309, PHA- 
793887, SB-743921, SR-II-138A, ciclopirox, cytar-
abine hydrochloride, decitabine, leptomycin B, 
mitomycin, narciclasine, tivantinib and triazo-
lothiadiazine. For TCIRG1, its expression was 
positively correlated with CD437, STF-31, BI- 
2536, KX2-391, LY-2183240, NSC632839, alisertib, 
belinostat, indisulam and vincristine (Figure 6(g)). 
In summary, our results indicate that the aberrant 
expression of these hub genes potentially mediated 
resistance to chemotherapy and targeted drug 
therapy, and they are valuable indicators for can-
cer treatment.

Multiple types of mutations for hub genes

We analyzed SNV data to detect the variant fre-
quency and types of hub genes in glioma patients 
and other-type cancers through GSCALite online 
platform [38]. Of the five hub genes, the top three 
mutated cancer types were UCEC, SKCM and 
STAD (Figure supplementary 4(a)). In glioma 
patients, SNV percentage analysis indicated that 
TCIRG1 had the most mutated frequency rate 
(38%), followed by ATP6AP1 (31%), ATP6V1C2 
(23%), ATP6AP2 (15%) and ATP6V1G2 (15%) 
(Figure 7(a,b)). However, in the Pan-Cancer ana-
lysis, ATP6V1C2 had the most mutated frequency 
rate (31%), followed by TCIRG1 (28%), ATP6AP1 
(28%), ATP6AP2 (24%) and ATP6V1G2 (7%) 
(Figure supplementary 4 (b)). Among the five 
hub genes, the most common variant type was 
missense mutation (Figure 7(b) and Figure supple-
mentary 4 (b)). Mutation in genes can influence 
the immune phenotypes of cancers [43,44]. We 
compared the hub gene expression with Pan- 
Cancer immune phenotypes [27]. The results 
showed that the five hub genes had different 
expression distributions in six cancer immune 
phenotypes (One-way ANOVA test, P < 0.05) 
(Figure 7(c)). For all the glioma patients, 
ATP6AP1 and ATP6AP2 had similar patterns of 
expression distribution, of which high expression 
was found in C3 (inflammatory) and C4 type 
(lymphocyte depleted). The expression distribu-
tion patterns between TCIRG1 and ATP6V1C2
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were similar that high expression was found in C1 
type (wound healing); however, the expression 
distribution of ATP6V1G2 was different from 
others, which showed high expression in C5 type 
(immunologically quiet) (Figure 7(d)). For LGG, 
higher ATP6V1G2 expression was found in C5 
type, but other hub genes showed a higher expres-
sion in the C3 type (Figure 7(e)). Only ATP6V1G2 
and ATP6V1C2 showed significant distributions

among distinct GBM subtypes, whereas no signifi-
cant difference was found in other hub genes 
(Figure 7(f)).

A risk score model construction and its 
application in clinical

We created a risk score model using the five hub genes 
as followed formula: risk score = 0.404*ATP6V1C2-

Figure 7. Single nucleotide variation (SNV) frequency and variant types of hub genes in glioma patients. (a) Mutation frequency of 
five hub genes in glioma patients. Numbers represent the number of samples that have the corresponding mutated gene for a given 
cancer. Zero indicates that there was no mutation in the gene coding region, and no number indicates there was no mutation in any 
region of the gene. (b) SNV oncoplot. An oncoplot showing the mutation distribution of five hub genes and a classification of SNV 
types in glioma patients. (c) Five hub genes showing different expression distribution in six immune phenotypes among the TCGA 
Pan-Cancer dataset (ANOVA test, P < 0.01). (d) Five hub genes expression distribution in immune phenotypes of glioma patients 
(ANOVA test, P < 0.01). (e) Five hub genes expression in different immune phenotypes of LGG based on TISIDB (ANOVA test). (f) Five 
hub genes expression in different immune phenotypes of GBM based on TISIDB (ANOVA test). LGG: lower grade glioma; GBM: 
glioblastoma; Pv: P value.
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0.278*ATP6V1G2 + 0.229*TCIRG1 + 0.536*ATP6AP1-
+ 0.449*ATP6AP2, of which the coefficients were 

calculated by the aforementioned multivariate Cox 
regression analysis. We confirm the prognostic value 
of the risk score model in glioma patients. We used six 
independent glioma datasets to investigate the OS 
between low- and high-risk score groups and the 
AUC value of ROC curves was used to examine the

accuracy of our risk score model. We found that 
glioma patients with high-risk scores had poor prog-
nosis compared with low-risk score groups. The AUC 
value for 1-, 3- and 5-year OS in the TCGA dataset was 
85.8%, 90.7% and 83.7% (Figure 8(a)). Similar results 
that the risk score model performed better in predict-
ing OS of glioma patients were also found in other 
independent datasets (CGGA-mRNA693, CGGA-

Figure 8. A risk score model consists of five hub genes can effectively predict glioma patients’ prognosis. (a-f) Multiple independent 
datasets from the TCGA-GBMLGG, CGGA-mRNA693, CGGA-mRNA325, CGGA-mRNA301, Gravendeel and Rembrandt datasets proved 
that our risk score model could effectively predict OS of glioma patients and their corresponding ROC curves confirmed the 
conclusion. (g) Combined with other clinical parameters, the risk score model can be used to create a nomogram to help clinicians 
predict the 1-, 3- and 5-year OS of glioma patients. (h) The caliberation curve validated the accuracy of the nomogram.
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mRNA325, CGGA-mRNA301, Gravendeel and 
Rembrandt) (Figure 8(b-f)). Given the prognostic 
value of our risk score model in glioma patients, we 
further used multivariate Cox regression analysis to 
explore the independent role of this risk score model 
in glioma patients. Using the TCGA dataset, after 
adjusting age, gender, IDH-1 status and 1p19q co- 
deletion status, the risk score still played an indepen-
dent prognostic role in glioma patients 
(Supplementary Table 4). A consistent result was 
also found in the CGGA-325 dataset (Supplementary 
Table 5). For providing clinicians with a convenient 
method to predict OS of glioma patients, we made 
a nomogram that combined the risk scores with dif-
ferent clinical parameters. As shown in Figure 8(g,h), 
the nomogram could be used to evaluate the 1-, 3- and 
5-year OS. All the results reveal that our risk score 
model can be efficiently applied to predict glioma 
prognosis.

High-risk scores predict malignant phenotypes of 
glioma patients and treatment resistance

To elucidate the predictive function of our risk 
score model on malignant phenotypes of glioma 
patients, we used the TCGA-GBMLGG, CGGA 
mRNA-325, CGGA mRNA-693 and CGGA 
mRNA-301 datasets to compare risk scores with 
glioma pathology, IDH-1 status and 1p19q co- 
deletion and survival status. In the TCGA- 
GBMLGG dataset, we found that glioma patients 
diagnosed as GBM, 1p19q non-codeletion status 
and IDH-1 wild type had higher-risk scores than 
their counterparts; concurrently, glioma patients 
who were in alive status had lower-risk scores 
than the death (Figure 9(a)). We further explored 
its effects on treatment results. For glioma patients 
who received chemotherapy, the higher risk scores 
predicted shorter OS (Figure 9(b)). In addition,

Figure 9. High-risk scores indicate malignant phenotypes of glioma patients and treatment resistance. (a) Analyses in multiple 
datasets showed consistent results that glioma patients with high-risk scores presented GBM, 1p19q non-codeletion, IDH-1 wild type 
and high risk of death. (b) Glioma patients with high-risk scores had shorter OS in chemotherapy groups. (c) Glioma patients with 
high-risk scores had shorter OS in radiotherapy groups. LGG: lower-grade glioma; GBM: glioblastoma; IDH: isocitrate dehydrogenase. 
*:P < 0.05; **:P < 0.01; ***:P < 0.001;****:P < 0.0001.
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similar results were also found in radiation therapy 
groups (Figure 9(c)). These results indicate that 
our risk score model not only predicts malignant 
phenotypes of glioma patients but also promotes 
traditional therapy resistance.

High-risk scores indicated more immune cells 
infiltration and immunotherapy resistance

Immune checkpoints and inhibitory molecules play 
important roles in cancer immune suppression, and 
their inhibitors are promising strategies for cancer 
treatment [5,41]. We investigated the relationship 
between the risk score and the expression of critical 
immune checkpoints and inhibitory molecules in the 
TCGA dataset by Pearson correlation analysis. We 
found that the risk scores showed significant correla-
tions with the expression of PDCD1, CD274, CTLA- 
4, LAG-3 and other immune inhibitory molecules; 
however, only the expression of ADORA2A 
(Pearson’s r = −0.13, P < 0.001), CD160 (Pearson’s 
r = −0.36, P < 0.001) and VTCN1 (Pearson’s

r = −0.28, P < 0.001) was negatively correlated with 
risk scores (Figure 10(a)). Therefore, high-risk scores 
might present an immune resistance microenviron-
ment in glioma patients. By the PCA, the expression 
of these immune inhibitory molecules could be sepa-
rated into two clusters based on risk score groups 
(Figure 10(b)). We further used the ssGSEA to cal-
culate 28 types of immune cell infiltration scores in 
the TCGA glioma samples, which showed that 
patients in the high-risk score group had higher 
immune cells infiltration (Figure 10(c)). The 
immune cell infiltration scores could be subdivided 
into different directions by PCA, which further con-
firmed that the risk scores in distinct groups pre-
sented different immune microenvironments 
(Figure 10(d)). The ESTIMATE method was then 
used to evaluate immune scores in glioma patients: 
the higher the risk scores, the higher the immune 
infiltration levels in glioma patients. Glioma patients 
in the high-risk score group had higher immune, 
stromal and ESTIMATE scores (Figure 10(e)).

In view of the positive correlation between risk 
scores and immunoinhibitory molecular

Figure 10. High-risk scores in glioma patients indicated high immune cells infiltration and immune checkpoints blockade (ICB) 
treatment resistance. (a,b) The correlation analysis showed that risk scores were positively correlated with immune checkpoints and 
immunoinhibitory molecules expression, PCA showed that immune checkpoints and immunoinhibitory molecules in high- and low- 
risk score groups had different expression profiles. (c,d) Glioma patients in high-risk score group had more TIL infiltration by ssGSEA, 
and PCA showed two groups had distinct immune cells infiltration levels. (e) Glioma patients with high-risk scores had higher 
immune, stromal and ESTIMATE scores. (f) Through ImmuCellAI method, patients in high-risk score group had lower “response” rate 
to ICB treatment compared with their counterparts in the TCGA-GBMLGG and CGGA-325 datasets. *:P < 0.05; **:P < 0.01; ***: 
P < 0.001;****:P < 0.0001. NR: non-response; R: response.
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expression, we used the ImmuCellAI method to 
predict ICB treatment effects in the TCGA- 
GBMLGG and CGGA mRNA-325 datasets. The 
results revealed that glioma patients in the high- 
risk score groups had a lower rate of “response” to 
ICB treatment than those in the low-risk score 
group (Figure 10(f)). Taken together, the risk 
score model was not only associated with high 
levels of immune cell infiltration but may also 
become a valuable indicator for immunotherapy 
in the future.

Discussion

The identification of key molecules in gliomas has 
provided superior diagnostic and prognostic values, 
and as a result, our understanding of glioma beha-
vior has rapidly evolved [3]. Mutations in isocitrate 
dehydrogenase 1 and 2 are present in the majority of 
adult patients with grade II and III gliomas when 
combined with 1p/19q codeletion status for classifi-
cation; the prognostic distinction between grade II 
and III gliomas is diminished; meanwhile, the WHO 
grade II and III gliomas have been classified as 
“Lower-grade glioma” [3,45]. However, for hetero-
geneous cancers, the prognosis of GBM is quite 
different from other types of gliomas, and rapid 
recurrence after standard treatment is still inevitable. 
The complicated pathophysiological features and 
changeable TME of glioma have made multiple 
treatment strategies ineffective, including the current 
emerging immunotherapy [41]. Therefore, novel 
indicators are urgently needed to overcome these 
difficulties.

The V-ATPase is a multi-protein complex that 
catalyzes the ATP-dependent transport of protons 
across intracellular and plasma membranes. The 
resulting acidification of organelle lumens and the 
extracellular space will promote multiple cancer- 
related processes and signal pathway activation 
[10], as well immunosuppressive cells infiltration 
and treatment resistance will occur in cancers 
[9,10,46]. Inhibition of specific subunits of the 
V-ATPase has exhibited promising in suppression 
of migration and invasiveness in different cancers 
and reduction of cancer growth and metastasis 
[10,47,48]. To identify the key subunits of the 
V-ATPase in glioma patients, we analyzed the 
coding genes and chaperones of the V-ATPase in

glioma patients and used a series of bioinformatics 
analyses to identify and validate the hub genes 
among multi-omics datasets.

A growing number of evidence has indicated 
that the V-ATPase is related to invasiveness, 
metastasis, angiogenesis, proliferation, tumorigen-
esis, and drug resistance in tumors [10,12,47,48], 
therefore, is emerging as a potential drug target in 
cancer therapy. In highly metastatic and invasive 
cancers, the V-ATPase is at the plasma membrane 
of cancer cells, and preferential to be used to 
maintain their intra- and extracellular pH balance 
[48], which has been proposed to contribute alka-
lization of the tumor cytoplasm and to the acid-
ification of the extra-cellular TME. Several specific 
subunits of the V-ATPase were overexpressed by 
cancer cells and their inhibitors might be novel 
targets for cancer treatment to overcome the 
adverse effects of nonselective inhibition of 
V-ATPase had brought [10,11,47,48]. In the pre-
sent study, we identified five genes deriving from 
different subunits of the V-ATPase showing inde-
pendent prognostic value in glioma patients and 
finally were regarded as hub genes. Molecular 
functions and clinical roles of these five genes in 
cancers have been reported. Silencing of ATP6AP1 
and ATP6AP2 in vitro resulted in impaired vesicle 
acidification, redistribution of endosomal com-
partments, and accumulation of intra-cytoplasmic 
granules, recapitulating the cardinal phenotypic 
characteristics of granular cell tumors and provid-
ing a novel genotypic-phenotypic correlation [49]. 
High expression of TCIRG1 (V0a3 subunit) was 
found in breast cancer, hepatocellular carcinoma 
(HCC) and glioma patients [11,47,48]. TCIRG1 
knockdown suppressed tumor cell growth and 
proliferation in HCC cell lines and also inhibited 
the metastatic potential of HCC cells by selectively 
regulating the epithelial-mesenchymal transition 
(EMT) [47]. For GBM patients who had higher 
expression of TCIRG1 presented a significant infil-
tration of immunosuppressive cells and also indi-
cated worse prognosis [11]. Knockdown of V0a3 
subunit significantly decreased migration of breast 
cancer MMB231 cell line [50]. High expression of 
ATP6V1C2 had been reported in colorectal and 
ovarian cancers [51], its high expression predicted 
shorter OS for renal clear carcinoma patients [51], 
and our findings confirmed that glioma patients
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with high expression of ATP6V1C2 had worse 
prognosis. In addition, McConnell M and collea-
gues found that in breast cancers, overexpressed 
ATP6V1C2 was not significant and had no effects 
on OS [52]. However, its biological functions in 
cancers have not been fully elucidated. ATP6V1G2 
was less reported in cancers, and the roles of 
ATP6V1G2 in cancers were probably diverse, 
which presented adverse effects on colorectal can-
cers [53] but showed protective effects on colon 
cancers [54]. Our results revealed its protective 
roles in glioma patients and highlighted its valu-
able application in cancer treatment.

Compared with most predictive models that 
were based on unexplored genes, which was diffi-
cult for clinicians to capture the specific function 
of members in the prognostic signature and might 
result in failing to detect the potential targets 
obtained from signature for treatment develop-
ment. To address this issue, we developed 
a function-specific signature that may better 
explain the innate function of related genes and 
further confirm the potential therapeutic value in 
clinical. In the present study, we focused on iden-
tifying and validating a gene signature deriving 
from the V-ATPase subunits and primarily explor-
ing the molecular functions of this gene signature. 
As reported by previous studies [10,46], the abnor-
mal expression of V-ATPase accompanied with 
tumor immune microenvironment change, how-
ever, the specific subunits expression in different 
immune cells was unknown. Through the scRNA- 
seq technology, we found that mRNA levels of hub 
genes (ATP6AP1, ATP6AP2, TCIRG1 and 
ATP6V1G2) might be immune cell-type markers 
for gliomas, otherwise, the tight correlations 
between hub genes expression and TILs further 
confirmed this hypothesis. We deem that these 
genes might become novel targets for immu-
notherapy in the future.

Other reported gene signatures have been 
widely reported in clinical studies, these signatures 
can be used not only to identify sub-classification 
of cancers but also to create risk score models to 
predict prognosis and treatment resistance. Based 
on gene expression of our signature, glioma 
patients could be divided into different groups 
that showed distinct prognoses and immune cell 
infiltration levels; importantly, we also identified

many cancer-related pathway activation in the C2 
group, which possibly provided us with more 
insights into internal interactions of glioma 
patients and novel targets for cancer treatment. 
By Terrasi’s study [13], a specific V-ATPase sig-
nature from GBM and recurrent gliomas could 
resolve the heterogeneous class of IDH-wild type 
lower-grade gliomas. Another study from Couta- 
Viera and colleagues suggested that a differential 
expression pattern of V-ATPase was found in dif-
ferent tumors, particularly, a high V0c1 subunit 
and a low V0c2 subunit expression pattern accu-
rately discriminated esophageal carcinoma from 
normal tissues [12]. However, their studies have 
not investigated the potential regulatory system of 
specific subunits expression and their roles in 
TME alterations remain unknown. In this study, 
we revealed that DNA promoter methylation and 
CNV were two possible methods that regulated 
hub gene expression. Abnormal hypomethylation 
of hub genes mediated their upregulation and was 
associated with poor survival in several cancers, 
suggesting that the hypomethylation might be 
a driver that mediated carcinogenesis [55]. 
Otherwise, TFs are a type of molecules that play 
important roles in regulation of gene expression. 
By using the ChEA3 online platform that ranks 
TFs associated with user-submitted gene sets [40], 
we primarily obtained the gene expression regula-
tory network and found the top 20 TFs that might 
tightly participate in regulating hub gene expres-
sion. The biological processes of the 20 TFs by GO 
analysis were mainly enriched in gene expression 
regulation processes, such as regulation of tran-
scription, DNA-templation, and regulation of 
RNA biosynthetic processes.

The correlation between hub gene expression 
and drug sensitivity was also identified, from 
which we found that the five hub genes might be 
targets for pharmacological treatment in cancers. 
Several previous studies have identified the resis-
tant role of V-ATPase in mediating cancer treat-
ment. Our drug sensitivity analysis identified the 
potential drugs that might modulate the hub 
genes, among which the expression of 
ATP6V1G2 showed consistently negative correla-
tion with drug IC50, while other genes showed 
distinct correlation with drug IC50. Although the 
roles of ATP6V1G2 in cancers were diverse by
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previous studies [53,54], our findings still sup-
ported that ATP6V1G2 was a protective factor in 
glioma patients and worthy of further 
investigation.

Many reported gene signatures could compose 
risk score models that have shown better perfor-
mance in predicting prognoses and molecular phe-
notypes, and even as an indicator for evaluating 
immunotherapeutic effects in many cancers. Using 
univariate, LASSO, and multivariate Cox regression 
analyses, we identified these five hub genes and 
created a risk score model that effectively reflected 
malignant phenotypes of glioma patients, such as 
IDH-1 wild type, WHO grade and 1p19q non- 
codeletion status, and fully predicted prognoses. 
Otherwise, we used this risk score model in combi-
nation with other clinical parameters to create 
a novel nomogram that could be used by clinicians 
to predict glioma patients’ 1-, 3- and 5-year OS 
conveniently. Importantly, these functions of risk 
score model were validated by multi-independent 
datasets, which could guarantee the accuracy of our 
risk score model in clinical applications.

The positive correlation between risk scores and 
most immune checkpoints and immunoinhibitory 
molecular expression highlighted the potential 
value of applying this valuable model to predict 
ICB treatment. The higher the risk scores, the 
higher immune cells infiltration levels and 
immune scores. In the setting of different risk 
scores (high vs. low), we found that immune 
gene expression profiles in the TCGA dataset 
were divided into two sections by PCA, indicating 
that the immune status of glioma patients in the 
low-risk group was quite different from those in 
the high-risk group, which further confirmed that 
our risk score model was an accurate indicator for 
evaluating local immune infiltration and 
a predictor for immunotherapy in glioma patients. 
The results from the ImmuCellAI analysis also 
supported our hypothesis.

Compared with previous studies, our study had 
several strengths. We comprehensively analyzed the 
V-ATPase in glioma patients and created a prognosis- 
related gene signature, the underlying mechanisms in 
regulation of hub genes expression and drug sensitiv-
ity analysis probably offered us novel targets for 
glioma therapy, importantly, this gene signature com-
posed a risk score model that indicated an effective

method in predicting gliomas’ therapeutic resistance, 
as well immune cells infiltration level and ICB 
treatment.

Although the results were inspiring, several lim-
itations still exist. First, protein level validation of 
the five hub genes was not adequate, which was 
only based on the HPA and CPTAC platforms; 
therefore, more clinical sample validation was 
urgently needed. Second, the retrospective studies 
with distinct sequencing platforms might inevita-
bly introduce bias. The inconsistent results from 
HPA, TCGA-GTEx and CPTAC pointedly high-
lighted this problem. More prospective studies 
should be performed to overcome these difficul-
ties. Third, the complex regulation system of five 
hub genes and their roles in TME should be 
explored by in vivo and in vitro experiments, 
which will constitute the focus of our next step 
research in the future. In addition, whether the 
value of our risk score model in predicting the 
prognosis of glioma patients relies on the immune 
system remains unknown. These unresolved chal-
lenges will require in-depth validation of the 
underlying mechanisms for the selected genes 
and their risk score system in the future.
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