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TLR agonists induce sustained IgG to hemagglutinin stem and
modulate T cells following newborn vaccination
Elene A. Clemens1, Beth C. Holbrook 1, Brendan McNeilly1, Masaru Kanekiyo 2, Barney S. Graham2 and
Martha A. Alexander-Miller 1✉

The newborn immune system is characterized by diminished immune responses that leave infants vulnerable to virus-mediated
disease and make vaccination more challenging. Optimal vaccination strategies for influenza A virus (IAV) in newborns should result
in robust levels of protective antibodies, including those with broad reactivity to combat the variability in IAV strains across seasons.
The stem region of the hemagglutinin (HA) molecule is a target of such antibodies. Using a nonhuman primate model, we
investigate the capacity of newborns to generate and maintain antibodies to the conserved stem region following vaccination. We
find adjuvanting an inactivated vaccine with the TLR7/8 agonist R848 is effective in promoting sustained HA stem-specific IgG.
Unexpectedly, HA stem-specific antibodies were generated with a distinct kinetic pattern compared to the overall response.
Administration of R848 was associated with increased influenza-specific T follicular helper cells as well as Tregs with a less
suppressive phenotype, suggesting adjuvant impacts multiple cell types that have the potential to contribute to the HA-stem
response.
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INTRODUCTION
Attempts to develop a vaccine conferring multi-season protection
from influenza A virus (IAV) have long been hindered by viral
antigenic shift and drift that allows the virus to escape from
immune recognition1–3. To overcome this hurdle, there has been a
recent focus on the elicitation of antibodies (Ab) targeting
conserved viral structures. The most extensively studied of these
is the stem region of the hemagglutinin (HA) surface protein,
which is responsible for viral attachment and fusion4–8. While the
HA stem is highly conserved across strains, it is not highly
immunogenic, resulting in preferential generation of Ab responses
to variable epitopes on the HA head9–11. Although this
phenomenon of Ab immunodominance to IAV epitopes has been
reported, the mechanisms driving it are poorly understood12–14.
Newborns are a population that is particularly vulnerable to

severe disease following IAV infection15,16. In general, the
newborn immune system favors tolerance over strong inflamma-
tory and antiviral responses. While this is important to limit
responses to environmental antigens and allow colonization by
healthy microbiota17,18, it can lead to inadequate clearance of
pathogens. Susceptibility to severe disease is further exacerbated
by the lack of an effective IAV vaccine for infants under 6 month of
age. The limited immune response to vaccination in young infants
manifests as reduced production and maintenance of high-titer,
high-affinity antibodies following antigen exposure19.
The generation of a high-quality antibody response relies on the

effective coordination and interaction of a multitude of immuno-
logic factors. While newborn B cells have been demonstrated to
have intrinsic defects in activation, signaling, and maturation20–26,
they are also impaired by diminished T cell help, immunosuppres-
sion, and structural changes in the lymphoid microenvironment
that inhibit differentiation and survival27–29. In particular, new-
borns have impaired formation of germinal centers (GC) required
for maturation and differentiation of memory B cells (MBC) and

long-lived plasma cells (LLPC)30–32. In addition to structural
constraints from stromal cells, alterations in the generation of T
follicular helper cells (Tfh) and dendritic cell (DC) function have
been identified as major barriers to effective GC formation and
function32–34. Difficulties in mounting robust antibody responses
are further exacerbated by increases in the number and activity of
immunosuppressive Tregs during early life35,36.
The complex interaction of the many factors that regulate an

antibody response makes this a highly dynamic process, especially
since the acute effector and lasting MBC/LLPC responses are
regulated by different processes. Similarly, the immunodominance
hierarchy of Ab specificities to distinct epitopes evolves over time,
suggesting that the selection criteria for dominant epitope
specificities may shift and change over the course of the GC
reaction37. At present, the mechanisms dictating antibody
immunodominance are not well understood. One appealing
model is that it immunodominance is, at least in part, the product
of clonal competition within the GC and alleviating this
competitive pressure can facilitate the expansion of subdominant
clones, e.g., those specific for the HA-stem region. Indeed, recent
studies have demonstrated that Ab responses to subdominant
epitopes may be improved by increasing the accessibility of
resources to clones that may be less competitive (e.g., increasing
antigen dose or T cell help) as well as removing negative selection
pressures (e.g., by reducing Treg suppression or targeted
elimination of dominant clones)38–42. Unsurprisingly, many of
the factors implicated in establishing an immunodominance
hierarchy are involved in the normal maturation and differentia-
tion of the antibody response43,44. This suggests overcoming
subdominance of the HA stem and improving maintenance of the
desired Ab response may be tightly entwined. It is not clear how
the early life alterations in the function and development of
immune cells involved in these processes may affect the dynamic
immunodominance hierarchy.
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Although a variety of strategies have been employed in
attempts to elicit robust, persistent responses to conserved
subdominant epitopes, the use of immune adjuvants is particu-
larly appealing considering their ability to act upon a broad range
of immune targets. Several reports in adult models have
demonstrated that adjuvants can improve the quality and
quantity of cross-protective antibody elicited by vaccina-
tion31,45–50. Using a nonhuman primate (NHP) model, we have
previously shown that inclusion of the TLR agonist (TLRa)
adjuvants flagellin and R848, either singly or in combination with
a killed IAV vaccine, can improve the titer and consequently
increased persistence of total IAV-specific Ab51–54. Further, we
have demonstrated that newborn NHP are capable of producing a
robust Ab response to the HA stem following infection with IAV55.
We have also observed a beneficial effect of R848 on the early
production of stem-specific antibody56. Here, we extend our
studies into the elicitation of HA stem-specific antibodies in
newborns by assessing the ability of flagellin and R848 to serve as
adjuvants that can impact the kinetics and maintenance of a stem-
specific Ab response as well as modulate immune populations
that may regulate these responses. The NHP model used in these
studies represent an extremely important translational model due
to their immunologic, developmental, and physiologic similarities
with humans57.

RESULTS
TLRa adjuvants elicit a stem response upon vaccine boost
The generation of HA stem-specific antibody as a result of
vaccination is challenging, given the subdominant nature of this
response in the context of the HA molecule10. We have previously
shown that inactivated influenza A/Puerto Rico/8/1934 virus (IPR8)
admixed with flagellin (IPR8+ flg), directly conjugated to R848
(IPR8-R848), or the combination of both adjuvants (IPR8-
R848+ flg) all increase IAV-specific IgG titers in newborn
nursery-reared African green monkeys (AGM) as compared to
non-adjuvanted IPR851–54. Here, IPR8 with an inactive flagellin
mutant (m229), which has a biologically inactive hypervariable
region58, served as a non-adjuvanted vaccine. We have also
demonstrated that prime and boost of nursery-reared AGM
newborns with IPR8-R848 can improve both total and neutralizing
titers of stem-specific antibody following live viral challenge at
early points after vaccination56.
To investigate the ability of flagellin, R848, or the combination

to elicit a sustained stem-specific antibody response, we measured
plasma titers of stem-specific IgG in a cohort of mother-reared
newborn NHP following vaccination using IPR8 with or without
adjuvant. IgG specific to the HA A/California/4/2009 (Ca09) stem
was not detectable by ELISA at day 10 postvaccination (p.v.),
regardless of adjuvant strategy (Fig. 1a). At day 21 p.v., among
newborns receiving adjuvanted vaccines, only a single animal (in
the IPR8+ flg group) had detectable Ab capable of recognizing
HA stem. Thus, a single dose of killed IAV vaccine did not readily
elicit a detectable antibody response to the HA stem even in the
presence of adjuvants (Fig. 1b).
Next, we investigated whether a secondary exposure to a TLRa

adjuvanted vaccine at 21 days following initial vaccine adminis-
tration was capable of inducing a detectable stem-specific
antibody response. Groups vaccinated with IPR8+ flg or IPR8-
R848 contained both responder and non-responder animals.
Three of six (50%) newborns in the IPR8+ flg group and five of
seven (71%) newborns in the IPR8-R848 group had detectable
stem-specific IgG at day 10 post-boost (p.b.) (Fig. 1c). One
additional IPR8+ flg vaccinated newborn became positive at d21
p.b. (Fig. 1d). All newborns receiving IPR8-R848+ flg displayed a
detectable IgG response to the HA stem at both d10 and d21 p.b.
In contrast, only one animal receiving IPR8+m229 had stem-

specific IgG titers at or above the limit of detection. Interestingly,
both groups receiving IPR8-R848 and IPR8-R848+ flg had a
significant increase in stem-specific IgG compared to the non-
adjuvanted group at day 10 p.b., while only animals receiving
IPR8-R848+ flg maintained significantly higher titers at day 21 p.b.
These data show that inclusion of adjuvants can drive the
production of antibodies to HA stem and that a major effect of
adjuvants was the increased proportion of newborns with
detectable stem-specific antibody.

Inclusion of R848 adjuvant prolongs the presence of
circulating stem-specific Abs
The newborn immune system is particularly challenged in the
development of lasting immunity, i.e., Ab titers often wane rapidly
compared to adults59. The presence of sustained Ab responses is
dependent on development of LLPC. The process of selection,
maturation, and differentiation in the GC can continue for weeks
to months following antigen encounter. Thus, we measured
plasma IgG to stem at later times following initial vaccination
(~100 days and 4-6 months). Unexpectedly, given the findings at
d21 p.b., all vaccinated animals, exempting one, that had received
IPR8+m229 had detectable IgG to the HA stem at this timepoint
(Fig. 1e). Thus, the response measured at d21 p.b. did not fully
predict the presence of stem-specific IgG generated following
vaccination.
Although all but one infant had detectable stem-specific Ab, the

amount present at d100 p.v. was dependent on the adjuvant.
Animals receiving the IPR8-R848+ flg showed the highest amount
of stem-specific IgG, although animals administered IPR8-R848
alone also displayed a significant increase compared to the
IPR8+m229 group (Fig. 1e). It was notable that the presence of
flagellin did not result in significant increases in stem-specific
antibody compared to the non-adjuvanted vaccine at this
timepoint (Fig. 1e). Together, these data show that expansion of
stem-specific IgG continues beyond d21 p.b., even in newborns
receiving IPR8 without adjuvant. With that said, administration of
R848 alone or co-administration of R848 and flagellin results in a
significantly more robust response to the subdominant HA stem.
To determine whether the response had reached its peak by

this time point, we followed this cohort of NHP out to 4-6 months
from their initial vaccination as newborns and assessed plasma
titers of stem-specific IgG (Fig. 1f). None of the animals that had
received either IPR8+m229 or IPR8+ flg had stem-specific IgG
titers above the limit of detection, despite all animals having
detectable antibody to whole PR8 at this time52,53. All animals that
received the dual adjuvant and all but one receiving R848 alone
retained detectable levels of stem-specific IgG.
Our previous analyses showing that the TLRa adjuvants

increased the magnitude and duration of antibody responses to
the PR8 virion compared to vaccination with IPR8 alone52,53 raised
the possibility that the increase in stem-specific IgG associated
with these adjuvants was simply the result of global improve-
ments in the humoral response rather than a mitigation of
immunodominance. To explore this possibility, we compared the
IgG response to the HA stem with our previously determined
virus-specific IgG titers (Fig. 2)52,53. Although differences in assay
methodology prevent quantitation of stem-specific antibody as an
absolute proportion of the total response, this facilitates the
visualization and comparison of the kinetics of the antibody
response to HA stem versus to whole virion. While vaccination
with IPR8+ flg, IPR8-R848, or IPR8-R848+ flg all elicited increased
IgG titers to whole PR8 at 4-6 months compared to vaccination
without adjuvant, the magnitude of the response was similar
across adjuvant groups (Fig. 2). This is in contrast to the clear
differences in the amount of stem-specific IgG present across the
different adjuvant conditions, where the inclusion of R848 or both
adjuvants resulted in sustained responses. Interestingly, titers to
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whole PR8 peaked at day 10 p.b. while levels of stem-specific IgG
continued to rise through day 100 p.v. across all groups. This
divergence between antibody to PR8 and the stem region
suggests that the continued evolution of the antibody response
to stem in animals given IPR8-R848 or IPR8-R848+ flg is not

merely the result of a global increase in virus-specific Ab, but a
specific improvement in the stem-specific response. Further, these
data demonstrate differences in the kinetics of the stem-specific
versus overall response. Finally, these results suggest that while
both TLR5 and TLR7/8 are able to facilitate differentiation of

ba

dc

fe

Fig. 1 Vaccination with a TLRa adjuvanted vaccine elicits IgG to the HA stem. Newborn AGM received IPR8 with soluble flagellin (IPR8+ flg)
(n= 6), conjugated to R848 (IPR8-R848) (n= 7), the combination of flagellin and IPR8-R848 (IPR8-R848+ flg) (n= 7), without functional
adjuvant (IPR8+m229) (n= 5), or PBS as a vehicle control (n= 3). Newborns were boosted with the same at d21 p.v. Plasma IgG titers to
stabilized Ca09 HA stem were measured by ELISA at days 10 and 21 p.v. (a, b) or p.b. (c, d), approximately d100 p.v. (e) and 4-6 months (f)
following initial vaccination. Data are shown as threshold titer (the lowest dilution at which sample OD was at least three times that of the
assay background). The limit of detection (dotted line) is defined as the lowest sample dilution in the assay. Statistical significance was
determined by ordinary one-way ANOVA with uncorrected Fisher’s LSD test for multiple comparisons. *p < 0.05, **p < 0.01. ***p < 0.001.
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stem-specific B cell clones into antibody secreting cells, TLR7/8
may enhance the ability of these clones to adopt and maintain a
LLPC fate.

The choice of TLRa adjuvant influences the avidity of stem-
specific antibody present at late times following vaccination
Increased antibody avidity, an outcome of somatic hypermuta-
tion and selection in the GC60, is associated with improved
function in vivo. We postulated that in addition to increasing
the total amount of stem-specific Ab at later times following
vaccination, the presence of R848 may lead to greater avidity
relative to that of flagellin. Ab avidity in non-adjuvanted
animals was not assessed due to low titers and sample
availability. Sensitivity to dissociation by treatment with
chaotropic agents, which correlates with antibody off-
rate46,61, was used to assess avidity. Animals assessed were
those where stem-specific antibody was present at levels
adequate for this analysis. We found no difference at ~d100p.v.
in average antibody avidity between groups administered IPR8
with either R848 or flagellin despite significant differences in
antibody titer (Fig. 3a). However, animals receiving IPR8-
R848+ flg exhibited higher avidity stem-specific IgG than the
other groups at this timepoint (Fig. 3a). By the 4–6 month
timepoint, antibody avidity was similar in the IPR8-R848 and
IPR8-R848+ flg groups, the only animals where antibody
remained detectable (Fig. 3b). The similarity in avidity at this
timepoint was the result of an increase in the avidity of IgG to
stem in the R848 group from d100 to the 4-6 month timepoint
(p= 0.03). There was no change in average antibody avidity of
the HA stem Ab in animals administered IPR8-R848+ flg over
this time (p= 0.22).

The presence of adjuvants is associated with more IL-21
producing cells in the draining LN following challenge of
vaccinated newborns
The sustained presence of affinity-matured stem-specific IgG in
animals receiving IPR8-R848 with or without flagellin are
consistent with a model wherein the adjuvants promote a more
effective process of B cell differentiation and/or LLPC production.
These processes primarily occur in the GC, where B cell
differentiation is regulated by interaction with Tfh cells43,44. Tfh
are critical for the differentiation of GC B cells towards a memory
or LLPC fate and appear to have a strong influence on Ab
responses following IAV vaccination and infection62–64. Addition-
ally, Tfh have been implicated in the mitigation of immunodomi-
nance65,66. Given that newborns have reduced Tfh generation and
function28,30,34,67, we hypothesized that modulation of Tfh cells by
TLRa may account for the observed changes in generation of
stem-specific Ab.
We first evaluated PBMC collected from vaccinated infants at

d10 p.b. as the Tfh response would be expected to peak at
approximately this time point after antigen encounter68. We chose
this timepoint based on analyses in adult humans, but note it is
possible that the kinetics of the response differs in young infants.
Although the primary role of Tfh cells is in the GC, the number and
phenotype of circulating Tfh (cTfh) has been shown to correlate
with the GC Tfh response as well as the magnitude of the humoral
response62. cTfh cells were identified as cells expressing both
CXCR5 and ICOS within the CD3+CD4+ population (Fig. 4a, b). We
did not find a difference in cTfh frequency in peripheral blood of
infants receiving the various vaccines (Fig. 4c).
To gain further insights into these cells, we next sought to

measure the number of vaccine-specific cTfh using the highly
sensitive ELISPOT approach for quantifying these cells by IL-21
production. We analyzed cells obtained on d21 p.b. due to the lack

IPR8+flg

IPR8-R848 IPR8-R848+flg

IPR8+m229

10 21 31 42                     100                             4-6mo
Time post vaccination

10 21 31 42                     100                             4-6mo
Time post vaccination

10 21 31 42                     100                             4-6mo
Time post vaccination

10 21 31 42                     100                             4-6mo
Time post vaccination

Fig. 2 Kinetics of the IgG response to whole virus and HA stem. Average IgG titers over time to the HA stem (dark shading) and PR8 virion
(light shading) for animals vaccinated with IPR8+m229, IPR8+ flg, IPR8-R848, and IPR8-R848+ flg as in Fig. 1. Titers to PR8 have been
previously reported for this cohort of animals (1, 2).
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of sample remaining from the d10p.b. timepoint. Cells were
stimulated with pooled peptides from the HA, NA, NP, and M1
proteins of influenza virus as responses to these proteins account
for majority of influenza-specific CD4+ T cells in humans69. IL-21
producing cells were below the limit of detection in these assays.
Thus, we turned to an alternative approach, quantifying influenza-
specific cells following challenge, that we had previously used in
assessing IFNγ and IL-4 producing T cells54. In a distinct cohort of
vaccinated newborns, newborns similarly vaccinated to those
described above were challenged with PR8. Lung draining
tracheobronchial lymph nodes were isolated on d14 p.c. and cells
cultured in the presence of the pooled peptides for analysis by
ELISPOT. The data in Fig. 4d show that the presence of adjuvant
results in a significant increase in the number of IL-21 producing
cells present in the draining lymph node following challenge. No
differences were observed across the adjuvant conditions.

R848 is capable of inducing significant increases in maturation
and cytokine production in newborn bone marrow derived DC
(BMDC)
Given the important role that DCs play in Tfh development34,70,71,
we hypothesized that inclusion of TLRa adjuvants could improve
Tfh and B cell function by increasing activation and cytokine
production by newborn DC. To test this possibility, dendritic cells
differentiated from the bone marrow of newborn AGM were
stimulated in vitro with either flagellin or R848. Surface expression
of maturation markers and production of cytokines were
measured 24 h later. We found that R848 significantly increased
the level of CD40, HLA-DR, and CD86 as well as production of
multiple cytokines including IL-12p40, IL-1β, and IL-6. However
IFNα or IFNγ were not significantly increased (Fig. 5). While
flagellin stimulated BMDC showed increases in CD86 and IL-6,
these did not reach statistical significance. Although not directly
tested here, the capacity of R848 to increase maturation markers
and pro-GC cytokine production in BMDC from newborns is
consistent with a role for these APC in promoting an immune
response that results in the persistence of HA stem-specific
antibody in animals receiving an IPR8-R848 conjugated vaccine.

TLRa adjuvants differentially impact Treg and Tfr phenotype
The increased representation of Tregs in newborns compared to
their adult counterparts is another factor thought to contribute to
diminished immune responses following vaccination early in life36.
Tregs appear to play a role in the diversity and immunodominance
hierarchy of Ab responses and have been shown to dampen the
global Ab response to influenza vaccination38,41,72. To investigate
whether the increased stem-specific Ab response seen with TLRa
adjuvants is associated with changes in Tregs, we examined this
population in PBMC collected from newborn animals at d10 p.b.
The vaccine strategy used did not significantly alter the frequency
of Tregs (Fig. 6a, b). However, inclusion of R848, regardless of the
presence of flagellin, was associated with decreased expression of
FoxP3 within the Treg population (Fig. 6c), a phenotype associated
with reduced suppressive activity73,74.
We also assessed the presence of T follicular regulatory (Tfr)

cells (CXCR5+CD4+FoxP3+) in light of recent studies exploring the
suppressive activity of these cells in the GC response75,76. While all
vaccine conditions trended towards a decreased Tfr frequency
within the CXCR5+ICOS+ subpopulation compared to vehicle
controls, this effect reached statistical significance only in the
IPR8-R848+ flg group (Fig. 6d, e). The level of FoxP3 expression
was also diminished in the animals receiving IPR8-R848-flg (Fig.
6f). We also evaluated the level of PD-1 and ICOS on various CD4+

T cell subsets. These markers are reported to increase with Treg
activation state77–80. No significant changes were found in the
level of these markers across vaccine groups for Treg or Tfr
(Supplementary Figs. 1, 2). Of note, Tfh and Tfr exhibited higher
expression of these markers compared to Tregs (Supplementary
Figs. 1, 3).

DISCUSSION
Despite the shortcomings of current influenza vaccines, they
remain the most effective way to reduce the morbidity and
mortality associated with influenza virus infection. Because of this,
it is essential that vaccines be able to confer protection to
vulnerable populations such as newborns. In addition, protective
responses that can work across influenza virus strains would be of
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comparisons (a) or unpaired t-test (b). *p < 0.05, **p < 0.01.
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particularly high benefit. Achieving these goals requires over-
coming both the global reduction in immune responsiveness
characteristic of early life as well as the immune system’s
seemingly inherent preference for variable over conserved regions
of the influenza HA protein. Here, we investigated whether
inclusion of the TLR agonists flagellin and R848, either singly or in

combination, as adjuvants could mitigate these barriers. We have
used a nonhuman primate newborn model to probe these critical
questions as this model is inarguably the most translatable to
human newborns. As with humans, newborn NHP exhibit
increased susceptibility to disease following influenza virus
infection81–83. Anatomically the NHP lung is quite similar in
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structure to the human84 and there is a high degree of similarity
between the NHP and humans in the distribution and respon-
siveness of TLR receptors85. Finally, the prolonged period of
infancy and similarities in immune system maturity at birth in NHP
provides a model where vaccination, boost, and challenge can be
appropriately assessed in an infant.
Our previous studies have demonstrated that both flagellin and

R848 can increase the magnitude and as a result persistence of
the total antibody response to the influenza virion52–54,86. In the
current study we found that the use of R848 or the combination of
flagellin and R848 resulted in a significantly increased antibody
response to the HA stem early that continued to increase at later
times following vaccination. While flagellin provided some early
benefit in a subset of newborns, this was not sustained. Changes
in stem-specific antibody were associated with modulation of cells
that regulate the antibody response and these alterations varied
by adjuvant. Although we were unable to quantify antigen-
specific cTfh following vaccination, newborns administered
vaccines containing R848, flagellin, or their combination had
higher numbers of influenza-specific Tfh following challenge
compared to infants that were vaccinated in the absence of
adjuvant. R848 was more effective at inducing activation and
cytokine production in dendritic cells and reduced FoxP3
expression in Tregs. The combination of adjuvants was associated
with decreases in both Tfr frequency and FoxP3 expression in Tfh
and Tfr.
The ability of adjuvants to drive persistent antibody responses

to HA stem in the newborn is a significant finding given the
known hurdles associated with generating antibody to these
subdominant epitopes and in establishing the LLPC niche in
newborns27,59. Inclusion of R848 not only hastened the expansion
of IgG to stem, as seen at d10 p.b., but also resulted in significant
continued expansion of stem-specific IgG between d21 p.b. and
100 p.v. Although titers of stem-specific IgG declined in general
between day 100 p.v. and 4-6 months p.v., the rate of decline was
lower in animals receiving IPR8-R848. We speculate that the
extended expansion and sustained response may be the result of
improved and/or perhaps prolonged selection and differentiation
of stem-specific LLPC clones in the GC. Extending the duration of
GC activity has been reported to promote increases in neutralizing
antibodies to subdominant epitopes in the setting of HIV87,88.
Further, prolongation of the GC reaction can promote more
extensive affinity maturation89–91.
Interestingly, we observed an increase in average antibody

avidity of stem-specific IgG between d100 p.v. and 4-6 months in
animals administered IPR8-R848, while antibody avidity in IPR8-
R848+ flg group had already reached its maximum by d100 p.v.
The continued increase in avidity in the IPR8-R848 vaccinated
group resulted in similar avidity in R848 and dual adjuvanted
recipients at the 4–6 month timepoint. This finding suggests the
combination of flagellin and R848 may accelerate the process of
affinity maturation. The continued increase in avidity in IPR8-R848
vaccinated newborns could reflect continued affinity maturation
and export of plasma cells. However, the decrease in absolute
stem-specific IgG titers between day 100 p.v. and 4-6 months in
the IPR8-R848 group is also consistent with a model where the
increase in avidity is due to preferential loss of lower-avidity
antibody secreting cells over time.
Our data suggest the presence of R848 and/or flagellin results in

an improved Tfh response as judged by the number present in the
lung draining lymph node following challenge. We appreciate this
is an indirect measure as it reflects expansion of memory cells
following challenge, but does have benefit as it allows for
assessment of IL-21 producing cells in the lymph node as opposed
to circulation. Tfh number has been found to correlate with
increases in antibody in a number of studies68,92,93. Further, there
is evidence that Tfh can promote the generation of broadly
reactive antibody in the context of SHIVAD8 infection of rhesus

macaques94. Interestingly, the ability to facilitate broadly reactive
antibody was dependent on the functional capabilities of elicited
Tfh, in this case IL-4 production. The ability of our adjuvanted
vaccines to impact Tfh function is an area that merits future study.
DC can exert a variety of regulatory effects on the humoral

response including generation of Tfh95,96. While this makes DC an
attractive target of vaccine strategies, newborn DC have
diminished activation, maturation, and cytokine production in
response to stimulation28,97–99. In our studies, we found R848 was
superior to flagellin for inducing maturation and cytokine
production in newborn BMDCs. R848 was effective in driving
production of IL-12, one of the most notable impairments of
newborn DC function100–102. This finding is consistent with the
reported ability of TLR7/8 agonists to polarize mononuclear cells
from human cord blood to a Th1 profile, counteracting the
inherent Th2 bias of the neonatal immune system103. R848 can
also increase GC formation and high-affinity Ab production in
adult mice via DC-mediated B cell activation104. In contrast, TLR5
engagement was only able to promote a Th2-driven antibody
response without affinity maturation104. Although the relationship
between costimulatory signals on DC and antibody immunodo-
minance has not yet been explored, further investigation is
merited as decreased expression of CD80/CD86 on pulmonary DCs
has been directly linked to altered immunodominance in CD8 cells
in a newborn mouse model of RSV infection105,106.
Tregs provide suppressive feedback on the GC reaction and

have been suggested to be a key component in maintaining
immunodominance upon subsequent antigen exposures41. Their
enhanced suppressive function in newborns as well as their
established role in regulating immune responses makes them
attractive targets for vaccines. The decrease we see in FoxP3
expression in Tregs supports the capacity of R848 conjugated
vaccines to decrease Treg activity given the finding that FoxP3
levels are correlated with suppressive function73,74.
Generally, we did not observe measurable stem-specific anti-

body until after boost. While this may be the result of low levels of
antibody, it is possible that after the priming dose, stem-specific B
cell clones preferentially differentiate into memory B cells that
rapidly differentiate into extrafollicular ASCs following boost.
Indeed, clones with broad reactivity are more frequently found in
memory B cell compartments than in plasma cell populations, and
the reactivation of these clones provides protection during future
encounters with heterologous strains of influenza107–110. The
preference for memory differentiation may be attributable to the
tendency towards a lower affinity that has been associated with
polyreactivity38.
In summary, this study demonstrates that inclusion of TLR7/8

adjuvant R848 in an inactivated IAV vaccine can promote a lasting
IgG response to the HA stem, while the TLR5 agonist flagellin
produces a response that is diminished in both magnitude and
persistence. Regardless of adjuvant, increased IgG to the HA stem
appeared to be associated with improved Tfh responses. The
presence of R848 was accompanied by Tregs with a dampened
suppressive phenotype as well as improved maturation and
cytokine production by newborn DC. Finally, our study reveals the
unexpected finding that the kinetics of stem-specific Ab response
is distinct from the overall Ab response to influenza virus following
vaccination. These data provide new insights into the generation
of stem-specific Ab and support pursuing development of an IAV
vaccine that can effectively provide broad protection in young
infants.

METHODS
Animals
Newborn AGM used in this study were housed at the Wake Forest
University School of Medicine African green monkey Research Colony.
Newborns were mother-reared and housed in social groups throughout
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the course of the experiment except for the influenza virus challenged
newborns, which were nursery reared.

Vaccination and sampling
Newborn (4–6 days of age) received vaccines containing formalin-
inactivated A/Puerto Rico/8/1934 (PR8) (H1N1) influenza virus with the
following adjuvant conditions: R848 (n= 7), R848 and flagellin (flg) (n= 7),
flg (n= 6), or inactive flagellin m229 (n= 5), which served as a non-
adjuvanted vaccine. Two animals received PBS as vehicle controls. R848
was directly conjugated to IPR8 while flg and m229 were included in
soluble form. Each vaccine contained 45 µg IPR8 administered intramus-
cularly into the deltoid muscle. Animals were boosted at day 21 post-
vaccination (p.v.) with the same adjuvant formulation they received for
their priming dose. Inactivation of PR8 was achieved by treating with
0.74% formaldehyde overnight at 37 °C. Virus was dialyzed against PBS and
tested to assure the absence of infectivity. For the IPR8-R848 conjugate
vaccine, an amine derivative of R848 was linked to SM(PEG)4 by incubation
in DMSO for 24 h at 37 °C. R848-SM(PEG)4 was then incubated with
influenza virus. Unconjugated R848 was removed by extensive dialysis.
This construct was then inactivated by treatment with 0.74% formaldehyde
overnight at 37°C, followed by dialysis. Successful conjugation was
assessed by differential stimulation of RAW264.7 cells. To produce
Salmonella enteritidis flagellin, E. coli BL21 (DE3) containing a pet29a::fliC
encoding wild type flagellin or the truncated pet29a::229 encoding only
the biologically inactive hypervariable region of flagellin were grown and
lysates prepared in 8 M urea. Proteins were purified on Ni-NTA agarose.
Endotoxin and nucleic acids were removed using an Acrodisc Mustang Q
capsule. Purified proteins were extensively dialyzed against PBS. Peripheral
blood was drawn by venipuncture at days 10 and 21 following vaccination
and boost as well as at 100 days and 4-6 months after initial vaccination.

Quantification of stem-specific IgG
To measure HA stem-specific antibody, plates were coated overnight with
5 ng of a headless A/California/4/2009 (H1N1) HA stabilized stem
construct111. Plates were blocked for 1 h, after which they were washed
with PBS+ 0.01% Tween-20 (PBST). Plates were incubated for 3 h with
serially diluted plasma. Starting dilutions were as stated. Plates were
washed, incubated with HRP-conjugated goat anti-NHP IgG or IgM, and
developed using TMB Ultra, after which the reaction was stopped with
0.1 N H2SO4. The absorbance for non-coated wells was subtracted for each
animal, and threshold titer was defined as the lowest value that exceeded
three times the average OD450 of the uncoated wells. For assessment of
avidity, a sodium thiocyanate (NaSCN) dissociation step was included
following sample incubation. Plasma was added at a single concentration
selected for each animal based on the dilution that yielded 50% of the max
OD450 in the ELISA to ensure consistent antibody amounts across varied
antibody titers. Following binding, two-fold dilutions of NaSCN starting at
5 M were added to the plate for 15min. Plates were then washed,
incubated with HRP-conjugated goat anti-IgG, and developed as in the
ELISA protocol. The IC50 was calculated using GraphPad Prism software.

BMDC Culture and stimulation
Bone marrow was collected from newborn AGM (4-6 days old), purified by
density gradient separation, and cryopreserved. For experiments, thawed
cells incubated with 40 ng/ml human GM-CSF and 40 ng/ml human IL-4.
On day 6, cells were stimulated with either 10 nM flagellin or 10 µM R848
for 24 h at 37 °C, after which cells and supernatants were harvested. Cells
were stained with CD11c-PE (clone S-HCL-3), CD40-PerCP-Cy5.5 (clone
5C3), CD86-BV510 (clone 2331/(FUN-1)), and HLA-DR FITC (clone L243).
Samples were acquired on a BD LSRFortessa X-20 and analyzed with
FlowJo software.

Cytokine quantification
IL-6 and IL-1β were assessed using a human inflammatory cytokine bead
array (BD Biosciences) performed on supernatants collected from BMDC
cultures per manufacturer’s protocol. Samples were acquired on a BD
FACSCalibur; data were analyzed using FCAP Array software. IL-12p40, IFNγ
and IFNα were quantified using a human ELISAs verified for NHP cross-
reactivity.

T cell flow cytometry
PBMC from newborns d10 p.b. were purified from peripheral blood by
density gradient separation, aliquotted and stored in liquid nitrogen. For
phenotyping by flow cytometry, cryopreserved cells were thawed in
culture media as above and rested at 37 °C for 2 h. Cells were stained with
Fixable Viability Stain 780 (BD Horizon). Surface staining was performed
using the following antibodies: CD3-PE Violet 770 (clone 10D12), CD4-
PerCP-Cy5.5 (clone L200), CD20-AlexaFluor 700 (clone 2H7), CXCR5-PE
(clone MU5UBEE), PD-1-PE-Dazzle 594 (clone EH12.2H7), ICOS-BV510 (clone
C398.4A). Cells were then washed, fixed and permeabilized with FoxP3/
Transcription Factor staining kit, followed by FoxP3-BV421 (clone 206D).
Samples were acquired on a BD LSRFortessa X-20 and analyzed with
FlowJo software.

T cell ELISPOT
A distinct cohort of vaccinated newborn AGM were challenged with PR8
(1 × 1010 EID50 divided equally between the intranasal (i.n.) and
intratracheal (i.t.) routes, 0.25ml i.t. and 0.25 ml i.n. (0.125ml per nostril))
on d23-26 following boost. Lung draining tracheobronchial lymph nodes
were isolated on d14 post challenge (p.c.) and stored in liquid nitrogen for
future study. Thawed cells were cultured in the presence of pooled
peptides from the NA (PR8), HA (PR8), M1 (A/California/04/2009), and NP
(A/California/04/2009) proteins for 48 h in ELISPOT plates coated with anti-
IL-21 antibody (human/NHP IL-21 ELISPOT) kit from MABTECH. Peptides
were used at a final concentration of 0.1 µg/ml for each peptide. IL-21 was
detected with the antibody provided in the human/NHP IL-21 ELISPOT kit
from MABTECH. Plates were developed with BCIP/NBT-plus substrate
solution. Plates were read using an ImmunoSpot Analyzer (Cellular
Technology Ltd) and spot counts determined by analysis at ImmunoSpot.

Statistics
All statistical analyses were performed using GraphPad Prism software.
Statistical significance was determined by ordinary one-way ANOVA with
uncorrected Fisher’s LSD test for multiple comparisons or Freidman test
with uncorrected Dunn’s test for multiple comparisons as indicated. A two-
tailed unpaired t test was used when two groups were compared. All titers
were log2 transformed prior to statistical analysis.

Study approval
The protocol was approved by the Wake Forest University School of
Medicine IACUC and adhered to the U.S. Animal Welfare Act and
Regulations.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
All data generated or analyzed during this study are included in this published article
(and its supplementary files).
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