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In diabetes mellitus (DM), disorders of glucose and lipid metabolism are significant causes
of the onset and progression of diabetic nephropathy (DN). However, the exact roles of
specific lipid molecules in the pathogenesis of DN remain unclear. This study recruited 577
participants, including healthy controls (HCs), type-2 DM (2-DM) patients, and DN
patients, from the clinic. Serum samples were collected under fasting conditions. Liquid
chromatography-mass spectrometry-based lipidomics methods were used to explore the
lipid changes in the serum and identify potential lipid biomarkers for the diagnosis of DN.
Lipidomics revealed that the combination of lysophosphatidylethanolamine (LPE) (16:0)
and triacylglycerol (TAG) 54:2-FA18:1 was a biomarker panel for predicting DN. The
receiver operating characteristic analysis showed that the panel had a sensitivity of 89.1%
and 73.4% with a specificity of 88.1% and 76.7% for discriminating patients with DN from
HCs and 2-DM patients. Then, we divided the DN patients in the validation cohort into
microalbuminuria (diabetic nephropathy at an early stage, DNE) and macroalbuminuria
(diabetic nephropathy at an advanced stage, DNA) groups and found that LPE(16:0),
phosphatidylethanolamine (PE) (16:0/20:2), and TAG54:2-FA18:1 were tightly associated
with the stages of DN. The sensitivity of the biomarker panel to distinguish between
patients with DNE and 2-DM, DNA, and DNE patients was 65.6% and 85.9%, and the
specificity was 76.7% and 75.0%, respectively. Our experiment showed that the
combination of LPE(16:0), PE(16:0/20:2), and TAG54:2-FA18:1 exhibits excellent
performance in the diagnosis of DN.
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INTRODUCTION

As a significant microvascular complication of diabetes mellitus
(DM), both type 1 and type 2, diabetic nephropathy (DN) has
become the leading cause of chronic kidney disease (CKD) (1, 2).
DN is characterized by dysfunction of the glomerular filtration
barrier and decreased kidney function, which could be directly
reflected by the persistent elevation of albumin in the urine and a
progressive decrease in estimated glomerular filtration rate
(eGFR), respectively (3). By 2019, there were approximately
463 million DM patients worldwide, among which type-2 DM
(2-DM) accounted for more than 90% (4). It is estimated that
25–40% of diagnosed DM patients will eventually develop DN
(5). Meanwhile, DN is an independent risk factor for increased
mortality from cardiovascular causes, such as myocardial
infarction, sudden cardiac death, stroke, and other fatal
complications of diabetic cardiomyopathy (6).

In the clinic, microalbuminuria is considered the earliest
evidence of the onset of DN. It has been reported that
microalbuminuria progresses to macroalbuminuria in 50% of
diagnosed DN patients without effective intervention and
eventually develops into end-stage renal disease (ESRD) (7, 8).
Undoubtedly, albuminuria is a significant sign of DN. However,
the development of kidney impairment in DM patients is not
synchronized with the increase in albuminuria (9). According to
the national health and nutrition examination survey
(NHANES), the number of DN patients with an eGFR of < 60
ml/min/1.73 m2 but without albuminuria has increased over the
past 30 years (10). In addition, these patients’ annual mortality
rate increased from 3.5% to 5.1% during this period (11). At
present, the urine albumin creatine ratio (UACR) and eGFR are
broadly applied parameters for diagnosing the initiation and
progression of DN in the clinic. Nevertheless, in most DN
patients during the early stages, their urinary albumin or eGFR
level is normal. It has also been reported that the levels of
microalbuminuria in some DN patients who received or did
not receive intervention treatment returned to baseline rather
than progressing to macroalbuminuria (12–14). Therefore, it is
urgently necessary to develop more accurate diagnostic markers
for DN in the clinical setting.

Lipid molecules are ubiquitous in all organisms and they
make up essential components of cell membranes, lipid particles,
and nerve myelin sheaths (15). Their functions include serving as
cell barriers, membrane matrix, signal transduction, and energy
storage (16). In 2005, the LIPID MAPS consortium classified
lipids into eight categories based on their chemical and
biochemical characteristics, which contains tens to hundreds of
thousands of molecular species (17). Lipids are highly complex
and dynamic, changing with physiological, pathological, and
environmental conditions (18). In particular, lipid metabolites
can serve as signaling molecules to activate multiple signaling
pathways, thereby regulating cell growth, proliferation, and
differentiation (19–21). Lipid disorders are associated with
many diseases, such as Alzheimer’s disease, metabolic
disorders, cancer, and kidney disease (22–24). Lipidomics is
the systematic analysis of lipids in the entire organism. It
reveals the mechanism of lipids in various life activities (25). A
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previous urinary exosomal lipidomics study on DM and DN
revealed that diacylglycerol (DAG), triacylglycerol (TAG),
ganglioside GM3, and lysophosphatidylcholine (LPC) were
significantly upregulated in DN patients (26).

In this study, we aimed to analyze the serum lipid
characteristics in HCs, 2-DM patients, and DN patients by
liquid chromatography-mass spectrometry metabolomics (LC–
MS). The aim was to evaluate the effects of lipid metabolism on
DN development, to understand the mechanisms of metabolic
disorders in DN, and to identify potential lipid biomarkers
for DN.
MATERIALS AND METHODS

Ethics Compliance Statement
All procedures were approved by the Institutional Review Board
and the Ethics Committee of the First Affiliated Hospital of
Nanjing University of Traditional Chinese Medicine (2019NL-
109–02), registered in the Chinese Clinical Trial Registry
(ChiCTR2000028949), and followed the Declaration of
Helsinki. After reviewing the study’s written plan, all
participants signed written informed consent before inclusion.

Study Population
A total of 577 participants, including healthy controls (HCs),
patients with type 2 diabetes mellitus (2-DM), and diabetic
nephropathy (DN), including microalbuminuria (diabetic
nephropathy at an early stage, DNE) and macroalbuminuria
(diabetic nephropathy at an advanced stage, DNA), from the
Affiliated Hospital of Nanjing University of Chinese Medicine,
were enrolled. All of the participants were Asian and met the
diagnostic criteria of 2-DM, and the patients with DNE and
DNA met the diagnostic criteria of DN. All serum samples were
collected under fasting conditions, and the classification of DN
was made according to UACR. In this study, we defined patients
with UACR<30 mg/g as having 2-DM and 30≤UACR mg/g as
having DN (30≤UACR ≤ 300 mg/g as having DNE, and
UACR>300 mg/g as having DNA). The analytical sample
included 169 healthy subjects, 170 participants with 2-DM, 238
participants with DN, including 64 participants with DNE, and
64 participants with DNA in the validation cohort. The clinical
information of all participants, including all examination
indicators, is recorded in Table 1. Serum samples were
collected and stored at -80°C until further analysis.

Inclusion and Exclusion Criteria
Inclusion criteria include (1) 20-75 years old (2), All patients met
the diagnostic criteria of 2-DM (3), The patients with
microalbuminuria and macroalbuminuria met the diagnostic
criteria of DN (4), eGFR >=90ml/min/1.73m2 in the 2-DM
group, eGFR should be above 30ml/min/1.73m2 in both
microalbuminuria group and macroalbuminuria group (5), Blood
pressure below 140/90 mmHg (6), sign the informed consent.

Exclusion criteria include (1) Primary kidney disease with a
definite diagnosis (2), Other systemic diseases that can cause
December 2021 | Volume 12 | Article 781417
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proteinuria (3), Acute complications of diabetes mellitus and
urinary tract infection in the past 1 month (4), Complicated with
serious primary diseases in cardiovascular, cerebrovascular, liver,
kidney, and the hematopoietic system as well as the tumor (5),
Suffering from mental illness and unable to cooperate (6),
Pregnant or lactating women, or those preparing for pregnancy
(7), Women in their menstrual period (8), Those who have
participated in other clinical trials within the past 1 month.

Sample Preparation and Analysis
Serum samples were first thawed on ice. Briefly, 40 µL of serum
was mixed with 225 µL of ice-cold MeOH. Each sample was then
vortexed for 10 seconds and added to 750 µL of cold MTBE, and
the mixtures were vortexed for 10 seconds before being shaken
for 10 min at 4°C in an orbital mixer. After adding 188 µL of
room-temperature LC/MS grade water, the samples were
vortexed for 20 seconds and then centrifuged at 14,000 rcf at
4°C for 2 min. The upper liquid was transferred to fresh tubes
and then dried in a SpeedVac sample concentrator at 45°C for
2 h. The dried lipids were redissolved in 100 µL of isopropyl
alcohol/acetonitrile/water (30:65:5, v/v/v) mixture, and the
samples were vortexed for 10 seconds and then centrifuged at
14,000 rcf at 4°C for 10 min. The mixture was then transferred to
a sample vial with a glass insert and subjected to LC-MS analysis.
Quality control (QC) samples were prepared by pooling equal
amounts of lipid extracts from every sample, divided into
aliquots, and analyzed every fifteen samples.

Chromatography and MS
The analysis was performed on a UHPLC system (Shimazu Nexera
X2 LC-30AD, Japan) coupled with an ESI-triple quadrupole mass
spectrometer (SCIEX Triple Quad 5500+, Singapore).

Lipid separation was carried out using a Waters ACQUITY
UPLC BEHHILIC (100mm×2.1mm I.D., 1.7 mm;Waters, Milford,
MA, USA) column at 35 ° C with a flow rate of 500 µL/min, and
the injection volume of each sample was 5 µL.
Frontiers in Endocrinology | www.frontiersin.org 3
The mobile phase consisted of two solvents: 10 mM
ammonium acetate (NH4OAc) in water: acetonitrile (5:95, v/v,
pH adjustment usually not needed, A) and 10 mM ammonium
acetate (NH4OAc) in water: acetonitrile (50:50, v/v, adjusted pH
8.2 with ammonium hydroxide, B). The lipids were separated
with an optimized gradient elution: 0–10.0 min, 0.1%–20% B;
10.0–11.0 min, 20%–98% B; 11.0–13.0 min, 98% B; 13.0–13.1
min, 98%–0.1% B; 13.1–16.0 min, 0.1% B.

The mass spectrometer was operated under positive and
negative switching ionization mode with an electrospray
voltage (capillary voltage) of 4500/-4500 V. The MRM/
retention time pairs were provided to the Scheduled MRM™

Algorithm to build the final MRM acquisition methods, and each
MRM transition was monitored only during a short retention
time window of 180 s. The typical source conditions were cohort:
curtain gas as 35 and ion source temperature as 500 ° C. Ion
source gas 1 (GS 1) and ion source gas 2 (GS 2) were all set at 50
and 60. The declustering potential was cohort at 80/-80 V. The
collision cell exit potential was cohort at 9/-11 V in the positive
or negative modes.

Data Analysis
Raw data were acquired from Analyst® 1.7.1 software (SCIEX)
and then quantified with MultiQuant™ software. After removing
the missing values using the 80% rule, the other missing values
were replaced by 1/5 of each variable’s minimum positive value.
Furthermore, all statistical analyses were carried out on log-
transformed data, which were median normalized and Pareto
scaled before the multivariate analysis. All steps were completed
by MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/). The
identified lipids were further analyzed using univariate and
multivariate statistical methods. The normalized data were
imported into SIMCA software (version 14.1; Umetrics) and
MetaboAnalyst 5.0 for partial least squares-discriminant analysis
(PLS-DA) and orthogonal partial least squares-discriminant
analysis (OPLS-DA), respectively. The significantly different
TABLE 1 | Characterization of the study participants.

Covariate Discovery Set (n = 330) Validation Set (n = 247)

HCs 2-DM DN HCs 2-DM DNE DNA

Number 110 110 110 59 60 64 64
Male/Female 52/58 72/38 67/43 38/21 39/21 35/29 42/22
Age (years) 31.20 ± 8.4 53.75 ± 10.9 57.88 ± 10.2 34.47 ± 9.2 56.65 ± 10.9 53.38 ± 13.0 65.55 ± 12.2
BMI (kg/m2) 21.71 ± 2.9 24.51 ± 5.3 25.61 ± 5.1 22.14 ± 2.9 25.18 ± 2.8 31.84 ± 44.9 25.94 ± 4.1
HbA1c (%) — 6.2 ± 4.1 6.2 ± 4.0 — 8.8 ± 2.0 9.2 ± 2.0 7.6 ± 1.5
eGFR (ml/min/1.73m2) — 99.52 ± 14.0 74.75 ± 37.8 — 100.76 ± 14.0 99.89 ± 22.9 32.55 ± 25.7
ALB (g/L) 44.54 ± 2.4 38.88 ± 2.9 35.77 ± 6.0 42.03 ± 5.5 39.54 ± 4.3 38.90 ± 3.4 30.15 ± 4.7
BUN (mmol/L) 5 ± 1 7 ± 2 10 ± 6 5 ± 1 6 ± 2 7 ± 3 16 ± 7
Scr (mmol/L) 67 ± 12 68 ± 15 136 ± 152 68 ± 13 63 ± 12 67 ± 22 262 ± 172
Glu (mmol/L) 5 ± 0 8 ± 3 8 ± 3 5 ± 0 8 ± 3 10 ± 4 7 ± 4
Uric acid (mmol/L) 287 ± 69 308 ± 93 352 ± 141 289 ± 69 290 ± 97 326 ± 106 453 ± 121
Total cholesterol (mmol/L) 4 ± 1 4 ± 1 5 ± 2 5 ± 0 4 ± 1 5 ± 1 5 ± 2
Triglycerides (mmol/L) 1 ± 0 2 ± 4 2 ± 2 1 ± 0 2 ± 2 3 ± 3 2 ± 1
HDL cholesterol (mmol/L) 2 ± 0 1 ± 0 1 ± 0 2 ± 0 1 ± 0 1 ± 0 1 ± 0
LDL cholesterol (mmol/L) 2 ± 1 3 ± 1 3 ± 1 3 ± 0 3 ± 1 3 ± 1 3 ± 1
ACR (mg/g) — 12.61 ± 5.8 1,160.07 ± 1,883.8 — 12.66 ± 7.7 69.81 ± 56.9 2,756.76 ± 2,087.4
24-hour urinary protein quantity (mg/24h) — 37.92 ± 26.8 1,437.67 ± 2,298.2 — 48.36 ± 67.1 138.89 ± 295.2 3,555.62 ± 3,506.2
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lipid metabolites were identified based on variable importance in
the projection (VIP) obtained from the OPLS-DA model and
Student’s t-test (p value) with Benjamini-Hochberg-based false
discovery rate (FDR). When the lipids met the criteria of VIP >
1.0, p value < 0.05 and FDR < 0.05 were considered
differential metabolites.

Candidate metabolites were analyzed to identify potential
diagnostic biomarkers. The forward stepwise binary logistic
regression method and the Wald test were used to build the
model based on the potential biomarkers. The diagnostic efficacy
of the regression analysis results was analyzed and quantified by
receiver operating characteristic (ROC) curve analysis. The area
under the ROC curve (AUC) was calculated. Stepwise binary
logistic regression and ROC curve analysis were performed with
SPSS 25.0 software (SPSS, Inc.). GraphPad Prism 8 (GraphPad
Software, La Jolla, CA, USA) was used to visualize individual
metabolite levels in violin graphs.
RESULTS

In this study, a total of 330 serum samples were collected as a
discovery cohort to find candidate biomarkers. Meanwhile, a
total of 247 participants, including 59 HCs, 60 patients with 2-
DM, and 128 patients with DN, including 64 patients with DNE
and 64 patients with DNA, were enrolled as a validation cohort
to test the identified biomarkers (Figure 1). The demographic
characteristics and clinical information of the subjects are shown
in Table 1.

Serum Lipid Profiling of LC–MS
In the initial pseudotargeted lipid metabolomics analysis, we
examined 330 serum samples. In the metabolic spectrum, 1221
metabolites were identified, covering more than 21 subclasses.
We further applied PLS-DA (Figure 2A) and OPLS-DA
(Supplementary Figure S1) to identify the metabolic profile
differences between groups in the discovery data cohort. All of
Frontiers in Endocrinology | www.frontiersin.org 4
the QC samples clustered closely, verifying the reliability of the
present study. Without overfitting of the model (Supplementary
Figure S2), the apparent separation among the HCs, 2-DM, and
DN groups, cumulative R2Y at 0.641 and Q2 at 0.359, indicated
that the lipid metabolism pattern was changed among the three
groups. Based on the significant changes in the comparison
among the lipid metabolites of HCs, 2-DM, and DN,
multivariate and univariate statistical significance criteria
(VIP >1, p value < 0.05, and FDR< 0.05) were applied to
determine 231 metabolites of 2-DM vs. HCs, 277 metabolites
of DN vs. HCs, and 97 metabolites of DN vs. 2-DM. Among
them, there were 15 differential metabolites in the three
comparisons (Figure 2B).

Defining and Verifying Potential
Biomarkers for DN
We then further examined the above metabolites in the
validation cohort to identify potential biomarkers and test their
validity. There were 47 metabolites (Supplementary Table S1)
with significant differences in the three comparisons (2-DM vs.
HCs, DN vs. HCs, and DN vs. 2-DM). Eight of these metabolites
showed expression trends consistent with our findings in the
discovery cohort, including LPE(16:0), LPE(18:0), LPE(20:1), PE
(16:0/18:1), PE(16:0/18:2), PE(16:0/20:2), TAG54:2-FA18:1, and
TAG54:3-FA18:0. Details of these metabolites are listed in
Table 2. Subsequently, using the eight potential biomarkers,
binary logistic regression analysis with a forwarding stepwise
optimization algorithm (Wald) was used to construct the
optimal model. Finally, the combination of LPE(16:0) and
TAG54:2-FA18:1 was selected as the ideal biomarker panel to
distinguish HCs, 2-DM, and DN. The ideal biomarker panel
showed sensitivity at 61.7% and 89.1%, specificity at 86.4% and
88.1%, and AUC at 0.790 and 0.939, respectively, to differentiate
patients with 2-DM and DN from HCs (Figures 3A, B). The
ideal biomarker panel showed a sensitivity of 73.4%, specificity of
76.7%, and AUC of 0.808 to differentiate 2-DM and DN
(Figure 3C). The predictive value was 75.0% for 2-DM vs. HCs
FIGURE 1 | Design of the study.
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in the validation cohort (Figure 3D), 81.2% for DN vs. HCs in
the validation cohort (Figure 3E), and 90.6% for DN vs. 2-DM in
the validation cohort (Figure 3F).

Biomarkers for the Differential Diagnosis
of DNE and DNA
We further divided participants with DN in the validation cohort
into DNE and DNA to determine if there were ideal biomarkers
among these potential biomarkers that could distinguish 2-DM,
DNE, and DNA. First, a heat map was used to find the relative
intensity distribution of the eight potential biomarkers in HCs, 2-
DM, DNE, and DNA, as shown in Figure 4. The serum levels of
these metabolites in HCs, 2-DM, DNE, and DNA increased with
the severity of the disease. On this basis, eight potential
biomarkers were used to perform binary logistic regression
analysis using a forward stepwise optimization algorithm
(Wald) for the construction of optimal models for DNE vs. 2-
DM, DNA vs. 2-DM, and DNA vs.DNE. The results showed that
the combination of LPE(16:0), PE(16:0/20:2), and TAG54:2-
FA18:1 could distinguish 2-DM, DNE, and DNA very well.
The ideal biomarker panel showed a sensitivity of 65.6%,
Frontiers in Endocrinology | www.frontiersin.org 5
specificity of 76.7%, and AUC of 0.765 to differentiate 2-DM
and DNE (Figure 5A). Similarly, between 2-DM and DNA, we
showed a sensitivity of 87.5%, specificity of 80.0%, and AUC of
0.909 (Figure 5B); between DNE and DNA, the sensitivity index
was 85.9%, the specificity index was 75.0%, and the AUC index
was 0.848 (Figure 5C). Predictive values of 82.8%, 70.3%, and
64.1% were found for DNE vs. 2-DM, DNA vs. 2-DM, and DNA
vs. DNE in the validation cohort by setting 0.423, 0.675, and
0.609 as the optimal cutoff values (Figures 5D–F). LPE(16:0), PE
(16:0/20:2), and TAG54:2-FA18:1 levels were gradually increased
in the candidates from HCs, 2-DM, DNE, and DNA (Figure 6).
To further validate candidates that might be useful in detecting
DN, we analyzed the relationship between each lipid species and
eGFR, Scr, and UAE. The analysis showed that LPE(16:0) and PE
(16:0/20:2) were negatively correlated with eGFR (r=-0.2161,
P<0.001; r=-0.5206, P<0.001). LPE(16:0) and PE(16:0/20:2) were
positively correlated with Scr (r=0.1613, P=0.013; r=0.3816,
P<0.001). PE(16:0/20:2) was positively correlated with UAE
(r=0.3028, P<0.001). In addition, the association analysis
between UAE, Scr or eGFR, and lipidomes showed no
significant correlation.
TABLE 2 | Identified differential metabolites between the 2-DM, DNE, DNA and health controls.

Metabolite 2-DM vs. HCs DN vs. HCs DN vs. 2-DM

VIP p value FDR FC VIP p value FDR FC VIP p value FDR FC

LPE(16:0) 1.397 0.003 0.011 1.580 2.364 <0.001 <0.001 6.825 2.665 <0.001 <0.001 4.320
LPE(18:0) 1.361 0.007 0.022 2.006 2.231 <0.001 <0.001 5.072 2.025 <0.001 <0.001 2.528
LPE(20:1) 1.511 <0.001 0.002 2.927 2.126 <0.001 <0.001 5.707 1.859 <0.001 0.003 1.950
PE(16:0/18:1) 2.315 <0.001 <0.001 9.994 2.683 <0.001 <0.001 28.153 2.830 <0.001 <0.001 2.817
PE(16:0/18:2) 2.146 <0.001 <0.001 7.734 2.506 <0.001 <0.001 18.622 2.645 <0.001 0.001 2.408
PE(16:0/20:2) 2.347 <0.001 <0.001 9.186 2.693 <0.001 <0.001 28.255 2.412 <0.001 <0.001 3.076
TAG54:2-FA18:1 1.903 <0.001 <0.001 3.437 2.267 <0.001 <0.001 7.493 1.450 <0.001 0.002 2.180
TAG54:3-FA18:0 1.821 <0.001 <0.001 2.666 2.327 <0.001 <0.001 4.425 1.102 0.001 0.019 1.660
De
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VIP, variable importance in the projection; FC, fold change; FDR, false discovery rate.
A B

FIGURE 2 | Identification of potential metabolic biomarkers for the diagnosis of DN. (A) Partial least squares-discriminant analysis (PLS-DA) score plot based on
HCs (green), 2-DM (blue), DN (red) groups, and QC samples (yellow) in the Discovery Set. (B) Venn diagram displays the differential metabolites when the 2-DM and
DN groups were compared with the HCs, and the DN groups was compared with the 2-DM in the Discovery Set.
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DISCUSSION

DN is a diabetic complication characterized by progressive kidney
damage. Clinical treatment requires multimedication, and kidney
replacement therapy imposes enormous economic burdens on the
health care system (27). In this field, it is well known that DN
patients have a higher mortality rate than DM patients without
kidney damage (28). Therefore, early diagnosis and intervention to
slow down the progression of DN will be of great significance to
reduce the occurrence of unpredictable vascular events and to
improve the survival rate and quality of life. DN is usually
diagnosed as increased UACR and/or decreased eGFR,
excluding primary and secondary CKD. Renal biopsy is the
most accurate method for diagnosing DN, but in clinical
practice, renal biopsy in DM patients is still rare because of its
invasiveness (29). Since the accuracy and specificity of the current
diagnostic criteria for DN cannot meet our requirements, an ideal
diagnostic marker for DN, especially for the early stage of DN, is
Frontiers in Endocrinology | www.frontiersin.org 6
urgently needed. In this study, we performed a comprehensive
study of lipids in the serum of HCs and 2-DM, DNE, and DNA
individuals using pseudotargeted lipid metabolomics. A total of
1221 serum lipid metabolites were identified.

We then tested the lipid metabolites related to the occurrence
and development of DN in the validation cohort. Compared with
HCs and 2-DM patients, significantly increased levels of LPE
(16:0), LPE(18:0), LPE(20:1), PE(16:0/18:1), PE(16:0/18:2), PE
(16:0/20:2), TAG54:2-FA18:1, and TAG54:3-FA18:0 were
observed in DN patients. Patients with CKD have previously
been reported to exhibit disorders of glycerolipid metabolism
and glycerophospholipid metabolism (30, 31).

PE(16:0/20:2) is a phosphatidylethanolamine(PE), which
combinations of one chain of palmitic acid and one chain of
eicosadienoic acid attached at the C-1 and C-2 positions,
respectively. PE is the second most abundant and multifunctional
glycerophospholipid in eukaryotic cells (32). It is essential in
mammalian development and cellular processes, including being
FIGURE 4 | A Heatmap of the differential metabolites in HCs, 2-DM, DNE and DNA. Rows: serum samples; Columns: lipid species.
A B

D E F

C

FIGURE 3 | (A–C) Receiver operating characteristic curve analysis (ROC) in combination with LPE(16:0) and TAG54:2-FA18:1 to discriminate HCs, 2-DM and DN
patients in the Validation Set. (D–F) Prediction accuracies of the panel of biomarkers (LPE(16:0) and TAG54:2-FA18:1) in the Validation Set. The area under the curve
(AUC) is given at 95 % confidence intervals. AUC, area under the curve; CI, confidence interval.
December 2021 | Volume 12 | Article 781417

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Xu et al. Lipid Biomarkers Identification in DN
involved in metabolism and signaling (33). PE and cholesterol can
improve the hardness of the bilayer membrane, which indicates
that PE and cholesterol could maintain the fluidity of the cell
membrane. Phosphatidylethanolamine n-methyltransferase
(PEMT) is a crucial enzyme that promotes PC synthesis and PE
conversion to PC. Once the PC: PE ratio is decreased, ER stress and
SREBP1 are activated. ER stress is associated with insulin resistance
(IR) and 2-DM (34, 35). Furthermore, once PE undergoes
glycosylation due to the presence of free amine groups, it may
increase the oxidation sensitivity in the case of hyperglycemic
conditions (36). Additionally, to promote lipid peroxidation,
glycated PE partially produces ROS, which is associated with
inflammation and other DM complications, such as DN (37, 38).

When the PE: PC (phosphatidylcholine) ratio increases, the
fluidity of the cell membrane decreases significantly. As a
consequence, the increase in permeability of the cell membrane
causes cell damage (39). This imbalance of the membrane lipid
composition affects the characteristics of the membrane and
induces pathological changes in erythrocyte membranes in
patients with 2-DM (40).
Frontiers in Endocrinology | www.frontiersin.org 7
Lysophosphatidylethanolamine (LPE) is a lysophospholipid
product of partial hydrolysis of PE catalyzed by phospholipase
A2 (PLA2) in glycerophospholipid metabolism (41). LPE(16:0)
as an LPE, is mainly involved in the Phospholipid Biosynthesis.
Investigation of existing literature, alteration of LPE (16:0) also
was found in iron deficiency, ulcerative colitis, and colorectal
cancer, but the specific mechanism of action remains unclear (42,
43). Before this, no such differences in the metabolism of LPE
(16:0) have been reported in DM and DN. We speculated that
LPE (16:0) might play a role in renal damage through its
metabolites, basis the following information. LPE is converted
to lysophosphat id ic ac id (LPA) by the ac t ion of
lysophospholipase D (Lyso PLD). LPA can activate endothelial
cells and initiate the secretion of a variety of proinflammatory
peptides and proteins, in addition to causing the rupture of red
blood cells and other cells, leading to hemolysis, cell necrosis, and
organ damage, such as kidney disease (44). It has been reported
in the literature that the LPA-LPAR axis mainly induces
pathological changes in the structure and function of renal
cells (45).
A B C

FIGURE 6 | Serum relative intensity of LPE(16:0) (A), PE(16:0/20:2) (B), and TAG54:2-FA18:1 (C) in the HCs (orange), 2-DM (green), DNE (blue) and DNA (red).
**P < 0.01, ***P < 0.001, and ****P < 0.0001.
A B

D E F

C

FIGURE 5 | (A–C) Receiver operating characteristic curve analysis (ROC) in combination with LPE(16:0) and TAG54:2-FA18:1 to discriminate HCs, 2-DM and DN
patients in the Validation Set. (D–F) Prediction accuracies of the panel of biomarkers (LPE(16:0) and TAG54:2-FA18:1) in the Validation Set. The area under the curve
(AUC) is given at 95 % confidence intervals. AUC, area under the curve; CI, confidence interval.
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Consistent with previous studies, the TAG level was elevated
in patients with 2-DM and CKD compared to healthy subjects
(46, 47). TAG biosynthesis occurs via the glycerolipid metabolic
pathway of fatty acids (FAs) to produce LPA, which is further
transformed into phosphatidic acid (PA). PA is then hydrolyzed
to form diacylglycerols (DAGs) and finally esterified to TAGs
(48, 49). It has been reported that TAG and DAGmay contribute
to insulin resistance by a similar mechanism as the stimulation of
b-cell apoptosis by free fatty acids (FFAs) via c-Jun N-terminal
kinase (JNK) (50). KEGG reactions in human pathways
involving TAG54:2-FA18:1, Phospholipid + 1,2-Diacyl-sn-
glycerol <=> Lysophospholipid + Triacylglycerol, verify the
interconnection between PE, LPE, and TAG, and whether
these metabolic changes broke the balance of this reaction, and
then triggered a series of metabolic diseases. Unfortunately, the
specific mechanism of which needs further research.

This lipid metabolomics provides a strategy for DN diagnosis
in the clinic. The results can be used as a reference for further
clinical examination. However, this study does have its
limitations. First, all participants were Asian and enrolled from
the same center, and because both 2-DM and DN were
accompanied by obesity, resulting in significant differences
between groups in terms of IBM and age, which may limit the
applicability of our conclusions. Second, lipidomics analysis has
limitations, and the results need to be further verified in
additional studies. In future studies, the patients should be
expanded to include other races and ethnicities across multiple
research centers. The number of participants should be increased
and information on their renal function parameters should be
followed up to make the results more compelling.

In summary, we found that lipid metabolism disorders in DN
were associated with LPE, PE, and TAG changes. A biomarker
panel comprised of LPE(16:0), PE(16:0/20:2), and TAG54:2-
FA18:1 was identified and further validated by a longitudinal
sectional study for the diagnosis of DN, which showed that LPE
(16:0), PE(16:0/20:2), and TAG54:2-FA18:1 were positively
correlated with the severity of the development of DN. This
biomarker panel can identify DN patients and distinguish DNA
and DNE patients from HCs and 2-DM individuals. Therefore, it
is proposed that this lipid biomarker panel has great potential in
the diagnosis and treatment of DN in the clinical setting.
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