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Cholesterol is essential for cell function and viability. It is a component of the plasma

membrane and lipid rafts and is a precursor for bile acids, steroid hormones, and Vitamin

D. As a ligand for estrogen-related receptor alpha (ESRRA), cholesterol becomes a

signaling molecule. Furthermore, cholesterol-derived oxysterols activate liver X receptors

(LXRs) or estrogen receptors (ERs). Several studies performed in cancer cells reveal

that cholesterol synthesis is enhanced compared to normal cells. Additionally, high

serum cholesterol levels are associated with increased risk for many cancers, but thus

far, clinical trials with 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase

inhibitors (statins) have had mixed results. Statins inhibit cholesterol synthesis within cells

through the inhibition of HMG-CoA reductase, the rate-limiting enzyme in the mevalonate

and cholesterol synthetic pathway. Many downstream products of mevalonate have a

role in cell proliferation, since they are required for maintenance of membrane integrity;

signaling, as some proteins to be active must undergo prenylation; protein synthesis, as

isopentenyladenine is an essential substrate for the modification of certain tRNAs; and

cell-cycle progression. In this review starting from recent acquired findings on the role

that cholesterol and its metabolites fulfill in the contest of cancer cells, we discuss the

results of studies focused to investigate the use of statins in order to prevent cancer

growth and metastasis.

Keywords: cholesterol, statins, cancer treatment, lipid raft, oxysterols, steroids, vitamin D, ERRalpha

INTRODUCTION

Cholesterol homeostasis is required for the normal growth of eukaryotic cells. Cholesterol is
needed within cell membranes where it regulates membrane fluidity, signaling initiation, and
cell adhesion to the extracellular matrix (1). In mammals, cholesterol is a precursor for bile acid
and steroid hormone synthesis, cholesterol can be derived from food or synthesized de novo
by specialized cells. The low-density lipoprotein (LDL) receptor (LDLR) is the primary pathway
for removal of cholesterol from the circulation (2) and its activity is accurately controlled by
intracellular cholesterol levels (3). The biosynthetic pathway of cholesterol is highly conserved,
from yeast to humans. In the mitochondria, citrate, derived from the tricarboxylic acid (TCA)
cycle, is converted to acetyl-coenzyme A (acetyl-CoA) beginning cholesterol synthesis. In the
endoplasmic reticulum, acetyl-CoA is converted to lanosterol through a cascade of enzymatic
reactions known as the mevalonate pathway. This series of reactions is regulated by a rate-limiting
step catalyzed by 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, which converts
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HMG-CoA to mevalonate. Downstream products of
mevalonate, include cholesterol, ubiquinone, dolichol, and
the isoprenoids geranylgeranyl pyrophosphate (GGPP)
and farnesyl pyrophosphate (FPP) that bind to several
small GTP-binding proteins such as Ras and Rho. Protein
prenylation facilitates protein translocation from the
cytosol to the membrane, promoting protein-protein and
protein-membrane interactions and regulating protein
function (4).

Several studies reported that cholesterol plays critical roles
in the progression of numerous cancers (5), suggesting how
cholesterol accumulation represents another general feature of
tumors. HMG-CoA reductase and LDL receptor activities are
increased in proliferating cancer cells, causing a rise in cholesterol
content and consumption (6, 7). Cholesterol synthesis is under
feedback control (8, 9), which is operated at the level of
mevalonic acid production (10–12).When exogenous cholesterol
is not available, the synthesis of mevalonate is increased in
order to maintain levels of cholesterol and isoprenoids. When
exogenous cholesterol levels are elevated a negative feedback
mechanism inhibits the synthesis of mevalonic acid (10–12), this
is particularly true for the liver (9), but in some species (13) for
all tissues, blocking the overall de novo synthesis of endogenous
cholesterol. In malignant cells this feedback mechanism is
lost (10).

Statins are cholesterol-lowering drugs, which inhibit the
rate-limiting step of conversion of HMG-CoA to mevalonate
(14). Statins can be differentiated into two types, based on
their solubility: hydrophilic (pravastatin, rosuvastatin) and
lipophilic (simvastatin, lovastatin, fluvastatin, atorvastatin)
statins. Several reports propose a promising role for statins
in cancer treatment (15). Observational studies have tried to
evaluate the effect of statins on patients with several cancer
types such as prostate (16), colorectal (17, 18), renal cell
carcinoma (19), breast (20), ovarian (21), and lymphoma
(22). Results are variable, with some studies suggesting longer
survival, and others reporting no benefit. Epidemiological
evidences are also variable, depending on the cancer particular
type as well as on the statin class used (23). Several data
suggest that lipophilic statins may be preferable over the
hydrophilic ones as anticancer agents (24). Statins anticancer
properties could be explained through their pleiotropic effects
such as lowering protein prenylation (17), reducing tumor
cell proliferation and migration (20, 25), inhibiting Ras
signaling (26) inducing apoptosis through inactivation of
Akt and down-regulation of mammalian target of rapamycin
(mTOR) (27).

Statins can interfere with cholesterol activities, which include:

• signal molecule on membrane rafts;
• substrate for steroids, oxysterols and Vitamin D3 synthesis;
• ligand for estrogen-related receptor alpha (ERRα).

In this review, we will discuss the results of studies focused
on the use of statins to the purpose of interfering with
cholesterol activities, in order to prevent cancer growth and
metastasis.

CHOLESTEROL AS SIGNAL MOLECULE
ON MEMBRANE RAFTS

Cholesterol can act as a signaling molecule at the membrane rafts
(28). It is well established that cholesterol-rich microdomains
in the plasma membrane and lipid rafts constitute centers of
organization for signal transduction and intracellular transport
(29). Rafts are small functional areas of the plasma membrane,
rich in sphingolipids and cholesterol. These regions are fluid but
more ordered and tightly packed than the surrounding bilayer,
because of saturated fatty acids. Rafts and related membrane
microdomains, such as caveolae characterized by high caveolin-1
expression, have been proposed to play important roles in sorting
of membrane molecules and in signal transduction in animal
cells (30). Glycophosphatidylinositol-anchored (GPI-anchored)
proteins; doubly acylated proteins, such as tyrosine kinases
of the Src family, Gα subunits of heterotrimeric G proteins,
endothelial nitric oxide synthase (eNOS), and cholesterol-linked
and palmitate-anchored proteins are examples of molecules that
can be found at membrane rafts (31).

Growth factors signaling are often deregulated in cancer
cells. Insulin-like growth factor-I (IGF-I) through its receptor
(IGF1R) is one of the most potent natural activators of the
phosphatidylinositol 3-kinase (PI3K) and its downstream
target Akt, which participate in cell survival pathway. The
PI3K/Akt pathway is compartmentalized within plasma
membrane raft domains (32). Activated PI3K/Akt control of
cell proliferation, apoptosis and tumorogenesis, and aberrant
activation of PI3K/Akt pathway contributes to the development
and invasiveness of cancer cells (33, 34).

Other studies suggest that, within lipid rafts localize both
epidermal growth factor receptor (EGFR) and Human Epidermal
growth factor Receptor 2 (HER2) and their signaling events
are dependent on cholesterol content of the lipid-rafts (35).
Once again, the disruption of the lipid rafts, via depletion
of circulating cholesterol levels, interferes with the receptor
activation, inhibiting cell growth and development (35–37).

Metastatic events are characterized by cell adhesion decrease
and cell migration promotion. Integrins and cell surface
glycoproteins such as CD44, have a central role in adhesion
mechanisms. CD44 is an adhesion molecule associated with
lipid rafts and expressed in several cancers (38, 39). It has been
demonstrated that ligand-binding ability of CD44 to hyaluronan,
is governed by its cholesterol-dependent localization to cell
membrane microdomains (40).

Several cancer cell types, including breast and prostate, have
higher membrane cholesterol levels and are richer in membrane
rafts (probably as a result of cholesterol accumulation) than
their normal counterparts. For this reason, cholesterol-depleting
agents are more effective in inducing apoptosis on these cancer
cells than on normal cells (41, 42). Rafts/caveolae are rich in
various signaling molecules and they have been associated with
a number of functions, including cell survival, proliferation, and
migration (28, 43).

It has been reported that apoptotic pathways, both extrinsic
(death receptor pathway) and intrinsic (mitochondrial), are
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associated with lipid rafts because changes in cholesterol content
within specific membrane regions regulate apoptotic signaling
events (41, 44). Signalings from death receptors Fas receptor
(FasR) and TNF-related apoptosis-inducing ligand (TRAIL)
receptors 1 and 2 are strictly dependent on translocation into
lipid rafts (44, 45). In fact, TRAIL- and Fas-mediated apoptosis is
down-regulated by lowering membrane cholesterol in non-small
cell lung carcinoma (46) and human Jurkat T leukemia cells (44).

Very recently, disruption of lipid rafts on breast cancer
(BC) cell lines MDA-MB231 and MDA-MB468, using the
cholesterol depleting agent methyl-β-cyclodextrin, resulted in
reduced proliferation and migration, induction of apoptosis
evidenced by cell shrinkage, membrane blebbing, nuclear
condensation, and chromatin cleavage (47). It was already
demonstrated for BC, that lipid rafts disruption causes decreased
migration and invasion downregulating caveolin-1 along with
urokinase-type plasminogen activator receptor (uPAR) and
matrix metallopeptidase 9 (MMP-9) (48). In general, proteins
identified in cancer lipid rafts include those involved in
endocytosis, Src signaling, cytoskeletal remodeling, chaperones,
extracellular matrix (ECM) remodeling (49).

Statins and Lipid Rafts
Based on the importance of cholesterol at the raft/caveola,
cholesterol depletion from the plasma membrane would disrupt
intracellular signaling triggered by cell surface receptors (50).
Statins lower cellular cholesterol content and thus are useful
in the analysis of lipid-raft function. However, the effect on
raft/caveola formation in cancer cells after statins treatment are
not completely defined.

Menter et al. (51), evidenced that simvastatin inhibited
the growth of several tumor cell lines with a time-dependent
behavior. A significant reduction in cellular cholesterol level
were observed after simvastatin treatment, starting at 24 h
and up to 72 h. During this time frame, authors observed a
reduction in cholesterol content at membrane rafts, caveolin-
1 phosphorylation inhibition, disruption of caveolae and
loss of membrane integrity. However, cholesterol depletion
affected membrane signaling also in caveolin-negative cells (52).
Specifically, using the prostate cancer (PCa) cells LNCaP, which
do not express caveolin, simvastatin lowered raft cholesterol
content, inhibited Akt signaling and induced apoptosis. In
addition, using the same cells grown as xenografts, authors
demonstrated that elevation of circulating cholesterol using a
cholesterol enriched diet, promoted tumor growth and survival,
as a consequence of activated Akt signaling via cholesterol-rich
lipid rafts (52).

In another study, four head-and-neck squamous cell
carcinomas (HNSCCs), four cervical carcinomas, five non
small cell lung cancers (NSCLCs), four colon carcinomas,
the epidermoid carcinoma cell line A431, and the breast
adenocarcinoma MCF-7 were treated with lipophilic lovastatin,
which inhibited EGF-induced EGFR autophosphorylation and
its downstream signaling cascades (53).

Similarly, another hydrophobic statin, simvastatin caused in
A431 cell line anoikis-like apoptosis, characterized by decreased

raft levels, Bcl-xL down-regulation, caspase-3 activation, and Akt
inactivation (41).

In PC-3 cells simvastatin treatment down-regulated IGF1R
expression (54) and inhibited both basal and IGF-1-induced
ERK and Akt activation (55). Raft modulating agents are more
effective in cells containing a higher content of lipid rafts. In
fact, breast (MCF-7, MDA-MB231) and prostate (PC-3, LNCaP)
cancer cell lines were more sensitive to cholesterol depletion-
induced cell death than normal breast and prostate cell lines
(MCF-10A and PZ-HPV7, respectively) (41).

Garnett et al. examined the effects of MβCD and the
hydrophilic paravastatin on cholesterol-rich rafts and caveolae
and on gene transcription in MDA-MB231 and CaLu-1, lung
adenocarcinoma. Both treatments caused a downregulation of
genes involved in signal transduction, chemokine and anti-
apoptotic pathways. Pravastatin increased expression of caveolin-
1, but caveolae density was decreased, because of caveolin-1
inability to properly complex with cholesterol in an altered sterol
environment. Similarly, MβCD caused an increase in caveolin-
1 expression and reduced both rafts and caveolae, however,
it had less effects on gene transcription. Indeed, signaling are
more profoundly affected by statins than by the cholesterol-
sequestering drug, indicating that not only cholesterol but
also some intermediates of cholesterol synthesis downstream of
mevalonate, play an important role in signaling pathways at the
caveolae (56).

It has been reported that primary cells, HEL, SET-2, and
UKE-1, derived from myeloproliferative neoplasms (MPNs)
patients require mutated Janus kinase 2 (JAK2), responsible
for increased growth signaling (57, 58). Simvastatin disrupts
lipid raft and has a negative effect on mutated JAK2-dependent
signaling.More specifically, inMPNs cells, simvastatin, lovastatin
and atorvastatin inhibited mutated JAK2 localization to lipid
rafts reducing cell viability, inducing apoptosis and inhibiting
colony formation (59). Colony formation assay is considered
a 3D cell culture assay where cells grow independently of a
substrate (it is also known as anchorage-independent growth).
This assay is particularly useful when studying long-term effects
of drugs on anchorage-independent growth of cancer cells.
Colony formation evaluates the ability of tumor cells, escaped
from the primary tumor site, to exit the blood flow and initiate
the post-intravasation phases of metastasis. CD44, as adhesion
molecule, plays a central role in the progression of metastasis.
The modulation of cholesterol either by statin or MβCD causes
dissociation of CD44 from the lipid rafts (40) suggesting that
membrane cholesterol may impact metastasis formation. Similar
to the results on CD44 cholesterol depletion triggers the shedding
of several molecules involved in cancer cell adhesion, including
CD30 (60), L1-CAM (61) and collagen types XVII (62) and
XXIII (63).

Activity of Ras-Related C3 Botulinum Toxin Substrate 1
(Rac1), a member of the Rho family of Small GTPase,
is dependent upon its localization in membrane rafts and
its activation is correlated with invasion and metastasis.
Cholangiocarcinoma cells treated with simvastatin lose Rac1 rafts
localization, because of decreased total cellular cholesterol and
disruption of membrane rafts. In normal human cholangiocytes,
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simvastatin reduced cholesterol level, but did not affect Rac1
localization. In addition, simvastatin inhibited cell proliferation
but, differently from cancer cells, it did not lead to apoptosis (64).

All these data unequivocally suggest that statins have a direct
impact on membrane rafts, reducing signaling transduction and
adhesionmechanisms in several cancer cell types, thus interfering
with cell proliferation and metastasis.

CHOLESTEROL AS SUBSTRATE FOR
STEROIDS AND OXYSTEROLS SYNTHESIS

Steroid hormones are synthesized from cholesterol in gonads,
adrenal cells and placenta (65). The de novo synthesis of some
steroid hormones occurs also in the nervous system (66, 67), in
cardiac tissue (68) and other peripheral sites (69).

Based on their physiological function, steroid hormones
are divided into five groups: mineralocorticoids, which act
on the kidney to retain sodium; glucocorticoids, involved
in the regulation of glucose metabolism; estrogens, which
induce female secondary sexual traits; progestins, which are
essential for reproduction; and androgens, which induce male
secondary sexual characteristics. These classes of hormones
contain the cyclopenta-phenanthrene nucleus and arise from
reactions catalyzed by enzymes that belong mainly to the
family of cytochrome P450 (CYP). They bind to specific steroid
hormone receptors, which act as transcription factors. The active
hormone/receptor complexes regulate transcription of distinct
set of genes in a tissue-specific manner.

Oxysterols represent 27 carbon-atom molecules derived from
cholesterol oxidization through enzymatic processes, or by-
products of the cholesterol biosynthetic pathway. Considering
the shorter biologic half-life when compared to cholesterol,
oxysterols can be considered a way to route cholesterol for
catabolism. Specific CYP, localized within the mitochondria or
endoplasmic reticulum, are responsible for oxysterol synthesis
(70, 71). Among them, the most abundant in human serum are
27, 24(S), 7α, and 4β hydroxycholesterol (HC). The 24(S)HC is
synthesized by cholesterol hydroxylase encoded by CYP46A1 in
neurons of the central nervous system (72). 7α and 27HC are
synthesized in the liver by CYP7A1 and CYP27A1, and represent,
respectively, the first intermediates of classic and acidic bile acid
synthetic pathways (73). However, 27HC and its synthesizing
enzyme CYP27A1 are found also in other cell types (74). Lastly,
4βHC is generated by CYP3A4, a hepatic drug metabolizing
enzyme.

Oxysterols act as ligands of Liver X Receptors (LXR) α

(NR1H3) and β (NR1H2) (75) to regulate transcription of specific
genes. LXRα is expressed primarily in liver, intestine, adipose
tissue and macrophages (76), and adrenal (77), whereas LXRβ is
expressed in many cell types (78).

LXRα is also involved in the regulation of the adenosine
triphosphate-binding cassette (ABC) proteins A1 and G1,
cholesterol transporters involved in the flux of cholesterol from
enterocytes and macrophages, respectively (79–82). LXRs also
seem to have a role in the regulation of human cholesterol ester
transfer protein (CETP), which translocates cholesterol esters

between lipoproteins (83). Either steroid hormones or oxysterols
activate proliferative and metastatic pathways in cancer cells.

Steroid Dependent-Cancer Growth and
Progression
It is well known that estrogens exert their biological effects
interacting with two members of the nuclear receptor (NR)
family, estrogen receptor α (ERα) or estrogen receptor β (ERβ)
(84) and with a G-protein coupled receptor namely GPER (85).
All three receptors can act at the cell membrane to activate
signaling transduction pathways that ultimately regulate gene
expression (rapid signaling). Additionally, ERα and ERβ can bind
promoter regions of target genes, modulating their transcription
(nuclear action). They directly bind DNA at estrogen response
elements (EREs) located within promoters of estrogen-regulated
target genes. Alternatively, they indirectly bind DNA through
the interaction with transcription factors (TFs) that directly
bind gene promoters. These TFs are stimulating protein 1 (Sp1)
(86), activator protein (AP)-1 (87), nuclear factor-κB (NF-κB)
(88). The oncogenic role of estrogens is well characterized
in carcinomas of hormone-sensitive tissues including breast,
prostate, endometrium and ovary, as well as in non-classical
estrogen target tissues such as, adrenal, colon, and lung (89).

Genes involved in cell survival and proliferation and
regulated by ERs, through direct or indirect binding to DNA,
include myelocytomatosis viral oncogene homolog (MYC),
cyclin D1 (CCND1), member RAS oncogene family 17 (RAB17),
eukaryotic translation initiation factor 3 subunit A (EIF3A),
and tumor protein D52-like 1 (TPD52L1) (90–92). Additionally,
membrane ERs engage a functional crosstalk with growth
factor receptors, including epidermal growth factor receptor
(EGFR), insulin receptor (IR), insulin-like growth factor receptor
(IGFR). Growth factor signaling can activate ERα in a ligand
independent fashion through phosphorylation, and at the same
time, estrogens can regulate IGF signaling (93). Treatment of
ERα positive BC with selective estrogen receptor modulators
(SERMs) such as tamoxifen, often leads to resistance. EGFR
and/or IGFR are critical for the resistance to endocrine therapies
(94). Additionally, transactivation of EGFR has been observed in
MCF7 breast cancer cells via tamoxifen-dependent activation of
GPER (95). The use of tamoxifen on patients with initial GPER-
positive tumors increased GPER protein expression, and survival
of these BC patients was markedly reduced (95).

Currently, a hot topic in the field of BC research is
the definition of the role of androgens and the androgen
receptor (AR), with studies revealing both tumor promotion and
inhibition (96–98). Expression of AR is associated with favorable
prognosis depending on the BC subtype and on whether ER
is expressed or not (99, 100). Recently, dihydroxytestosterone
(DHT) bound to AR has been shown to directly mediate
epigenetic modifications of the chromatin, regulating expression
of target genes (101). AR binds to ARE on target genes and,
with the help of Lysine-specific demethylase 1A (LSD1), regulates
histone modifications, demethylation by LSD1 at H3K4 of the
E-cadherin promoter represses gene expression; similarly, LSD1
demethylation at H3K9 activates vimentin gene expression.
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Importantly, LSD1 is crucial for epithelial to mesenchimal
transition (EMT) induction in several cancer cells (102, 103).

Prostate cancer relays on distinct proliferative pathways,
including the PI3K and RAS/RAF pathways downstream of
membrane AR activation; dysregulation of these pathways in
both early and late stage prostate cancer was demonstrated
through genomic profiling (104). In prostate cancer, androgens,
testosterone (T), and DHT stimulate proliferation and inhibit
apoptosis. Androgen ablation using anti-androgens such as
bicalutamide favors cancer regression. This event is related
to a lower rate of cell proliferation and to an increased rate
of cell death (105). However, many patients do not respond
to this therapy and die of recurrent androgen-independent
prostate cancer (AIPC), characterized by a high metastatic rate.
A crosstalk between androgen-sensitive PCa cells, androgen-
independent PCa cells, and PCa-derived stromal cells has been
very recently highlighted (106). Adrenal dehydroepiandrosterone
(DHEA) is metabolized to DHT in androgen-independent PCa
cells (AR negative cells, AR-) as well as in stromal cells. DHT
is able to activate AR in androgen sensitive PCa cells (AR
positive cells, AR+). Crosstalk among these cells may increase the
migration and invasion potential of androgen independent PCa
cells via EMT, evidenced by induction of N-cadherin, Snail and
vimentin (106). GPER seems to have a role in tumor growth and
progression of triple negative breast cancers (TNBC), tumors that
lack expression for ERα, progesterone receptor (PR) and HER2
(107, 108). AR directly binds to GPER promoter and treatment
with DHT decreases its transcription, possibly by competitively
blocking the binding of positive regulators of GPER transcription
(109). This reduced GPER expression following DHT treatment,
is associated with increased tumor growth (110). Indeed, GPER
role in TNBC is still controversial, with some studies indicating
GPER involvement in increased tumor growth and worse overall
survival (OS) (108) and some others a positive correlation
between GPER and OS (111).

Estrogens exert carcinogenic effects on the prostatic
epithelium. Combination of estradiol with low-doses of
testosterone increased the incidence of prostate carcinomas in
a rat model of PCa (112). Similar effects were observed in a
mouse model of PCa. When ERα was knocked out in those mice,
chronic treatment with testosterone combined with estradiol
was unable to induce PCa. Additionally, mice had reduced PCa
incidence when aromatase was knocked out. All together these
data indicate that autocrine-produced estradiol working through
ERα is determinant in PCa development (113). In agreement
with animal studies, in the human prostatic epithelium ERα is
overexpressed during the malignant transformation, supporting
its role as an oncogene (114). On the contrary, ERβ is considered
a tumor suppressor; in fact, its expression is decreased or lost in
about 40% of PCa (115).

Inhibitory functions of GPER activation in prostate cancers
has been demonstrated both in vitro and in vivo (116).

Statins and Steroid Production
Statins, by decreasing cholesterol synthesis, will also affect the
production of steroid hormones. Most steroid hormones are
produced by the gonads and adrenal cortex from cholesterol,

which is uptaken from the circulating LDL and HDL (117,
118). Since steroidogenesis requires an efficient intracellular
pool of cholesterol, by reducing its synthesis, statin therapy
could affect steroid production. Cortisol is a steroid hormone
produced by the adrenal gland, is mainly released at times
of stress, but in normal conditions, its production has a
circadian rhythm (119). The effects of statin treatment on cortisol
synthesis or cortisol levels were evaluated in several studies, that,
however, did not demonstrate any significant effect of statins
on cortisol levels (120, 121). An increase in plasma cortisol
concentrations was highlighted by a recentmeta-analysis study of
data from seven randomized controlled trials with various statins
(122). In general, the study demonstrated a higher impact of
lipophilic statins (atorvastatin, lovastatin, and simvastatin), when
compared to hydrophilic statins (pravastatin and rosuvastatin)
(123). The increase in cortisol after statin treatment might
explain the previously demonstrated anti-inflammatory effects
of these drugs. The precise mechanism underling the rise in
cortisol after statin use is not known. Studies evaluating the
effect on hypothalamic-pituitary system or adrenal cortex itself
should be performed to explain the mechanism activated by
statins and responsible for the increase in cortisol levels. Based
on the observation that only liphophilic statins, which have
a greater non-hepatic distribution, affect cortisol levels, it can
be speculated that statins have a direct effect on the adrenal
gland. Enhancement of LDL-receptor expression, following the
inhibition of adrenal HMG-CoA reductase, is responsible for
increased cholesterol uptake allowing higher substrate availability
for cortisol production. The effect of statins on the expression
of steroidogenic enzymes involved in cortisol production is
unknown.

A systematic review and meta-analysis of randomized
controlled trials demonstrated that among 501
hypercholesterolemic men statins lowered testosterone;
similarly, testosterone was reduced in a trial of 368 young
women with polycystic ovary syndrome (PCOS) (124).

The direct effect of statins on HMG-CoA reductase in
tumor cells is responsible for decreased substrate availability,
lowering estrogens and androgens production that drive
BC and PCa respectively. Recently, it has been found that
statins and dehydroepiandrosterone sulfate (DHEAS) compete
for the same transporter, SLCO2B1. Statin administration
competitively reduces uptake of DHEAS and consequently
tumor cell proliferation of PCa cell lines. The authors
demonstrated that statin use at the time of androgen
deprivation therapy initiation was associated with delayed tumor
progression (125).

In physiological conditions, the prostate is not a steroidogenic
site; but steroids, particularly testis-derived testosterone and
DHT, regulate its function. In the context of a tumor, prostatic
cells become capable of autonomous steroidogenesis (126).
Evaluation of statin effects on the expression of steroidogenic
enzymes in PC3 cells, demonstrated no effects on steroidogenic
acute regulatory protein (StAR), cytochrome P450 family 11
subfamily A member 1 (CYP11A1), cytochrome P450 family
17 subfamily A member 1 (CYP17A1), hydroxy-delta-5-steroid
dehydrogenase, 3 beta- and steroid delta-isomerase 2 (HSD3B2),
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steroid 5 alpha-reductase 2 (SRD5A2), and aldo-keto reductase
family 1 member C2 (AKR1C2). Conversely, the expression
of 17β-hydroxysteroid dehydrogenase type 5 (AKR1C3) was
increased and 3β-hydroxysteroid dehydrogenase 1 (HSD3B1)
was decreased. These changes in gene expression are responsible
for the increase in DHT and T observed following simvastatin
treatment (55).

All these studies suggest that steroidogenic tissues are
potential sites for statins effect. On the adrenal gland there is
no clear modulation of cortisol production, with only lipophilic
statins having a direct effect on the adrenal and increasing cortisol
synthesis. On the testis and PCOS statins reduce T production. In
the context of tumors, there are discording data, reporting both
decrease and increase in T production.

Oxysterols Dependent-Cancer Growth and
Progression
Epidemiological studies evidenced that high levels of dietary
cholesterol would increase the risk of BC in postmenopausal
women and the risk of cancers of the stomach, colon, rectum,
pancreas, lung, kidney, bladder and non-Hodgkin lymphoma
(127). This is probably due to increased oxysterol production
which parallels hypercholesterolemia. Elevated concentrations of
oxysterols have been associated with colon (128), lung (129),
breast (130, 131), skin (132), prostate (133), and bile duct (134)
cancers.

Among oxysterols, 27HC is synthesized by CYP27A1,
which has a broad substrate specificity and is present in
most tissues and not only in the liver. However, 27HC is
not an efficient activator of human LXRs (75), instead has
been identified to bind ERs (135). 27HC, binds the ERα

on epithelial cells of the mammary gland and promotes BC
growth (130, 131), while binding LXRα increases metastasis
in the MMTV-PyMT mouse model of BC. Similarly, 25HC
enhances cell proliferation of a breast cancer cell line via
the activation of ERα target genes (136). Both 25HC and
27HC increased the transcription of ER target genes in long-
term estrogen deprived BC cell lines, suggesting that these
oxysterols replace estrogens and activate ER-mediated gene
expression. This event can explain a mechanism involved in
the development of resistance to aromatase inhibitors (137).
Interestingly, BC patients treated with aromatase inhibitors had
significantly increased plasma levels of 27HC and moderately
increased levels of 25HC after 28 days of treatment (138),
supporting a potential role of 25HC and 27HC level in patient
outcome.

More recently, effects of 27HC have been studied in
both androgen-responsive LNCaP (AR+) cells and androgen-
irresponsive PC3 (AR-) prostate cancer cells. Both cell types
increased proliferation in response to the oxysterol binding to
ERβ (133).

Oxysterol-binding protein (OSBP) (139) and OSBP-related
proteins (ORPs) were originally isolated because of their
ability to bind oxysterols, and later cholesterol (140). They
comprise a 12-member mammalian gene family, characterized
by a conserved OSBP homology domain (OHD) that binds

sterols and lipids, as well as the pleckstrin homology (PH)
domain and two phenylalanines in an acidic tract (FFAT)
motif that mediate interaction with organelle membranes. Upon
binding to cholesterol, OSBP promotes ERK (extracellular
signal regulated kinase) activity and hence cellular proliferation
(140). Among them ORP4, also known as OSBP2, is expressed
constitutively in brain, heart and testis, where is expressed
as three variants, ORP4L, ORP4M, and ORP4S. Recently,
cell growth regulatory activity has been evidenced for ORP4
(141). ORP4 binds sterols and phosphatidylinositol 4-phosphate
(PI4P), and binding activity is required for ORP4 to promote
cell proliferation and survival (141). Silencing of all ORP4
variants (ORP4L, ORP4M, ORP4S) in HEK293 and HeLa cells
inhibited cell proliferation and promoted growth arrest without
inducing cell death (141). ORP4L promoted proliferation of
three different cervical carcinoma cell lines. (142). ORP4 has
been identified as high-affinity cellular receptor for a group of
natural products named ORPphilins that potently inhibit the
growth of human cancer cell lines (143). Administration of
25HC, a high-affinity ligand for ORP4, suppressed ORPphilin
activity.

Statins and Oxysterols Production
A recent phase II clinical trial aimed to investigate effects
of statins on BC growth related to a reduction in 27HC
levels. Patients were treated with 80 mg/day of atorvastatin to
investigate the impact of statin treatment on serum 27HC and
on tumor-specific CYP27A1 expression. Atorvastatin exhibited
an anti-proliferative effect evidenced by changes in Ki67 index,
which did not significantly correlate with changes in either serum
27HC or changes in intratumoral CYP27A1 protein expression.
Collectively these data indicate that the anti-proliferative
responses to statin treatment do not depend on 27HC
reduction (144).

However, 27HC can still affect proliferation of BC resistant
to aromatase inhibitors (AI). It has been suggested that AI-
resistant tumors can still proliferate in response to 27HC, which
similarly to E2 activates ERs (131). In fact, despite lower estrogen
levels, aromatase inhibitors resistant tumors have extensive
ERα binding to target genes. This is due to ERα activation
by 27HC synthesized consequently to stable up-regulation of
the entire cholesterol biosynthetic pathways, including genes
involved in 27HC biosynthesis. Statins, reducing cholesterol,
reduce 27HC, and decrease ERα binding to DNA, abrogating cell
invasion (145).

Statin treatments do not seem to have any beneficial effect
on the rate of appearance of prostate cancer, but definitively
has an effect on the incidence of advanced PCa (146–148).
Moreover, in the PC3 prostate cancer cell line, statins prevent
the cell migration potential therefore reducing the formation of
metastatic prostate colonies; however, the mechanism relies on
inhibition of prenylated proteins, not on inhibition of oxysterol
formation (149).

These observations suggest that the reduction of oxysterol
production by statins treatment could have effect on specific
tumors preventing cell migration and invasion.
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CHOLESTEROL AS SUBSTRATE FOR
VITAMIN D SYNTHESIS

Cholesterol is the precursor molecule for vitamin D. There are
two major isoforms of vitamin D: vitamin D2 (ergocalciferol),
and vitamin D3 (cholecalciferol) (150, 151). UVB radiations are
needed to synthesize VitaminD2 from ergosterol in plants, yeasts,
and fungi and can be ingested from a diet containing food
products of plant origin. In humans, vitamin D3 is synthesized
from 7-dehydrocholesterol by UVB radiation in the epidermis
of skin and can also be derived from the diet containing food
products of animal origin.

Vitamin D is a prohormone that undergoes two-step
metabolism in the liver by CYP27A1 to produce the 25(OH)D
(calcidiol) and in the kidney by CYP27B1 to produce the
biologically active metabolite 1α,25(OH)2D3 (calcitriol) which
binds to the vitamin D receptor (VDR) regulating expression
of diverse genes (152). CYP27B1 is also expressed in multiple
extra-renal sites, including cancer cells (153). Thus, calcitriol can
function in an endocrine (systemic) or autocrine manner when it
is locally synthesized. Serum level of 30 to 50 ng/mL is normal for
healthy people. Vitamin D deficiency and insufficiency is defined
as serum 25-hydroxyvitamin D [25(OH)D] levels <20 and 21 to
29 ng/mL, respectively.

Recent studies have revealed that vitamin D can also be
metabolized and activated through a CYP11A1-driven non-
canonical metabolic pathway (154). The products of CYP11A1,
such as 20(OH)D and its hydroxy-metabolites, produce
differentiation, have anti-proliferative and anti-inflammatory
effects in skin cells comparable or superior to calcitriol (155).
Low vitamin D levels increase cancer risk, as evidenced by

epidemiological, preclinical and cellular studies (154, 156). In
particular, many in vitro studies, performed in several malignant
cell lines, showed that the anti-cancer activity of this molecule is
related to the inhibition of proliferation and angiogenesis and
induction of apoptosis (157).

Epidemiological studies showed that serum levels of 25(OH)D
adversely correlate with prostate cancer risk (158). In men living
at high latitude, as in Scandinavia, 25(OH)D blood serum levels
are below 16 ng/mL and the incidence of prostate cancer is high
(159). It was observed that 1α,25(OH)2D3 inhibited proliferation
and stimulated apoptosis of VDR-positive prostate cancer cells
and, interestingly had an anti-inflammatory effect toward this
subtype of prostate tumors (160).

In BC cells 1α,25(OH)2D3 caused cell cycle arrest, by
interfering with cyclin-dependent kinases activity (161).
Additionally, apoptosis can be activated by reducing bcl-2 and
up-regulating p53 levels (162). Cell proliferation can be inhibited
by 1α,25(OH)2D3, interfering with ER function. Specifically,
1α,25(OH)2D3 and its analogs down-regulate the expression
of ERα, which in turn reduced estrogen-dependent activation
of mitogenic signal (163). Another action of 1α,25(OH)2D3
against breast cancer cells is the down-regulation of aromatase
expression (164).

Proliferation of colon cancer cells was inhibited by
1α,25(OH)2D3 and its analogs, that caused a cell cycle arrest at
the G0/G1 phase. This was consequent to enhanced expression
of p21 and p27, two cyclin-dependent kinase inhibitors, and to
reduced expression of cyclin D1 and cyclin E (165). In addition,
following colon cancer cells treatment with 1α,25(OH)2D3,
genes with a pro-apoptotic function were increased, while those
anti-apoptotic were downregulated (166). It was observed that

FIGURE 1 | Potential mechanisms explaining antitumoral effects of statins. Cholesterol, after its utilization as signaling molecule (A), as substrate for steroids (B),

oxysterols (C), and 1α,25(OH)2D3 synthesis (D) or as ligand for ERRα (E), regulates tumor growth and progression. Statins, inhibiting cholesterol synthesis, interfere

with (A) and (C). Further studies are needed to confirm statins ability to: reduce production of steroid hormones involved in cancer progression (B), increase serum or

intratumor 1α,25(OH)2D3 levels (D) or interfere with ERRα activity (E).
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in differentiated human colon tumors CYP27B1 expression is
enhanced compared to untransformed colon mucosa. It was
observed a parallel increase of VDR and CYP27B1 mRNA during
early tumor progression. This suggests that 1α,25(OH)2D3
synthesized in colonocytes and bound to its receptor could
exert its anti-mitotic function in both an autocrine and a
paracrine fashion to prevent intestinal tumor formation and
progression during early phases of colon tumorigenesis. In fact,
in high-grade undifferentiated tumors, expression of CYP27B1
is decreased (167). However, other reports did not find a rise in
CYP27B1 expression in tumors, possibly because there was not
a distinction for the biological grade of the tumor (168). With a
very similar pattern of expression, when compared with normal
colon mucosa, VDR expression is increased in early stages of
tumorigenesis, but declines in late-stage tumors (169–171).
Alternatively, 1α,25(OH)2D3 produced during early phases
of transformation could interact with other receptors such as
thyroid receptors (TR) (172) and induce cell proliferation. In
fact, the expression of TRβ1 was found associated with polypoid
growth and with higher histological grade and advanced stage
(173). To confirm a protective role for 1α,25(OH)2D3, CYP24A1,
the degrading enzyme, has enhanced expression in the majority
of colon adenocarcinomas, keeping low 1α,25(OH)2D3 levels
(174). Adrenocortical cancers express VDR, its activation by
slightly supra-physiological concentrations of 1α,25(OH)2D3
has a moderate anti-proliferative effect, that is related to cell cycle
arrest, promoting accumulation of cells in G1 phase, without
inducing apoptosis. Additionally, VDR activation decreases
cortisol, aldosterone, and DHEA-S production (175).

A very recent study demonstrated no impact of statin therapy
on plasma vitamin D levels (176). However, a meta-analysis
report indicated opposite data, with statins causing an increase
in vitamin D serum levels (177), this effect was observed
with lovastatin (178), simvastatin (179), atorvastatin (180), and
especially rosuvastatin (181, 182). If further confirmed, these
data might help explaining the anti-neoplastic effect exerted
by statins on colon cancer (183–185). Currently, there are no
studies investigating the effects of statins on intratumor vitamin
D synthesis despite vitamin D can act in an autocrine manner
to regulate cancer growth. For these reasons further studies on
specific tumor are necessary to establish a direct effect of vitamin
D on cell tumor proliferation and consequently if statins could
induce anti-tumoral effects modulating intra-tumoral vitamin D
levels.

CHOLESTEROL AS ESTROGEN-RELATED
RECEPTOR ALPHA (ERRα) LIGAND

The Estrogen-related receptor (ERR) family is known to
comprise three members [ERRα (NR3B1), ERRβ (NR3B2),
and ERRγ (NR3B3)] (186). ERRα is ubiquitously expressed
in adult tissues; ERRβ is detected at low levels in the liver,
skeletal muscle, stomach, heart, and kidney; ERRγ is widely
expressed and can be detected in brain, lung, bon marrow,
adrenal and thyroid glands, trachea and spinal cord. The
ERRs, like most NRs, are organized in functional domains

for ligand (LBD) and DNA binding (DBD), in addition to
an activation function 1 (AF-1) involved in cofactors binding.
ERα and ERRα LBD share only 37% amino acid homology,
indicating low affinity for common ligands, and in fact estradiol
fails in activating ERRα (186). While ERRβ and ERRγ are
still orphan receptors since their natural ligands have not
been identified, ERRα is an adopted orphan receptor, for
which ligand has been identified to be cholesterol (187).
This finding implies cholesterol involvement in mitochondrial
metabolism and biogenesis. In fact, ERRα regulates the
expression of a broad range of genes driving mitochondrial
biogenesis, the tricarboxylic acid (TCA) cycle, and substrate
oxidation.

ERR monomers preferentially recognize the consensus site
referred to as the ERR-response element (ERRE). ERRα and
ERα share 68% amino acid identity in the DBD, indicating
that the two receptors can potentially regulate common genes.
Indeed ERR dimers can bind to the ERE, and ERα dimers
can also recognize ERRE sites (188). ERα and the ERRs
compete for common coactivators such as steroid receptor
coactivator (SRC) proteins in transfected cells (189). In addition,
another coactivator, the small heterodimer partner (SHP), a
coregulator of ER, interacts with all members of the ERR
family inhibiting their transcriptional activity. Thus, ERRs and
ERs have the potential to differentially regulate common target
genes.

ERRα transcriptional activity in normal cells has important
roles in cellular metabolism, this is particularly relevant
in rapidly dividing cells such as tumor cells. Cholesterol
interaction with ERRα (187) allows recruitment of coactivators
PGC1α/β and increases ERRα transcriptional activity. ERRα

interaction with PGC1α favors osteoclastogenesis (190) and
bone reabsorption in osteoclasts, myogenesis (191) and
decreases muscle toxicity in myocytes (187). Differently
from other nuclear receptors, ERRα is constitutively active
because cholesterol is ubiquitous, meaning that it does not
require any spike in ligand concentration, as is the case for
steroid hormone receptors. ERRα antagonists have been
found to induce cancer cell death (192, 193), inhibit tumor
growth (194) and improve insulin sensitivity and glucose
tolerance (195).

The use of statins or drugs targeting the SREBP metabolic
pathways could be a promising option to counteract ERRα-
dependent metabolic rearrangement. Identification of cholesterol
as ERRα ligand is relatively new, so far no studies have
investigated statins effects on ERRα activity in tumor cells.
However, the discovery of cholesterol as ERRα ligand has
elucidated the mechanism behind statin-induced muscle
toxicity (187).

CONCLUSIONS

Statins are widely used drugs for their ability to lower cholesterol
levels in hypercholesterolemic patients. Their mechanism of
action consists in the inhibition of HMG-CoA reductase, the
main enzyme involved in cholesterol biosynthesis.
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Aim of this review was to discuss the results of studies focused
on the use of statins to the purpose of interfering with cholesterol
activities, in order to prevent cancer growth and metastasis.

Cholesterol plays an important function as part of membrane
rafts where is involved in the modulation of signaling
transduction related to cell proliferation and migration
(Figure 1A). Data discussed herein unequivocally suggest that
statins have a direct impact on the function of membrane rafts,
inhibiting, in tumor cells, pathways regulating growth, and
metastasis. Cholesterol represents a precursor for estrogens
and androgens, hormones involved in modulating cell
proliferation, migration, invasion and apoptosis in different
cancers (Figure 1B). Even though steroidogenic tissues are
potential sites for statins effects, there are discording data on
a direct role for statins in decreasing steroid production in
hormone-dependent cancers. Furthermore, using cholesterol as
substrate for specific metabolizing enzymes it is also possible
to produce oxysterols, such as 27HC, which has been shown
to act as an endogenous selective estrogen receptor modulator
able to increase cancer growth and metastasis (Figure 1C). Data
discussed in this review suggest that the reduction of oxysterol
production caused by statins could have a strong effect on
specific tumors (i.e., breast cancer) preventing cell migration and
invasion.

Cholesterol is also precursor of vitamin 1α,25(OH)2D3, which
is involved in modulating VDR-responsive genes, encoding for
proteins involved in anti-proliferative signaling (Figure 1D).
However, the analysis of data published in this field suggest
that further studies are necessary to establish a direct effect
(anti-proliferative or proliferative) of vitamin D on different cell
tumors and consequently if statins could induce specific effects
modulating intra-tumoral vitamin D levels.

In conclusion, while the anti-tumor effects produced by
statins on cholesterol-mediated transduction mechanisms at
the membrane raft or on oxysterols synthesis, appear to be a

promising therapeutic strategy, further studies are needed to
determine if cholesterol depletion is a valid strategy to limit
the effects of steroid hormones on endocrine-dependent tumors.
The ability of statins to increase 1α,25(OH)2D3 serum levels
need to be confirmed, in order to define another antitumor
mechanism for these drugs. Recently, the discovery of cholesterol
as ERRα ligand has elucidated the mechanism behind statin-
induced muscle toxicity; however, no studies have investigated
statins effects on ERRα activity in tumor cells (Figure 1E). This
last aspect has opened a new field of investigation, in fact,
strategies aimed to reduce cholesterol levels, such as the use of
statins or drugs targeting SREBP metabolic pathways, could be a
promising option to counteract metabolic rewiring in cancer cells
where ERRα plays a pivotal role.

Preclinical studies support the potential use of statins as
anticancer agents. Epidemiological studies indicate that statin
use is associated with a reduction in the incidence of some
tumor types. The few clinical trials of statins as monotherapy
do not provide convincing results; however, in combination
therapy with other agents, statins have shown more promising
data. Conclusion of clinical trials not yet completed and
publication of data from closed trials will provide a wider

picture on the effectiveness of this class of drugs as anticancer
therapy.
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