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Cell division drives DNA methylation loss
in late-replicating domains in primary
human cells

Jamie L. Endicott1, Paula A. Nolte1, Hui Shen1 & Peter W. Laird 1

DNA methylation undergoes dramatic age-related changes, first described
more than four decades ago. Loss of DNA methylation within partially
methylated domains (PMDs), late-replicating regions of the genome attached
to the nuclear lamina, advances with age in normal tissues, and is further
exacerbated in cancer. We present here experimental evidence that this DNA
hypomethylation is directly driven by proliferation-associated DNA replica-
tion. Within PMDs, loss of DNA methylation at low-density CpGs in A:T-rich
immediate context (PMD solo-WCGWs) tracks cumulative population dou-
blings in primary cell culture. Cell cycle deceleration results in a proportional
decrease in the rate of DNA hypomethylation. Blocking DNA replication via
Mitomycin C treatment halts methylation loss. Loss of methylation continues
unabated after TERT immortalization until finally reaching a severely hypo-
methylated equilibrium. Ambient oxygen culture conditions increases the rate
ofmethylation loss compared to low-oxygen conditions, suggesting that some
methylation loss may occur during unscheduled, oxidative damage repair-
associated DNA synthesis. Finally, we present and validate amodel to estimate
the relative cumulative replicative histories of human cells, which we call
“RepliTali” (Replication Times Accumulated in Lifetime).

Age-associated DNA hypomethylation1–4 is associated with several
intertwined spatio-temporal features. DNA methylation loss occurs
primarily within PMDs, which largely coincide with late replication
timing domains5–11, are enriched in higher order chromatin compart-
ment B12, and tend to be associated with the nuclear lamina7. Cancer-
associated DNA methylation loss6,7,13 is accompanied by changes in
replication timing and 3D genome organization14. Replicative senes-
cence alters 3D genome compartmentalization15–17. Replication timing,
altered in both cancer and aging-associated diseases including
progeria18–20, is purported tomaintain the epigenome21,22, although this
relationship may be bidirectional23.

Epigenetic ‘clocks’—models trained upon large DNA methylation
datasets to predict either chronological age24–26 or features of biolo-
gical aging27,28—have emerged as powerful tools in aging research in
recent years, facilitated by the affordability of DNA methylation
microarrays and the subsequent availability of increasingly large

publicly available datasets. DNA methylation clocks have far out-
performedothermetricsof biological age, suchas telomere length and
transcriptional signatures. Although much focus is on the epigenetic
age acceleration that is observed with a multitude of diseases28,29, and
the slowing or reversal of epigenetic age30, recent clock iterations have
the intriguing ability to estimate chronological age across mammalian
species31,32, likely detecting conserved features of aging. Although
there have been recent attempts to retroactively classify underlying
clock mechanisms33, a major limitation to the interpretation of clock
results is the lack of understanding of what drives the methylation
behaviors of each clock’s CpGs.Whether the age-associated changes in
DNAmethylation actively contribute to aging, or aremerely passenger
events, remains largely unknown.

By their nature, chronological methylation clocks are not mitotic
clocks. The various tissues within an organism have the same chron-
ological age, but are comprised of cell types with different
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proliferation rates and replicative histories34. DNA methylation clocks
calibrated to organismal age therefore need to be impervious to cell
type composition differences. This eliminates DNA methylation
changes that directly reflect ongoing or past cell division from most
epigenetic clocks trained to chronological age using multiple tissues.
The process of cell division requires the passage of chronological time,
but the two can be unlinked since time can pass without cell division,
such as in post-mitotic cells.

It is important to distinguish between replicative history and
proliferation rate. Replicative history refers to the cumulative number
of cell divisions within a single cell’s lineage. Proliferation rate refers to
the number of divisions per unit of time, usually as a current, ongoing
measure. In the greater context of biological aging, three of nine
‘Hallmarks of Aging’ are attributable, in great part, to cumulative cell
divisions: telomere attrition, stem cell exhaustion, and cellular
senescence5. Therefore, replicative history is closely tied to biological
age and thus an important feature to measure independent of biolo-
gicalmeasures of chronological time. In light of this, the term ‘clock’ is
a misnomer for estimates of cumulative cell divisions. A ‘counter’,
‘enumerator’ or ‘tally’wouldmore accurately capture the nature of cell
division. However, the term ‘epigenetic mitotic clock’ has become
cemented into the existing literature for proposed DNA methylation-
based measures of cell division33,35.

We have previously identified a hypomethylation-prone sequence
signature, PMD solo-WCGW, representing PMD CpG dinucleotides
immediately flanked by an adenine or thymine (‘W’) and located at
least 35 bp away from the nearest CpG (‘solo’)36 (Fig. 1b). PMD solo-
WCGW hypomethylation appears to correspond to the approximate
replicative history of various tissue types and malignancies, and we
hypothesized that this could be attributed to incompletemaintenance
methylation at each cell division6. Subsequent analyses by other
groups confirmed that methylation at PMD solo-WCGWs is indeed
maintained poorly relative to other sequence contexts37. However,
there has been little direct experimental evidence to establish a causal
or mechanistic link between replicative history and PMD hypomethy-
lation, and this interpretation has been challenged by others in the
field38,39.

Here, we show experimental evidence that hypomethylation
within PMDs is driven by cell division. Erosion of PMD methylation at
the most hypomethylation-prone sequence context, solo-WCGW,
occurs progressively in each cell type studied and continues after
immortalization until equilibrium is reached at a very low DNA
methylation level.We further characterize the roles of gene expression
and replication timing in PMD methylation maintenance. Finally, we
present a model, RepliTali, trained on cultured primary cells, to infer
replicative history.

Results
Context-dependent methylation change in response to cell
divisions
We used serial primary human cell cultures to closely track the in vitro
replication of cell populations. Primary human cells (n = 7, Supple-
mentary Data 1) were obtained from the NIA Aging Cell Culture
Repository Apparently Healthy Collection, at the Coriell Institute for
Medical Research, and cultured under recommended conditions with
multiple parallel subcultures originating from the same initiating cells
(Fig. 1a) through replicative senescence, tracking cumulative cell
divisions (population doublings, PDs) at each passage (methods). At
each passaging, a fraction of cells was retained for DNA methylation
analysis using the Infinium MethylationEPIC array (Illumina).

Analysis of DNA methylation revealed divergent behavior
between non-CGI CpGs within different contexts: CpGs located in
PMDs progressively lost methylation, and CpGs located outside PMD
boundaries experienced either a slight gain ofmethylation if they were
located near other CpGs (‘social’), or a slight loss ofmethylation if they

were isolated ‘solo’ CpGs (Fig. 1c). For CpGs within PMDs, the rate of
hypomethylation appears influencedby immediate context, againwith
‘solo’ CpGs losing methylation more rapidly than ‘social’ CpGs, and
specifically with solo-WCGWs experiencing the most dramatic
methylation loss, which is consistent with previous cross-sectional
static characterizations in tissues.

We investigated whether PD-dependent PMD solo-WCGW
hypomethylation occurs in different cellular contexts. We observed
that across a range of primary human cell types from different
developmental stages, the median methylation of PMD solo-WCGWs
is tightly anticorrelated with PDs (Fig. 1d). The starting median
methylation varies across the primary cells, suggesting that the tis-
sues from which these cells were derived have distinct replicative
histories—an observation consistent with the variation in donor age
and source tissue. In addition, the rates of global PMD solo-WCGW
methylation loss vary between cell types, perhaps reflecting different
landscapes of CpG behavior. The pattern of methylation loss at
individual PMD solo-WCGWs was reproducible between biological
replicates (Fig. 1e).

PMD solo-WCGW methylation loss is driven by proliferation-
associated DNA replication
Elapsed time is linearly correlated with PDs until near-senescence for
each primary cell culture with a constant rate of cell division (Sup-
plementary Fig. 1a). As a result, methylation at PMD solo-WCGWs also
correlates strongly with time (Supplementary Fig. 1b). Therefore, the
serial passage by itself cannot distinguish between time-dependent
loss of DNA methylation versus hypomethylation driven by cell
division. To determine whether PMD solo-WCGWmethylation loss is
driven by cell division, or merely ensues with the passage of time, we
cultured primary human fibroblasts with media containing decreas-
ing concentrations of fetal bovine serum to impose different pro-
liferation rates. We found that decreased rates of cell division by
serum deprivation caused a dose-dependent reduction in DNA
methylation loss, consistent with proliferation-associated loss of
PMD solo-WCGW methylation (Fig. 1f–h). We have previously hypo-
thesized that PMD solo-WCGW methylation loss is driven by incom-
plete maintenance methylation. Evidence from other groups has
found that the solo-WCGW context is maintained inefficiently,
although replication-uncoupledmethylation was able to compensate
somewhat, at least for a single cell cycle37. To test whether methy-
lation loss is indeed driven by proliferation-associated DNA synth-
esis, we transiently treated several primary cells (n = 3) for 3 h either
with mitomycin C (MMC), a DNA replication inhibitor that can
achieve full permanent cell cycle arrest, or with vehicle control, and
maintained the cells for several weeks free of drug (Fig. 1i–k). Two of
three primary cells did not lose significant PMD solo-WCGW methy-
lation upon DNA synthesis arrest via MMC (one-sided t-test of logit-
transformed beta values: AG11182: p-val 0.28, AG11546: p-val 0.60,
AG16146: p-val 1.2e−4). Interestingly, MMC-treated adult
fibroblast AG16146 did lose a statistically significant amount of
methylation at PMD solo-WCGWs, albeit roughly 5x less than the
control condition, indicating that these cells may have somewhat
higher tolerance for MMC (Fig. 1i, k). Untreated, freely proliferating
cells all experienced significant methylation loss (p-val <2.2e−16 for
each cell) albeit at different levels (change in fractional methylation
from pre-treatment 0.048 AG16146, 0.028 AG11182, 0.03 AG11546),
again suggesting that these primary cells may have unequal sus-
ceptibility to MMC. Despite this, these experiments clearly show that
PMD solo-WCGW methylation is lost as a function of cellular pro-
liferation. Importantly, MMC treatment may have effects beyond the
blockade of DNA synthesis. However, our results, plus previous
mechanistic studies37, strongly indicate that progressive methylation
loss at PMD solo-WCGWs is caused directly by a failure of main-
tenance re-methylation.
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Fig. 1 | Methylation loss at PMD solo-WCGWs is driven by proliferation-
associated DNA replication. a Schematic illustration of primary cells cultured
through replicative senescence. b Illustration of immediate (≤35 bp) CpG contexts
investigated in this study. c Fractional methylation change per population doubling
(PD) for neonatal foreskin fibroblast AG21839 at select CpG contexts, within and
outside of common partially methylated domain (PMD) boundaries. HMD: highly
methylated domains. CpGs within CGIs were excluded. d Median fractional
methylation of multiple primary cells derived from unique donors and tissues
(n = 7) plotted against PDs achieved during this study. e DNA methylation heatmap
of PMD solo-WCGWs during primary cell culture of neonatal foreskin fibroblast
AG21859. Heatmap is separated by parallel subculture, with samples ordered from

passage 1 through replicative senescence. f–h Primary fetal skin fibroblast
(AG06561) grown in media containing different % v/v fetal bovine serum loses PMD
solo-WCGW methylation as a function of proliferative rate. i–k Primary cells (n = 3)
transiently treated with DNA crosslinking agent Mitomycin C for 3 h, followed by
drug-free culture for 25 days, resulting in the inhibition of DNA synthesis and
subsequent growth arrest (i), have stable PMD solo-WCGWmethylation. PMD solo-
WCGWmethylation is tightly correlated to PDs (j), independently of time (k). Solid
lines depict linear regression with gray shading depicting 95% confidence interval;
statistical analyses are two-sided. Statistical comparisons for panels h and k were
performed using mixed effects modeling; p-values adjusted (Tukey) for multiple
comparisons presented in panel h.

Article https://doi.org/10.1038/s41467-022-34268-8

Nature Communications |         (2022) 13:6659 3



Taken together, these results present experimental evidence of a
direct causal relationship between proliferation-associated DNA
synthesis and PMD solo-WCGW hypomethylation.

Factors driving CpG methylation trajectories in primary and
immortalized cells
We investigated factors that could influence the varied rates of
methylation loss among CpGs and between primary cell types. Despite
the similar profiles of median PMD solo-WCGW methylation loss, we
observed subtle cell-type differences at individual CpGs (Supplemen-
tary Fig. 2). To explore the possibility that differential expression of
maintenance methylation machinery, de novo methyltransferases, or
TET enzymes may underpin cell type differences and/or the overall
methylation loss, we conducted time-series RNA-seq of our cultured
primary cells. PCNA-normalized expression patterns were inconsistent
between primary cells and did not clearly accompany the progressive
methylation loss we observed in all cultured primary cells (Supple-
mentary Figs. 3, 4).

PMD solo-WCGWs were grouped into major categories (Fig. 2a,
Supplementary Fig. 5); those that remained stablymethylated through
replicative senescence, those that displayed variable methylation
(>10% change), and those that were stably unmethylated. Primary cells
from chronologically older individuals displayed a smaller stably
methylated group, and larger stably unmethylated group (Supple-
mentary Fig. 5). The variably methylated group was the largest for
most primary cell types, and was comprised overwhelmingly of CpGs
that lostmethylation, although aminor subset gainedmethylation.We
further split the variably methylated group for primary fibroblast
AG06561 into quartiles of initial methylation levels to visualize the
consistency of methylation loss across a spectrum of starting methy-
lation (Fig. 2a, dark right panels).

To test whether there is a meaningful threshold of replicative
history at which PMD solo-WCGW methylation stabilizes, primary
fibroblasts (AG06561) were immortalized with a lentiviral construct
carrying telomerase reverse transcriptase (TERT). DNA methylation
was profiled at multiple passages following selection for both
immortalized and control vector cells.

Immortalized cells achieved drastically higher PDs than did con-
trol cells. We terminated the experiment after more than 150 PDs. At
the last passage in this experiment, the immortalized cells remained
highly proliferative (Supplementary Fig. 6). DNA methylation analysis
indeed revealed a threshold at which PMD solo-WCGW methylation
stabilized (Fig. 2b), ~40 PDs following replicative senescence of control
cells. Although by the end of the experiment most CpGs had dropped
to low levels of methylation, a small minority remained stably methy-
lated (Fig. 2c).

We further investigated the distribution of residualmethylation in
high-PD TERT-immortalized cells. We used the methylation state to
group CpGs into high, intermediate, and low methylation for early
passage, late passage, and late TERT-immortalized cells (Fig. 2c). We
identified CpGs that were stably methylated or stably unmethylated
throughout, and split the remaining variably methylated CpGs into
quartiles of terminal methylation values (Fig. 2c). The genomic coor-
dinates of CpGs in each group were analyzed for enrichment of
chromatin marks, genomic features, DNA binding proteins, and other
characteristics thatmay explain their behavior (Fig. 2d, Supplementary
Data 2). CpGs that were still highly methylated after extended post-
immortalization culture had significant overlap with genomic features
related to actively transcribed gene bodies. Among the top enriched
overlapping features was H3K36me3, which is known to recruit de
novo methyltransferase DNMT3B to transcribed gene bodies40. CpGs
that had achieved low terminal methylation overlapped significantly
with features bound by CTCF/cohesin complex members. The loss of
methylation at sites bound by CTCF/cohesin complex members in
severely hypomethylated immortalized cells is intriguing, given both

the role of CTCF in maintaining chromosomal stability41,42, and the
well-established link between DNA hypomethylation and chromoso-
mal instability in cancer43–45. We also observed an enrichment for
hypomethylation at sites bound by c-Fos. We have previously shown
that the AP-1 binding motif is overrepresented in genomic regions
prone to hypomethylation in colorectal cancer6. We propose that DNA
hypomethylation continues unabated upon TERT immortalization
until finally reaching a severely hypomethylated equilibrium, in which
compensatory de novomethylation offsets further demethylation. We
cannot rule out that the observed methylation stabilization in late-
culture TERT-immortalized cells is caused by selection against cells
undergoing further loss of methylation, but we did not observe a
slowing of proliferation rate, nor an increase in cell death in immor-
talized cells with stabilized methylation.

Strong selective pressures are present during cell culture. How-
ever, it seems unlikely that such pressures would produce such con-
sistent and reproducible methylation changes at specific sequence
contexts throughout the genome, tracking population doublings in
multiple cell types. Others have reported that single memory T cells
sorted from the same bulk input and clonally expanded into separate
colonies all experienced PMD hypomethylation46.

While we did not find evidence of altered de novo methyl-
transferase, TET enzyme, or maintenance methylation machinery
expression, our analysis cannot rule out the possibility of a mis-
localization event of these factors in near-senescence cells leading to
methylation loss, as suggested by others7. However, our evidence, as
well as past static characterizations of PMD solo-WCGWs in vivo36 and
mechanistic findings that methylation at the solo-WCGW sequence
context is maintained relatively inefficiently37, indicates that the
overwhelming majority of methylation loss occurs in actively pro-
liferating cells and continues beyond replicative senescence, until an
equilibrium is reached at a low stable level of DNA methylation, likely
reflecting compensatory de novomethylationoffsetting further loss of
DNA methylation.

Replication timing and gene expression
To leverage our high-resolution methylation data into a more com-
plete mechanistic understanding of PMD solo-WCGW dynamics, we
regressed methylation to PDs at individual CpGs and compared the
rate of methylation change to public replication timing annotations
and primary gene expression data.

The short time window for maintenance re-methylation in late-
replicating regions is thought to contribute to hypomethylation at
PMDs13. However, recent mechanistic studies indicate that main-
tenance methylation continues beyond S phase, uncoupled from the
replication fork37. Although replication-uncoupledmethylationmostly
compensates for incomplete replication-coupled methylation follow-
ing a single cell cycle37, its efficiency appears strongly influenced by
neighboring CpG content, and the cumulative effect over many cell
divisions has not been studied. PMD solo-WCGWs located in the
regions replicating the latest lost methylation faster compared to
those in earlier-replicating regions (Fig. 2e, i). This relationship sug-
gests that PMDmethylation loss is indeed driven by poormaintenance
methylation, likely because of poor replication-coupled maintenance
and subsequent failure of replication-uncoupled methylation. Other
features co-occurring with late replication such as chromatin inac-
cessibility may further explain this relationship.

Enrichment analysis ofCpGs that retainedmethylation at high PDs
in TERT-immortalized fibroblasts (Fig. 2d) suggested that active tran-
scription protects against replication-associated methylation loss.
Although PMDs are relatively gene-poor47, there are several thousand
gene-associated PMD solo-WCGWs on the EPIC array. Methylation
change per PD was compared to expression level of associated genes.
Indeed, high gene expression was protective against methylation loss
(Fig. 2f, j). This relationship was cell-type-specific; genes with
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differential expression between fibroblast AG21859 and endothelial
cell AG11182 displayed alternate methylation at associated PMD solo-
WCGWs (Fig. 2g, h, k, l). Genes with similar expression levels displayed
similarmethylation (Supplementary Fig. 7).We also examinedwhether
the presence of H3K36me3 influenced the rate of methylation loss
(Supplementary Fig. 8). Although there were few array PMD solo-
WCGWs overlapping public annotations of this histone mark, its

presence was significantly associated with reduced methylation loss
for both cell types.

Methylation loss during scheduled and unscheduled DNA
synthesis
Culture characteristics are arguably non-physiologic; one with parti-
cular relevance to longevity research is oxygen exposure48. Chronic
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exposure to either high oxygen or reactive oxygen species results in
premature aging phenotypes49,50. Primary cells grown in hypoxic
chambers achieve more PDs51–53. To determine whether oxygen partial
pressure affects PMD solo-WCGW dynamics in cultured cells, we seri-
ally cultured primary fibroblasts (AG21859) under ambient (~20%) and
lowoxygen (3%) conditions (Fig. 3a), then performedDNAmethylation
profiling and RNA-sequencing across the series.

Primary cells grown under low oxygen conditions indeed
achieved more PDs before replicative senescence than those grown
under ambient oxygen conditions (Supplementary Fig. 9).

Interestingly, median PMD solo-WCGW methylation loss was slowed
under low oxygen culture (Fig. 3b). Individual CpGs behaved similarly
across PDs between conditions (Fig. 3c), suggesting that cells grown in
low oxygen conditions simply lose methylation more slowly (Supple-
mentary Fig. 10).

Gene expression analysis between cells grown under both con-
ditions revealed 641 genes significantly upregulated and 373 genes
significantly downregulated under low oxygen culture (Fig. 3d, Sup-
plementary Data 3). Top-upregulated genes in the low oxygen condi-
tion included many well-known hypoxia markers, such as carbonic
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Fig. 3 | Low culture oxygen slows PMD solo-WCGW methylation loss.
a Schematic of tandem hypoxic/ambient oxygen primary cell culture. b Median
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enrichment analysis results.

Fig. 2 | Meaningful groupwise PMD solo-WCGW behaviors. a PMD solo-WCGWs
were separated intomajor categories: (from top) stably hypermethylated, variable,
and stably hypomethylated. Representative primary cell AG06561 (fetal skin
fibroblast) is depicted. Left, methylation heatmap of CpGs (rows) within each
category. Samples (columns) are ordered by advancing population doublings
(PDs). Right, density plot of probes within each major category, with the variable
group further split into quartiles by starting methylation. b Median PMD solo-
WCGW methylation for TERT-immortalized and control primary fibroblasts
through replicative senescence for control fibroblasts (pink-shaded region) and
through late PDs for immortalized fibroblasts (blue-shaded region).
cRedistributionof PMDsolo-WCGWs atearly, non-immortalizedpassage, late, non-
immortalized passage, and late, TERT-immortalized passage. d PMD solo-WCGWs
in TERT-immortalizedfibroblastsweregroupedby sameparadigm in panel a. Locus
overlap enrichment analysis was performed on each group, with all PMD solo-
WCGWs on array as background. e PMD solo-WCGW methylation change per
population doubling (PD) for neonatal foreskin fibroblast 2 (AG21859) binned into

quintiles based on ENCODE replication timing WA scores from BJ fibroblasts.
f Methylation change per PD binned into expression quintiles of CpG-associated
genes (primary RNA-seq data, AG21859). g Fibroblast gene expression for differ-
entially expressed genes ADAMTS2 and CARD11. h Fibroblast DNA methylation
heatmaps for PMD solo-WCGWs associated with differentially expressed genes
ADAMTS2 (left) and CARD11 (right). Samples (rows) are arranged from early PD to
late PD. i PMD solo-WCGW methylation change per PD for adult vascular endo-
thelial cell (AG11182) binned into quintiles based on ENCODE replication timingWA
scores fromHUVECs. jMethylation change per PD binned into expression quintiles
of CpG-associated genes (primary RNA-seq data, AG11182). k Endothelial cell gene
expression for differentially expressed genes ADAMTS2 and CARD11. l Endothelial
cell DNAmethylation heatmaps for PMD solo-WCGWsassociatedwith differentially
expressed genes ADAMTS2 and CARD11. Boxplots in panels e–g and i–k depict data
quartiles; center bar depicts median value. Statistical comparisons for panels
e, f, I, j by two-sided Kruskal–Wallis test.
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anhydrase 9 (CA9) and adenylate kinase 4 (AK4), validating the
experimental system and accompanying gene expression analysis. Top
hits from differential pathway analysis included multiple metabolic
pathways, pro-inflammatory pathways activated under low oxygen
culture, and reactive oxygen species pathway activated under ambient
oxygen culture (Fig. 3e).

While the bulk of DNA synthesis and accompanying DNA methy-
lation maintenance occurs during the cell cycle54,55, a smaller amount
also occurs during unscheduled DNA synthesis (UDS)56. UDS-coupled
methylationmaintenance efficiency is also sensitive to CpGs context57.
We hypothesize that the accelerated methylation loss at PMD solo-
WCGWs cultured in ambient oxygen is caused by incomplete methy-
lationmaintenance accompanying UDS as a consequence of increased
oxidative damage58. This presents a minor caveat to using PMD solo-
WCGW methylation as a proxy for replicative history. Conversely, the
measure might also be useful to sensitively track cumulative oxidant/
DNA damaging agent exposure in slowly proliferating cells or tissues.

RepliTali: modeling estimates of cumulative cell divisions
While median PMD solo-WCGW methylation correlates strongly with
cell divisions in culture through standard replicative lifespans, we
developed a more refined metric, which we named ‘RepliTali’ (for
Replication Times Accumulated in Lifetime) to estimate relative
replicative histories of human cells and tissues. PMD solo-WCGWs
experience dramatic replication-associated methylation loss and are
therefore depleted of methylation with relatively few cell divisions. To
access a wider dynamic range of replication-associated methylation
loss, we expanded the pool of eligible model CpGs to those in all
sequence contexts within common PMDs. Since the total number of
cell divisions prior to establishment of primary cell culture in our
system is unknown, we envision this tool to be useful as a relative
measure as opposed to an absolute benchmark for mitotic history. To
adjust for variations in the in vivo replicative histories of the primary
cells, we trained RepliTali upon normalized PDs using elastic net
regression (Fig. 4a, Supplementary Data 4).

Comparing RepliTali performance to other models
We applied other published DNA methylation-based ‘mitotic
clocks’38,59–61 to our primary cell data (Fig. 4b, Supplementary
Fig. 11a). Performance of these models was not as tight and appeared
highly cell-type-specific. Interestingly, hypermethylation-based
clocks epiTOC2, pcgtAge, and MiAge were vulnerable to cell type
differences, whereas epiCMIT61, a clock that selects the higher esti-
mated mitotic age from either a set of CpGs that gains or a set that
loses methylation, performed remarkably well on all cultured cell
types. This is particularly interesting as epiCMIT was created exclu-
sively from hematopoietic cell DNA methylation data.

Since the published ‘mitotic clocks’were not trained onmeasured
cell divisions, but rather on comparisons between different time-
points, it is important to investigate the extent to which RepliTali and
these other clocks are reflecting time versus cell division. Our cell-
cycle-attenuated and -arrested cell cultures are the best way to dis-
entangle these two factors. Although RepliTali was trained on methy-
lation data from primary cells cultured under standard conditions, it
performed very well on growth-attenuated (Fig. 4c) and -arrested
(Fig. 4d) primary cells, successfully distinguishing between divisions
and time. Other existing ‘mitotic clocks’ performed inconsistently,
with cell type-dependent performance again observed for
hypermethylation-based clocks (Fig. 4c, d, Supplementary Fig. 11b, c).

Validating RepliTali on external datasets
We tested the performance of RepliTali and other clocks on a recent
DNA methylation dataset of serially cultured primary fibroblasts62

(Supplementary Data 5). RepliTali performed strongly across all
fibroblasts, correlating strongly with PDs under standard culture

conditions (Fig. 4e). It is noteworthy that RepliTali produced a higher
estimate for some cells; RepliTali estimates total proliferative history,
which for primary cells begins in vivo, long before cell cultures have
been established. We also observed differences between the slopes of
RepliTali-estimated PDs, suggesting that RepliTali may be best suited
to compare relative proliferative histories within a given cellular line-
age. As the model was trained upon homogeneous primary cell cul-
tures, it will likely perform best on pure or sorted cell populations, as
opposed to the heterogeneous cell composition present in primary
tissues. For cells growth-arrested via long-term contact inhibition,
RepliTali was very stable. Median PMD solo-WCGW methylation also
performed well on this external dataset (Supplementary Fig. 12), sup-
porting its use as ameasure of replicative history, perhaps on non-EPIC
array methylation datasets. Other mitotic clocks had varied perfor-
mance, appearing sensitive to variations between fibroblasts (Sup-
plementary Fig. 13). Again, epiCMIT outperformed exclusively
hypermethylation-based clocks. Finally, we applied RepliTali and other
mitotic clocks to several cell lines that have been extensively profiled
(Supplementary Fig. 14). All clocks estimated colon adenocarcinoma-
derived cell lines SW480 and HCT15 as having extremely high repli-
cative histories. Curiously, the three hypermethylation-based clocks
estimated that IMR90, a cell line initially derived from fetal lung
fibroblasts that has been extensively cultured, had a replicative history
comparable to low-passage primary skin fibroblast AG06561, whereas
RepliTali and epiCMIT estimated higher values.

Whereas RepliTali was calibrated on actual, observed PDs accu-
mulated in culture, other mitotic clocks were created using cancer
data60,61 or normal aging blood38,59 data, with the assumption that
malignant or aged tissues have experienced more cell divisions than
non-malignant tissue. However, it is possible that CpGs prone to DNA
methylation events co-occurring with, but not directly attributable to
increased mitotic history in cancer and aging have been selected into
these models. In addition, past mitotic clocks were developed using
the Infinium HumanMethylation450 (450K) array. This may explain
why PMD solo-WCGWs have not yet been selected en masse as a tool
for estimating mitotic age; they are severely underrepresented on this
platform. Approximately 11% of genomic CpGs are PMD solo-
WCGWs36, yet they comprise only 1.5% of 450K array CpGs. The rela-
tively few (n = 6214) on the 450K array were likely included because
they overlap an enhancer or other gene regulatory feature, and thus
often do not display the characteristic behavior of PMD solo-WCGWs.
PMD solo-WCGWs represent approximately 27% of the probes in
epiCMIT’s hypomethylation probeset, vastly exceeding the 1.5%
represented on the 450K array. EpiCMIT had arguably stronger per-
formance on our data and on the external dataset than the
hypermethylation-based mitotic clocks. By comparison, while PMD
solo-WCGWs comprise 18 of 87 CpGs in RepliTali, their mean coeffi-
cient weight was −3.35, versus amean coefficient weight of −0.73 of all
RepliTali CpGs, indicating that PMDsolo-WCGWs contribute heavily to
the model. In addition, RepliTali CpGs recapitulated the progressive
methylation loss behavior of PMDs at large (Supplementary Fig. 15).

Epigenetic clocks, representing models based on the methylation
status at typically dozens to hundreds of CpGs, have become ubiqui-
tous. Despite the astounding power of these models to predict fea-
tures associated with biological aging—and its reversal30—the
biological underpinnings of the CpGs that make these clocks ‘tick’ are
often poorly understood. RepliTali is a DNA methylation-based esti-
mator of replicative history. Among methylation ‘clocks’ it is unique
both in its construction—finely tuned upon serially passaged primary
cells—and in our understanding of its driving mechanisms. RepliTali
outperforms other models both on our own data and on an extensive
external dataset. A challenge of developing a methylation clock to
track mitoses is the highly variable rates of cell divisions between
tissues34. However, the ability to dissect replicative history from other
aspects of biological aging (perhaps simultaneously measured by
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another methylation clock) will aid our understanding of the aging
process and inform therapies that seek to slow or reverse it.

Methods
Primary cell culture
All primary cells were obtained from the NIA Aging Cell Culture Repo-
sitory at the Coriell Institute for Medical Research and cultured under
recommended conditions. Fetal skinfibroblast AG06561wasmaintained
in Eagle’s MEM with Earle’s salts and non-essential amino acids (Gibco
11140-050)with 15% v/v fetal bovine serum. Neonatal foreskin fibroblasts
AG21859 and AG21839 were maintained in Ham’s F12/DMEM 1:1 media

supplemented with 10% v/v fetal bovine serum. Neonatal foreskin ker-
atinocyte AG21837 was maintained in serum-free human epidermal
keratinocyte media (MilliporeSigma SCMK001) on collagen IV-coated
dishes (Corning 354453). Adult skin fibroblast AG16146 was maintained
in Eagle’s MEM with Earle’s salts with 10% v/v fetal bovine serum. Vas-
cular endothelial cell AG11182 was maintained in Medium 199 with 1X
GlutaMAX (ThermoFisher 35050061), 0.02mg/ml endothelial cell
growth supplement (Corning 354006), 0.05mg/ml sodium heparin
(Alfa Aesar A16198MD) and 15% v/v fetal bovine serum on plates pre-
coated with gelatin (MilliporeSigma ES006B). Vascular smooth muscle
cell AG11546wasmaintained under the same conditions as AG11182 with
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Fig. 4 | ConstructionandperformanceofRepliTali. aPerformanceofRepliTali on
randomized training (n = 122) and test (n = 60) sets. Population doublings (PDs)
were normalized using a model trained on chronologically youngest cell AG06561
to correct the starting passage PD, with the change in actual PD added to this value
for subsequent datapoints. Solid lines depict linear regression with gray shading
depicting 95% confidence interval.b Performance of epiTOC2, a hypermethylation-
based mitotic clock, on primary cell culture DNA methylation data. c Model

performance on primary fibroblasts (AG06561) grown with different concentra-
tions (%v/v) of media serum to achieve different proliferation rates. dMitomycin C
(MMC) treated primary cells (n = 3) derived from unique donors and tissues.
e Performance of RepliTali on external methylation dataset of cultured fibroblasts
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the exception of 10% v/v fetal bovine serum. All primary cells were
maintained at 37 °C and 5%CO2with ambientO2 unless otherwise noted.
Media was changed at minimum three times per week.

Triplicate cultures derived from the same parent plate or vial
obtained from Coriell were maintained in parallel through replicative
senescence, which was defined in this study as drastically slowed
growth (inability to reach near-confluence at 14 days after previous
passage) or viable fraction of cells falling below 60%.

Passaging occurred as cells became ~90% confluent. At each pas-
sage, one fraction of cells was pelleted and frozen for future nucleic
acid extraction. Another fraction was kept in suspension at room
temperature and counted on an automated hemocytometer (BioRad
TC20) in duplicate. Viability was determined by trypan blue dye
exclusion.

Cumulative cell divisions in culture (population doublings, PDs)
were determined using the following equation:

PD=3:32 log10ðcell yieldÞ � log10ðviable cell inoculumÞð
+ X,withXbeing the PDof the inoculumÞ ð1Þ

Mitomycin C treatment
Primary cells AG11182, AG11546, and AG16146 were reintroduced into
culture from cryopreserved early-passage cells. Duplicate subcultures
were derived from the initial recovered plate for treatment and control
conditions. Cells were treatedwith DNA intercalating agentMitomycin
C (MMC, Alfa Aesar J63193MA) reconstituted in DMSO at a final con-
centration of 10μg/ml. An equal volume of DMSO was added to con-
trol subcultures. Both conditions were incubated for 3 h at 37 °C
before media containing MMC or vehicle was removed, cells rinsed
with PBS, and basal media replaced. Control cells were passaged nor-
mally, and growth-arrested, MMC-treated cells were collected on days
18 and 25.

Primary cell growth slowing
Primary fibroblast AG06561 was reintroduced into culture from cryo-
preserved early-passage cells. Four parallel cultures were established
andweremaintained inmedia containing 15%, 5%, 1%, and0.5% v/v fetal
bovine serum to encourage different rates of proliferation. At each
passaging a fraction of cellswas retained for DNAmethylation analysis.

TERT-immortalization
Low-PD primary fibroblasts (AG06561) were transduced with purified
lentiviral particles containing expression vectors encoding human
Telomerase Reverse Transcriptase (TERT) and hygromycin resistance
marker (AMSBIO LVP1131-Hygro-PBS), or hygromycin resistance mar-
ker alone (control, AMSBIO EF1a-Null-Hygro). Following selection with
250μg/ml hygromycin B, cells were serially cultured either through
replicative senescence (control) or in perpetuity (TERT). At the time of
analysis, nearly a full year after transduction, the immortalized cells
remained highly proliferative.

Low oxygen cell culture
Low-PD primary fibroblasts (AG21859) were cultured in triplicate in
either a standard incubator (Panasonic MCO-19AICUVPA) with ambi-
ent O2, or dual-gas CO2/N2 incubator (PHCbi MCO-170M-PA) at 3% O2,
through replicative senescence.

Methylation analysis by microarray
Frozen cell pellets were thawed and lysed using QIAshredder spin
columns (Qiagen 79656). Genomic DNA was extracted from each
sample using the AllPrep DNA/RNA Mini Kit (Qiagen 80204), then
stored at −80 °C before analysis. DNA was quantified by Qubit fluori-
metry (Life Technologies). Approximately 500 ng of genomic DNAwas
bisulfite converted using the Zymo EZ DNA methylation kit (Zymo

Research D5004) then hybridized overnight on an Infinium Methyla-
tionEPIC BeadChip (Illumina), in which the genomic DNA molecules
anneal to locus-specificDNAoligomers linked to individual bead types.
Raw signal intensities were exported as.idat files, which were pro-
cessed using the R package SeSAMe63,64. Of 386 DNA methylation
samples run, 14 failed quality control and were excluded from further
analysis, producing a final analytical sample count of 372. All DNA
methylation data can be accessed through the Gene Expression
Omnibus (GEO) accession GSE197512.

Statistical analysis
Analysis was performed in R software (version 4.1.1). For comparisons
of effect of MMC growth arrest and serum-dependent growth slowing
on PMD solo-WCGWmethylation, mixed-effects modeling (R package
‘lme4’) was performed, using logit-transformed (m) methylation
values.Multiple comparisons were performed via Tukey contrasts. For
comparison of the effect of culture oxygen condition on rate of PMD
solo-WCGW methylation models were compared via ANOVA, again
using logit-transformed (m) methylation values.

LOLA
Genomic coordinates (hg19) of PMD solo-WCGW probes of interest
were subject to Locus Overlap Enrichment Analysis (LOLA) using R
package ‘LOLA’65 and LOLACore (hg19) region set database, available
here: https://databio.org/regiondb.

Coordinates of all PMD solo-WCGW probes on the InfiniumEPIC
Methylation array were used as background for enrichment analysis.

RNA-seq
RNA was isolated from frozen cell pellets using the AllPrep DNA/RNA
Mini Kit (Qiagen 80204), then stored at −80 °C before analysis. RNA
Libraries were prepared from 100ng of total RNA with the KAPA
StrandedmRNA-Seq Kit (Kapa Biosystems KK8401). Indexed libraries
were then pooled and 2 × 50 bp, paired-end sequencing was per-
formed on an Illumina NovaSeq 6000 sequencer to a minimum
read depth of 30M reads/library. Demultiplexing was performed
using Bcl2fastq (v1.9.0). Differential expression analysis was per-
formed with standard edgeR and DESeq2 workflow. Senescence
timepoints were excluded from differential expression and pathway
enrichment analysis for oxygen culture condition experiment.
Scripts for RNA-seq analytical workflow, including downstream ana-
lysis in R, are available here: https://github.com/vari-bbc/rnaseq_
workflow.

RepliTali construction
Starting PDvalues of primary cellswere normalized using anelastic net
regression model with alpha parameter = 0.5 (R package ‘glmnet’)
trained on the chronologically youngest primary cell, fetal skin fibro-
blast AG06561. Samples from all cells were randomized into training
(n = 122) and test (n = 60) sets; normalized PDs were used to construct
the final ‘RepliTali’. RepliTali is constructed using array CpGs within
common PMD boundaries. Coefficients are presented in Supplemen-
tary Data 4.

Mitotic clock comparisons
EpiTOC estimateswere obtained using the R script available at: https://
zenodo.org/record/2632938#.YdWva5DMKrc. Script was run sepa-
rately on each primary cell culture, per the author’s specifications. Of
note, SeSAMe methylation array processing is more stringent than
Minfi, hence the suggestion of specifying p-val = 0.1 for SeSAMe pro-
cessing. Care must be taken to evaluate clock CpG dropouts. MiAge
estimates were calculated with materials deposited here: http://www.
columbia.edu/~sw2206/softwares.htm. epiCMIT estimates were cal-
culated as described in https://duran-ferrerm.github.io/Pan-B-cell-
methylome/Estimate.epiCMIT.html.
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Replication timing
Replication timing data from BJ foreskin fibroblasts and HUVECs was
generated by the University ofWashington andmaintained by ENCODE.
Files are available here: http://genome.ucsc.edu/cgi-bin/hgFileUi?db=
hg19&g=wgEncodeUwRepliSeq. Replication timing weighted average
(WA) scoreswere calculated as previously specified66:WA= (0.917*G1b)+
(0.750*S1) + (0.583*S2) + (0.417*S3) + (0.250*S4) + (0*G2).

H3K36me3
Histone ChIP-seq data from neonatal foreskin fibroblasts was gener-
ated by Joseph Costello’s lab at UCSF/Roadmap Epigenomics Project.
Histone ChIP-seq data from HUVECs was generated by the University
of Washington/ENCODE project. Neonatal foreskin fibroblast:
ENCSR889OUV|GSM817238. HUVEC: ENCSR000DVM|GSM945233.

DNA methylation data
Infinium MethylationEPIC array data from serially passaged human
fibroblastswasgeneratedbyMartin Picard’s lab at ColombiaUniversity
(Cellular Lifespan Study 1.062, GSE179847). Raw idats were reprocessed
as above.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
authors upon reasonable request. The DNA methylation array and
RNA-sequencing data generated in this study have been deposited in
the Gene Expression Omnibus under SuperSeries accession
GSE197545. This accession includes both raw and processed data.
External public datasets used in this study are listed here: Replication
timing –GSM923444 (BJ Fibroblast), GSM923452 (HUVEC);H3K36me3
– GSM817238 (Neonatal foreskin fibroblast), GSM945233 (HUVEC);
DNA Methylation – GSE179847 (Cellular Lifespan Study). InfiniumEPIC
Methylation probemanifest67 is available here: https://zwdzwd.github.
io/InfiniumAnnotation. Common PMD coordinates, as well as coordi-
nates and characteristics of PMD solo-WCGWs genome-wide and pre-
sent on the InfiniumEPIC Methylation array are documented here:
https://zwdzwd.github.io/pmd. Source data are provided with
this paper.

Code availability
Custom code used in this study is deposited here: https://zenodo.org/
badge/latestdoi/516036288.
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