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Abstract

The Arabidopsis homeotic protein AGAMOUS (AG), a MADS domain transcription factor, specifies reproductive organ
identity during flower development. Using a binding assay and expression analysis, we identified a direct target of AG,
GIANT KILLER (GIK), which fine-tunes the expression of multiple genes downstream of AG. The GIK protein contains an AT-
hook DNA binding motif that is widely found in chromosomal proteins and that binds to nuclear matrix attachment regions
of DNA elements. Overexpression and loss of function of GIK cause wide-ranging defects in patterning and differentiation of
reproductive organs. GIK directly regulates the expression of several key transcriptional regulators, including ETTIN/AUXIN
RESPONSE FACTOR 3 (ETT/ARF3) that patterns the gynoecium, by binding to the matrix attachment regions of target
promoters. Overexpression of GIK causes a swift and dynamic change in repressive histone modification in the ETT
promoter. We propose that GIK acts as a molecular node downstream of the homeotic protein AG, regulating patterning
and differentiation of reproductive organs through chromatin organization.
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Introduction

During flower development, many key processes depend on

tissue-specific regulation of gene expression achieved by the

coordinated interplay of transcription factors. The classical ABC

model was proposed nearly two decades ago to account for organ

identity control in flower development [1]. The ABC model

predicts that the combinatorial action of ABC floral homeotic

genes controls floral organ identity. The ABC genes, A class for

APETALA1 (AP1) and APETALA2 (AP2), B class for APETALA3

(AP3) and PISTILLATA (PI), and C class for AGAMOUS (AG), have

been extensively studied and have been shown to encode

transcription factors [2–8]. AG encodes a transcription factor of

the MADS-domain protein family, and AG is necessary for the

specification of stamens and carpels, the floral reproductive organs

[5,6]. In ag-1 mutants, flowers undergo homeotic conversion to

show a sepal-petal-petal reiteration instead of the normal sepal-

petal-stamen-carpel structure. The complete lack of reproductive

organs in ag-1 flowers places AG at the top of the hierarchy of

genes controlling reproductive development. This conclusion is

supported by microarray expression profiling of wild-type and ag

mutant flowers showing that more than 1,000 genes are regulated

downstream of AG [9].

Genome-wide studies by microarray using plant lines with

controllable floral homeotic activities and chromatin immunopre-

cipitation (ChIP) led to the identification of direct target genes of

the homeotic proteins [10–14]. AG directly regulates SPOROCY-

TELESS (SPL, NOZZLE) [15,16] to induce microsporogenesis, a

process leading to pollen formation in Arabidopsis [12]. AG is

expressed in developing stamens and regulates the expression of

the catalytic enzyme DEFECTIVE IN ANTHER DEHISCENCE

1 (DAD1) [17] to induce the biosynthesis of the phytohormone

jasmonate, which is required for stamen maturation [18].

Along with SPL and DAD1, genetic studies in Arabidopsis have

revealed a large group of genes that are necessary for proper

patterning and differentiation of reproductive organs. ETTIN

(ETT, AUXIN RESPONSE FACTOR3) acts redundantly with

AUXIN RESPONSE FACTOR 4 (ARF4) to participate in abaxial-

adaxial axis patterning of the floral meristem and reproductive

organs, as well as in the apical-basal patterning of the gynoecium

[19–21]. LEUNIG (LUG) is implicated as a negative regulator of

AG in petal primordia and also controls gynoecium fusion [22–24].

The YABBY family gene CRABS CLAW (CRC) is expressed

preferentially in the abaxial side of carpels and is involved in

specification of the gynoecium and nectaries [25,26]. JAGGED

(JAG) and NUBBIN (NUB), both encoding C2H2 zinc-finger
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transcription factors, function redundantly to promote prolifera-

tion of stamen and carpel primordia [27–29]. Another C2H2 zinc-

finger transcription factor, KNUCKLES (KNU), is involved in

floral meristem determinacy and gametophyte specification, and

its meristem expression is directly regulated by AG [30,31].

Nevertheless, the genetic pathways and networks leading to

organogenesis are largely unknown, as are the molecular

mechanisms that orchestrate the large number of transcriptional

gene circuits downstream of AG.

We report here the identification of GIANT KILLER (GIK), a

gene coding for an AT-hook type DNA binding protein, as a target

of AG. GIK belongs to a protein family consisting of 29 members

in Arabidopsis [32,33]. AT-hook DNA binding proteins may

contribute to functional nuclear architecture by binding to the

nuclear matrix [34–36]. The nuclear matrix is a putative structural

component that remains inside the nucleus after removal of basic

proteins and histones. AT-hook motifs bind to the minor grooves

in duplex DNA of matrix attachment regions (MARs) of target

DNA sequences [37,38], a property that distinguishes them from

common transcription factors that primarily bind to the major

groove. MARs are stretches of characteristic AT-rich DNA

sequences that tend to attain a single-stranded conformation

through base unpairing (thus, MARs are also called base unpairing

regions, or BURs) as a result of the torsional stress of the

surrounding DNA [39]. MARs and AT-hook DNA binding

proteins are believed to mediate anchoring of specific DNA

sequences to the nuclear matrix, generating chromatin loop

domains and possibly introducing structural changes in the

chromatin [37]. In animals, the MAR binding protein SATB1,

which contains an AT-hook motif, has been implicated in

tissue- or cell-type-specific regulation of multiple genes [40–44].

SATB1 may play a role in chromatin assembly and histone

modification of nearby genes and may influence the transcription

of multiple target genes. In plants, very little is known about

developmental roles of AT-hook motif proteins, although close

homologs of GIK have been isolated using yeast one-hybrid

screening as promoter-binding proteins as well as from activation

tagging screens [33,45–49].

We propose that GIK acts as a target of the floral homeotic

protein AG and fine-tunes the expression of multiple genes

involved in organ patterning and differentiation during reproduc-

tive development. Therefore, these data reveal one of the

mechanisms by which homeotic genes regulate multiple down-

stream targets in plants.

Results

GIK Is a Direct Target of AG
We identified At2G35270 (isolation name, 2-ATH; AHL21 [32])

as a putative direct target of AG using bioinformatics screening

(Figure 1A, B) of the Arabidopsis genome for potential AG binding

sites and named it GIK (as we found that it functions as a negative

regulator of a gene whose name means ‘‘giant’’; see below). First,

we searched the entire Arabidopsis genome for the 16-bp consen-

sus CArG box binding sequences of AG (59-TTDCCWW-

WWNNGGHWW-39, D = A/T/G, W = A/T, N = A/T/G/C,

H = A/T/C) [50,51] and found 1,007 sites (allowing one

mismatch) by utilizing the NCGR Patmatch program (http://

www.arabidopsis.org/cgi-bin/patmatch/nph-patmatch.pl). We then

identified 110 genes located near the putative binding sites of AG

(within 3 kb upstream, 1 kb downstream, or in introns) and tested

their expression in wild-type and ag mutant flowers using RT-PCR

(Figure 1A, Figure S1). Most of these genes were expressed in

flowers. By comparing RNA in wild-type and ag-1 mutant flowers,

we found that 24 of these genes (22%) showed AG-dependent

expression patterns (Figure S1, Table S1); of these, GIK,

SHATTERPROOF2 (SHP2, AGL5, At2g42830) [52,53], and

ATHB40 (At4g36740) [54,55] showed rapid induction upon AG

activation in an inducible AG activity line [12] (unpublished data

for ATHB40, see below for GIK). We found a typical CArG box

sequence located 732 bp downstream of the translational

termination codon of GIK (Figure 1B). After the series of

experiments described below, we identified GIK as a direct target

of AG. GIK encodes an AT-hook type DNA binding protein with

an uncharacterized plant-and-prokaryote conserved domain

(Figure 1B).

GIK transcripts were detected in roots, flowers, and leaves, with

the highest expression in the roots, showing that GIK does not

code for a flower-specific transcript (Figure 1C). In ag mutant

flowers, GIK expression was substantially reduced (Figure 1C),

suggesting that AG may be an upstream activator of GIK or that

GIK is expressed in stamens and/or carpels, which are missing in

ag-1 mutant flowers. To clarify these two possibilities, we used

ag-1 plants that are transgenic for 35S::AG-GR as a post-

translational AG activation system [12] and analyzed the

expression of GIK following AG induction in developing flowers

by RT-PCR and real-time PCR with GIK-specific primer sets

(Figure 1D–F; Table S2 for primer sequences). The transgenic

line contains a gene coding for a fusion protein (AG-GR) of AG

and the steroid binding domain of the rat glucocorticoid receptor

(GR) on the ag-1 mutant background. Following application of

the synthetic glucocorticoid dexamethasone (DEX), AG-GR

enters the nucleus and induces AG activity. GIK expression was

upregulated 6 h after 10 mM DEX treatment compared to mock-

treated inflorescences (Figure 1D). The induction was observed

even 2 h after DEX treatment (Figure 1E). To exclude the

possibility that GIK was induced indirectly by AG through an

intermediate protein, we included the protein synthesis inhibitor

cycloheximide [12,56] in our studies. DEX and 5.0 mM

cycloheximide treatment induced GIK expression at a level

comparable to DEX-only treatment, implicating a direct

relationship between AG and GIK induction in developing

flowers (Figure 1E). In the time-course assay, GIK expression

was upregulated by AG 4- and 16-fold at days 1 and 3 after AG

induction, respectively (Figure 1F).

Author Summary

Multicellular development depends on proper expression of
thousands of genes. Master regulators, such as homeotic
proteins, code for transcription factors in both plants and
animals and are thought to act by regulating other genes.
Recent genomic studies in the plant Arabidopsis have
shown that over 1,000 genes are regulated by homeotic
proteins that directly control various target genes, including
different classes of transcriptional regulators. It is not
known, however, how expression of so many genes is
coordinated by a single homeotic gene to form functional
organs and tissues. Here we identified a transcriptional
target of the plant homeotic protein AGAMOUS using
bioinformatics analysis and showed that AGAMOUS directly
controls GIANT KILLER, a multifunctional chromatin modi-
fier. GIANT KILLER then binds to the upstream regions of
multiple genes involved in patterning and differentiation in
the AGAMOUS pathway and fine-tunes the expression of
these genes. These data therefore provide a possible
mechanism by which a homeotic gene coordinates multiple
downstream targets in plants.

GIANT KILLER Coordinates Reproductive Development
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To test whether AG directly binds the Arabidopsis genome near

GIK, we performed ChIP with a polyclonal antibody against AG

(anti-AG) using 35S::AG-GR ag-1 inflorescences treated continu-

ously with DEX. The primer pair hybridizing to the 39 region of

genomic GIK DNA containing a putative CArG box showed

enrichment over a primer pair hybridizing to the coding region of

GIK (Figure 1G). The control experiment using untreated 35S::

AG-GR ag-1 inflorescences did not show obvious enrichment

(Figure S2). Our data suggest that AG directly activates GIK by

binding to the region of the GIK CArG box in developing flowers.

GIK Is Expressed in Reproductive Organs and Is Localized
to the Nucleoplasm

To determine whether AG is responsible for GIK expression in

reproductive development, we examined GIK expression in inflores-

cences in detail using 39 region of GIK cDNA as a probe for in situ

hybridization. GIK transcripts were detected in inflorescence

meristems, floral primordia, and developing flowers (Figure 2A–G).

GIK is expressed throughout floral primordia at stages 1 through 4

(Figure 2A–D). At stage 6 and later, GIK expression is confined to

reproductive organ primordia (Figure 2D, E). At stages later than

Figure 1. Identification of GIK as a direct target of AG. (A) Flow chart of the bioinformatic screening process. D = A/T/G; H = A/T/C; N = A/T/G/C,
W = A/T. (B) Schematic diagram of the GIK genomic sequence and the predicted protein structure of GIK. The residues Arg (R)-Gly (G)-Arg (R)-Proline (P)
are the AT-hook motif core. PPC = plant-and-prokaryote conserved domain. (C) Semi-quantitative RT-PCR analysis of GIK in wild-type tissues and ag
mutant flowers. Shown at the bottom is the lipase that was amplified as a control. (D) Induction of GIK by AG in the inflorescences of ag-1 35S::AG-GR
plants. Plants were mock- or DEX-treated and harvested 6 h after the treatment. Semi-quantitative RT-PCR was performed for GIK and LIPASE (LIP). (E)
Induction of GIK by AG in the presence of a protein synthesis inhibitor. Inflorescences of ag-1 35S::AG-GR plants were mock-treated or treated with DEX,
DEX plus cycloheximide (Cyc), or Cyc-only and harvested 2 h after the treatment. Semi-quantitative RT-PCR was performed for GIK and TUBULIN2 (TUB).
Each band strength was measured using ImageJ (http://rsb.info.nih.gov/ij/), and the relative band strength was calculated from the intensity of GIK
normalized to that of TUB. (F) Real-time PCR analysis of GIK induction by AG. Inflorescences from ag-1 AG-GR plants were harvested 1 (D1) and 3 (D3) d
after a single DEX treatment at day 0 (D0). Expression levels were normalized to that of TUB. The expression at D0 was set as 1.0. (G) AG binds to the GIK
CArG box in vivo. ChIP was performed using ag-1 35S::AG-GR inflorescences at day 7 after four DEX treatments. P1, P2, and P3 indicate primer pairs used
to detect different regions of GIK genomic DNA. The asterisk shows the location of the CArG box sequences. Relative enrichment was obtained from the
ratio of enrichment achieved by anti-AG to that of control IgG. Enrichment of a sequence amplified from PFK genomic DNA was used as a basal control
and was set to 1.0. Standard deviation was obtained from PCR triplicates.
doi:10.1371/journal.pbio.1000251.g001
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stage 10, GIK is localized in developing ovules and anther locules

(Figure 2F, G). These data suggest that GIK expression is not fully

dependent on AG (as AG is expressed only in the central region of

flower primordia after stage 2) but that expression later than stage 6

may depend on AG during reproductive development. In ag-1

inflorescences, although GIK is noticeably expressed in inflorescence

meristems and floral primordia in early stages, GIK expression is

considerably reduced in developing organs (Figure 2H–J), which is

consistent with the hypothesis that GIK is regulated by AG in

reproductive organs.

To examine GIK localization, we raised polyclonal antibodies

against recombinant full-length GIK, the N-terminal and AT-

hook domains. The antibody raised against full-length GIK

detected a major protein band around 30 kDa in western blots

(Figure S3A), in agreement with the predicted GIK protein size of

29.1 kDa (285 residues). GIK was found in roots and flowers but

not significantly in leaves (Figure S3A). The level of GIK

expression in roots and flowers corresponded well with our

RT-PCR analysis of GIK transcripts in these tissues, where its

expression in roots is much higher than in flowers (Figure 1C,

Genevestigator: www.genevestigator.ethz.ch, AtGenExpress: www.

arabidopsis.org/info/expression/ATGenExpress.jsp), suggesting

that GIK might play a role in root development. To determine

whether GIK is a nuclear protein, we performed immunofluo-

rescence staining using whole-mount seedlings and confocal

microscopy. Staining was specifically detected in the nucleus

(Figure 2K–Q, Figure S3B) and largely colocalized with two

nuclear markers: the DNA dye TOPRO-3 and the trimethylgua-

nosine cap of small nuclear RNA (Figure 2K–Q). These results

indicate that GIK is localized in the nucleoplasm. In addition,

anti-GIK staining was distinguishable from both nuclear markers

by a lack of GIK expression in heterochromatin chromocenters

Figure 2. Expression pattern of GIK transcripts and GIK protein. (A–C) Expression of GIK mRNA in serial cross-sections of wild-type
inflorescence meristems shown by in situ hybridization. (D–G) Expression of GIK mRNA in longitudinal sections of the wild-type inflorescence
meristem (arrow), floral primordia, and developing reproductive organs. The numbers indicate stages of the floral buds [75]. Arrow in D indicates the
inflorescence meristem. (H–J) Expression of GIK mRNA in ag-1 inflorescence meristems, floral primordial, and developing flowers. (K–Q) Staining of
wild-type Arabidopsis root cell nuclei with anti-GIK (K, O), DNA dye TOPRO-3 (L), or monoclonal anti-trimethylguanosine (TMG) (P). (M) and (Q) show
merged images. Arrowheads in M indicate heterochromatin-rich chromocenters (seen as blue in the merged image). Arrow in Q indicates the
nucleolus (seen as green in the merged image). Despite their largely co-localized patterns, anti-GIK staining was distinguished from that of TOPRO-3
by its lack of accumulation at the heterochromatic chromocenters (Figure 2M, arrowheads) and different from anti-TMG staining by showing no
detectable expression in the nucleolus (Figure 2Q, arrow). Scale bars in A (for A–G) and H (for H–J) are 100 mm. Bars in K–Q, 5.0 mm.
doi:10.1371/journal.pbio.1000251.g002

GIANT KILLER Coordinates Reproductive Development

PLoS Biology | www.plosbiology.org 4 November 2009 | Volume 7 | Issue 11 | e1000251



(Figure 2K–M, arrowheads, regions observed as blue color in

2M) and the nucleolus (Figure 2O–Q, arrow in 2Q).

Overexpression and Loss of Function of GIK Lead to
Reproductive Defects

To understand the role of GIK during flower development, we

examined the effects of GIK overexpression. Over 20 transgenic

plants from each transgenic line (35S::GIK and inducible 35S::GIK-

GR-6HA) were examined during flower development (Figure 3A–G).

At least three T1 35S::GIK plants showed reduced fertility with wide-

ranging defects in reproductive development such as excessive

outgrowth of stigmatic tissues (Figure 3A, B), short valves (Figure 3B),

and excessive proliferation of a carpelloid organ at the lateral side of

a pistil with exposed ovules (Figure 3C). These phenotypes were

largely recapitulated in nearly half of the T1 35S::GIK-GR-6HA lines

after five DEX treatments (Figure 3F, G). More than 90% of flowers

from the induced 35S::GIK-GR-6HA plants showed severe repro-

ductive defects such as excessive growth of stigmas or bipartite

stigmas with outgrowth of ovules. In addition to defects in carpels,

stamen development was occasionally affected, resulting in reduced

male fertility (unpublished data). Similar reproductive phenotypes

were observed at low frequency (3% to 4% of their flowers) in

transgenic plants with a genomic copy of GIK, which showed 5- to

50-fold higher expression levels of GIK than wild-type plants

(unpublished data), indicating that the 35S::GIK and 35S::GIK-GR

constructs provide high levels of GIK activity. These results show

that overexpression of GIK strongly interferes with normal

reproductive development.

To examine whether GIK controls a subset of the known

functions of AG, 35S::GIK was introduced into the ag-1 mutant

plants. 35S::GIK did not rescue the ag-1 organ identity defects: no

stamen- or carpel-like organs were observed in 35S::GIK ag-1

flowers, even though there was occasional sepal-sepal fusion

(Figure 3D). This observation suggests that the function of GIK is

unlike many transcription factors that control cell differentiation or

specification and that instead GIK may have a unique function in

modulating gene expression downstream of AG.

To further understand the role of GIK during flower develop-

ment, a transposon insertion mutant of GIK (http://genetrap.cshl.

edu/TrHome.html, ET14389) was identified. It contains an

insertion in the middle of the coding region, 450 bp from the start

codon. Homozygous plants were verified by PCR-based genotyping

and GIK expression analysis (Figure S4A, B). Most of the flowers

from gik homozygous mutants appeared normal without any

gametophytic defects (unpublished data), but a small number of

flowers (22 of 800) showed various degrees of defects in stamen and

carpel development (Figure 3H, I, Figure S4C–E). Stamen

development was impaired, which resulted in delayed dehiscence

Figure 3. Overexpression and loss of function of GIK cause reproductive defects. (A–C) Flowers in 35S::GIK overexpression plants show
carpels with ectopic stigmatic tissue (marked by triangles in A, B), short valves (marked by asterisk in B), and excessive growth of carpelloid tissue at
the lateral side of the pistil with exposed ovules (C). (D) Sepal-sepal fusion (asterisk) observed in 35S::GIK ag-1 flowers. (E–G) Scanning electron
microscopic images of wild-type Arabidopsis pistil (E) and flowers from DEX-treated 35S::GIK-GR-6HA plants show carpels with excessive stigma and
ovules (arrowhead in F) and bipartite carpels with outgrowth of ovules and ectopic projections (asterisks) at the upper part of the pistil (G). (H, I)
Flowers of gik insertion mutant ET14389 with indehiscent anthers of stamens (H) and branched stamens (I), and defective anther differentiation
showing half-petal-half-stamen morphology (inset in I). In H, sepals and petals were removed to expose inner organs. (J, K) Similar reproductive
defects were observed in the flowers of GIK RNAi silencing lines showing delayed dehiscence (arrowheads) (J), petalloid anthers (inset in J), defective
stamen formation (arrow in K), and branched stamens (inset in K). Scale bar for A–D and H–K, 1 mm. Scale bars for E–G, 100 mm.
doi:10.1371/journal.pbio.1000251.g003
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or indehiscence of anthers (Figure 3H). In some cases, the filaments

of the stamens were branched and had ectopic anther formation,

and anthers were partially transformed into petal-like structures

(Figure 3I, Figure S4C, D). None of the defects were observed in

wild-type plants grown under the same conditions. To examine

whether the mutant phenotypes were caused by loss of GIK activity,

we generated RNA interference (RNAi) silencing lines using the 39

end of the GIK coding region (Figure 3J, K). In 5 of 29 independent

T1 RNAi plants, we observed similar defects of immature anthers

and branching of stamen filaments at a similarly low frequency in

T1 and T2 generations. We confirmed that the GIK transcripts were

significantly reduced in flowers of GIK RNAi plants (unpublished

data). To examine whether GIK has redundant functions with other

GIK-like genes [32,33], we produced an RNAi silencing construct

for the highly similar gene At4g17800 (67% amino acid identity) and

created the transgenic plants on the gik mutant background.

However, we did not observe any obvious enhanced effects in the

transgenic plants (unpublished data). The GIK loss-of-function

defects, albeit not at a high frequency, suggest some level of

participation by GIK in reproductive development as a component

of a fine-tuning mechanism.

GIK Negatively Regulates ETTIN Expression
Because GIK overexpression phenotypes of outgrowth of stigmatic

tissues, short valves, and bipartite stigmas with ectopic ovule

formation (Figure 3A–C, F, and G) closely resemble loss-of-function

phenotypes of the previously identified ettin (ett, meaning ‘‘giant’’)

mutants [19–21,57], we examined whether there is a functional link

between GIK and ETT. ETT encodes a member of an auxin response

factor family of DNA binding proteins, and loss of ETT activity

results in severe reproductive defects [20,57]. First, we crossed

35S::GIK-GR-6HA plants with the weak ett-3 mutant. Overexpression

of GIK in the heterozygous and homozygous backgrounds of the weak

ett-3 allele showed strong ett mutant phenotypes (Figure S5),

suggesting an epistatic interaction of GIK overexpression with ETT.

Next, we compared the expression patterns of GIK and ETT in wild-

type reproductive organs in detail using in situ hybridization analysis

(Figure 4A–H). At floral stages 7–12, GIK and ETT exhibited

Figure 4. GIK negatively regulates ETT. (A–H) GIK (A–D) and ETT (E–H) exhibit complementary expression patterns in reproductive organs at
stages 7–8 (A, E), 8 (B, F), 9 (C, G), and 12 (D, H) as shown by in situ hybridization. At stages 7, 8, and 9, GIK is expressed at the adaxial side of the
developing carpels and locules of developing stamens (A–C). In contrast, ETT is expressed at the abaxial sides of the carpels and in the vasculature of
the stamens (E–G). At stage 12, GIK expression was mainly observed in the funiculus (f), outer integument (oi), and chalazal megaspore (cm) of ovules
(D, inset), whereas ETT expression was in inner integuments (ii) and the nucellus (n) of the ovules (H, inset). (I–L) Comparison of ETT expression in the
reproductive organs of wild-type (I and K) and 35S::GIK (J and L) plants by in situ hybridization on a single slide. (M) ETT expression in an ag-1 mutant
flower. Scale bars in A (for A–H) and I (for I–M) are 100 mm. (N) Time-course of ETT expression after GIK activation, as measured by real-time PCR.
Inflorescences from 35S::GIK-GR-6HA plants were harvested at 0, 4, 8, 16, and 24 h after mock treatment or a single DEX treatment. ETT expression was
normalized to TUB RNA levels. Relative expression in DEX-treated samples was calibrated with mock-treated samples. (O) Expression analysis of ETT in
the gik mutant using real-time PCR with RNA extracted from the inflorescences of wild-type and gik mutant ET14389 plants. Expression was
normalized to TUB expression. Relative expression level in the wild-type was set to 1.0. Standard deviation was obtained from three independent
biological samples in N and O.
doi:10.1371/journal.pbio.1000251.g004
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complementary expression patterns in the developing reproductive

organs (GIK, Figure 4A–D; ETT, Figure 4E–H). GIK is predomi-

nantly expressed in the adaxial part of the developing carpels and

locules of stamens (Figure 4A–C). On the other hand, ETT is

expressed in the abaxial part of the developing carpels and in the

vasculature of the stamens (Figure 4E–G). In the developing ovules,

complementary expression of GIK and ETT was also apparent

(Figure 4D, H): GIK was mainly expressed in funiculi, outer

integuments, and the chalazal megaspores (Figure 4D), whereas

ETT expression was restricted to inner integuments and the nucellus

(Figure 4H).

Next, we compared ETT expression in wild-type and 35S::GIK

plants (Figure 4I–L). ETT signals in the 35S::GIK flowers were

lower than in the wild-type flower sections when stained on the

same slide (compare Figure 4I and J, 4K and L). Because

the overexpression phenotype of GIK can be interpreted as the

repression of GIK by ETT, we tested this possibility by examining

GIK expression in ett mutant flowers. However, GIK expression was

not upregulated in ett mutant flowers (Figure S6). Taken together,

these results suggest that GIK can negatively regulate ETT, but

not vice versa.

Next, we examined ETT expression in the flowers of ag-1

mutants and inducible AG lines. ETT expression was only

observed in the abaxial sides of early organ primordia and was

not maintained in maturing organs in an ag mutant background

(Figure 4M). This indicates that late ETT expression, which can be

modulated by GIK, requires AG activity. In ag-1 35S::AG-GR

inflorescences, ETT expression was reduced to 80% of the initial

level at 1 d after AG induction and then upregulated from day 2

onwards (Figure S7). These results suggest that ETT expression is

positively regulated by AG, but at the same time, negatively

modulated by GIK.

To examine the regulatory effects of GIK on ETT in detail,

time-course analysis of ETT expression was performed with

35S::GIK-GR-6HA transgenic plants with inducible GIK activity

using real-time PCR. ETT expression was downregulated 4 h after

a single DEX treatment that induces GIK activity, reached its

lowest level at 8 h, and then returned to pretreatment levels

(Figure 4N), suggesting that induced GIK activity rapidly

repressed ETT expression and that the ETT repression requires

continuous GIK expression. Furthermore, we quantitatively

measured ETT expression levels in gik mutant flowers. ETT was

upregulated about 1.8 times in gik mutant flowers as compared to

wild-type (Figure 4O). These results suggest that GIK functions as

an upstream negative modulator of ETT at certain floral stages.

GIK Is a Bona Fide Matrix Protein and Binds ETT Putative
MARs In Vitro and In Vivo

GIK contains an AT-hook DNA binding motif, which binds to

the MAR of DNA sequences [36,38]. To examine how GIK

controls ETT expression, we first examined whether GIK is a

bona fide nuclear matrix-bound protein. Because the endogenous

expression level of GIK in inflorescences is low (Figure 1C,

Figure S3A), we used inflorescences from 35S::GIK-GR-6HA

plants. We isolated the nuclei from the inflorescences of DEX-

treated 35S::GIK-GR-6HA plants (the inflorescences were harvested

4 h after DEX treatment) and then purified the matrix fraction by

DNaseI treatment and extensive washing with high-salt buffer,

which removes basic proteins and histones [58,59]. The total

nuclear protein and the matrix fraction were probed with anti-HA

that recognizes GIK-GR-6HA protein (Figure 5A). A strong GIK

signal was observed in the matrix fraction of the nuclei. In

comparison, AG (as a control) was mostly washed away during the

extraction processes, and only a faint signal was detected in the

matrix fraction on the same membrane (Figure 5A). This suggests

that GIK is associated with the nuclear matrix.

Next, to examine whether there are putative binding sites for

GIK in the ETT promoter, we identified MARs in the upstream

genomic region of ETT using SMARTest Software (Figure 5B)

[60]. To test whether GIK can bind the putative MARs in the

ETT promoter region, we expressed a truncated GIK with an

intact AT-hook motif in E. coli and checked for its binding to an

ETT putative MAR probe. We detected binding of the ETT probe

to the GIK AT-hook domain (Figure 5C, GIK-AT). The binding

activity was reduced when one of the conserved binding regions,

Arg-Gly-Arg-Pro (Figure 1B) [36] of the AT-hook domain, was

mutated to Arg-Gly-Lys-Pro (Figure 5C, GIK-MUT), suggesting

that the wild-type AT-hook motif binds to the predicted MAR in

the ETT promoter in vitro.

To examine whether GIK binds to the putative MARs of the

ETT promoter in vivo, we performed a ChIP assay using

inflorescences from 35S::GIK-GR-6HA plants. The plants were

treated with DEX, and the inflorescences were harvested 4 h later.

Nuclear proteins were solubilized by sonication and immunopre-

cipitated with anti-HA. The putative MARs of the distal ETT

promoter, especially the region represented by primer set P2,

showed clear enrichment (Figure 5D). In contrast, neither the

region that is close to one of the predicted MARs represented by

primer set P4 nor the control showed enrichment (Figure 5D). To

examine whether endogenous GIK binds the putative MARs of

the ETT promoter in a non-transgenic context, we repeated the

ChIP experiment using wild-type inflorescences and the polyclonal

anti-GIK. The result, albeit with some differences in the fold

enrichment, indicated that GIK binds to the putative MARs of the

distal ETT promoter in vivo (Figure S8).

The ETT MAR Is Necessary for GIK-Mediated Repression
To evaluate whether the binding of GIK to the putative MARs

of the ETT promoter is necessary for ETT regulation, we

performed ETT promoter-reporter analysis (Figure 5E, F,

Figure S9). We generated transgenic reporter lines in which the

major MAR (represented by primer sets P1 and P2), located at

distal part of the ETT upstream genomic region, was deleted

(pETTDMAR::GUS) (Figure 5F). As a control, the upstream

genomic region of ETT inclusive of all MARs (pETT::GUS) was

fused with a GUS reporter gene and the inflorescences were

stained (Figure 5E). Expression of GUS in T1 pETTDMAR::GUS

transgenic lines was comparable or slightly weaker compared

with that of pETT::GUS lines (Table S3). This result suggests that

ETT expression is normal even after the deletion of these 59 distal

regions, and that the deleted regions may not contain regulatory

elements or may contain both positive and negative regulatory

elements for transcription. These reporter lines were crossed with

the 35S::GIK-GR-6HA plants to test their responsiveness to ectopic

GIK activation. There was a gradual reduction of GUS activity

in response to continuous DEX treatment in plants transgenic for

the construct with a full-length ETT promoter (pETT::GUS) in a

time-dependent manner (Figure 5E). At day 3 and later, GUS

staining was barely detectable. In contrast, the pETTDMAR::GUS

reporter line was less responsive to GIK (Figure 5F). To exclude

the possibility that the no responsiveness is due to positional

effects of an insertion site, we repeated the experiments using an

independent line and confirmed that pETTDMAR::GUS reporter

line does not respond to GIK activity (Figure S9A). To quantify

this MAR-dependent repression of GUS activity by GIK, we

carried out time-course GUS reporter gene expression analysis

using quantitative real-time PCR (Figure S9B, C). In agreement

with the reduction in GUS staining, GUS expression in the
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pETT::GUS line was significantly downregulated at days 3 and 4

after GIK induction, respectively (Figure S9B). In contrast, in the

pETTDMAR::GUS reporter line, there was no significant

reduction of GUS expression at day 4, and in fact a slight

increase was seen at day3 (,1.3-fold) after GIK induction (Figure

S9C). These results suggest that repression of ETT by GIK

requires the sequence containing the distal putative MARs of the

ETT promoter.

Figure 5. GIK binds to putative MARs of ETT genomic DNA to modulate its expression. (A) GIK is localized to the nuclear matrix. Nuclear
matrix was isolated from the inflorescences of 35S::GIK-GR-6HA plants treated with DEX and harvested 4 h thereafter. Total nuclear and matrix
proteins were subjected to western blot analysis. The membrane was first probed with anti-HA to detect GIK and then re-probed with anti-AG. (B)
Schematic representation of SMARTest-predicted MARs in the ETT upstream genomic region. Arrow indicates the transcription start site. P1, P2, P3,
and P4 are primer pairs used to detect different regions of the ETT genomic DNA used in the ChIP assay. (C) In vitro MAR binding assay of GIK. Left
panels, Coomassie Blue staining of a gel loaded with non-induced E. coli containing the wild-type GIK AT-hook motif construct (noninduced), with an
IPTG-induced culture containing the construct for the wild-type GIK AT-hook motif (GIK-AT), and with IPTG-induced culture containing a mutated
construct in the conserved residues of the GIK AT-hook motif, changing Arg-Gly-Arg-Pro to Arg-Gly-Lys-Pro (GIK-MUT). Right panels, the
corresponding south-western results of the MAR binding assay probed with an ETT MAR probe. (D) GIK binds to the MARs of the ETT promoter in
vivo. Inflorescences from 35S::GIK-GR-6HA plants treated with DEX were harvested 4 h after DEX induction for ChIP experiments. Anti-HA was used for
immunoprecipitation. Relative enrichment was obtained from the ratio of enrichment achieved by anti-HA to that of control IgG. Enrichment of a
sequence amplified from the TUB locus was used as a basal control and set to 1.0. P1, P2, P3, and P4 are primer pairs used to detect different regions
of the ETT genomic DNA (as illustrated in B). (E, F) Time-course promoter analysis of the ETT gene after GIK induction. 35S::GIK-GR-6HA transgenic
plants were crossed with plants transgenic for promoter constructs of wild-type pETT::GUS (E) and pETTDMAR::GUS with a deletion of distal MARs (F).
The inflorescences were treated continuously with DEX every 2 d and harvested for GUS staining at 0, 1, 2, 3, and 4 d after the initial DEX treatment.
Upper panels, schematic representations of the ETT upstream genomic region fused with a GUS reporter gene. Lower panels, GUS-stained
inflorescences at 0, 1, 2, 3, and 4 d after the initial GIK induction. (G) Time-course analysis of dimethylated-H3K9 level associated with the ETT genomic
DNA in 35S::GIK-GR-6HA inflorescences at 0, 2, 4, and 8 h after a single GIK induction. ChIP was performed using anti-dimethylated H3K9 (Upstate).
Primer pairs P1, P2, P3, and P4 are shown in Figure 5B. Relative enrichment was obtained from the ratio of bound/input achieved in the respective
time points to that at 0 h. The bound/input ratio was first normalized with the bound/input ratio of a basal control, PFK, the transcription of which is
not affected by GIK. The enrichment at 0 h was set as 1.0. Standard deviation was obtained from PCR triplicates in D and G.
doi:10.1371/journal.pbio.1000251.g005
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GIK-Mediated ETT Repression Is Associated with Dynamic
Changes in Dimethylated Histone H3 at Lys9

To examine whether repression of ETT is associated with any

known epigenetic histone modifications, we performed a ChIP

assay using antibodies against modified histones in wild-type and

35S::GIK backgrounds (for details, see Materials and Methods).

One of the repressive marks, dimethylated Lys 9 of histone H3

[61], was found to be specifically enriched in the 35S::GIK

background in the ETT upstream region (Figure S10). To gain

further insight into the change in H3K9 dimethylation, we

performed a time-course ChIP analysis using inflorescences of

35S::GIK-GR-6HA plants treated one time with 10 mM DEX. We

observed a rapid increase in H3K9 dimethylation at the distal

portion of the putative MAR within 2 h of GIK induction,

especially in the region represented by primer set P2 (Figure 5G).

At 4 h post-induction, the increase in H3K9 dimethylation

reached a maximum, with a 3- to 4-fold increase in the

dimethylation level in the ETT upstream region (Figure 5G). This

change in dimethylated H3K9 was relatively rapid and dynamic:

at the 8 h time point, the level was comparable to that at time 0.

ETT transcript levels were reduced to their lowest levels at the 8 h

time point after GIK induction (Figure 4N). This result suggests

that the GIK-mediated ETT change requires continuous GIK

activity and that the repression is closely associated with a dynamic

change in the extent of H3K9 dimethylation in the ETT upstream

region.

GIK Regulates a Set of Reproductive Genes
To account for the pleiotropic phenotypes conferred by

overexpression and loss of function of GIK (Figure 3), we examined

a panel of reported Arabidopsis genes involved in reproductive

development for their expression responses to GIK using real-time

PCR (Figure 6A–D and Table S4). Many genes including LUG,

which is a putative repressor of AG and whose loss of function leads

to bipartite stigmas [22–24], showed no clear changes in

expression upon GIK activation in the time-course experiments

using 35S::GIK-GR-6HA inflorescences (Figure 6D, Table S4).

However, expression of CRC, JAG, and KNU decreased signifi-

cantly after GIK induction (Figure 6A–C).

To determine whether GIK directly regulates CRC, JAG, or

KNU, we first examined transcriptional repression by including the

protein synthesis inhibitor cycloheximide (Figure S11). DEX with

cycloheximide treatment repressed ETT, CRC, JAG, and KNU

expression in 2 h at a level comparable to DEX-only treatment,

indicating that transcriptional repression by GIK does not require

de novo protein synthesis (Figure S11). In the upstream region of

each of these genes, one to three predicted MARs were identified

using SMARTest (Figure 6E–G). The prediction made by the

SMARTest program could contain false-positive and false-

negative results (Figure 5D) [60]. To validate the SMARTest

prediction, we performed ChIP experiments and showed apparent

enrichment using primer sets that detect some of the putative

MAR regions of these target genes (Figure 6E–G). In the CRC

promoter, there are two predicted MARs. Both the distal and

proximal putative MARs showed a clear enhanced binding

compared with control, whereas primer set P2, which amplifies

the 39 region of the distal putative MAR, showed no clear

enrichment (Figure 6E). In the JAG promoter, the most distal of

the three putative MARs showed the strongest enrichment

(Figure 6F). The 59 transcribed region of JAG showed an

unexpectedly high enrichment, which may indicate that an

unpredicted MAR site is located in the transcribed region of

JAG. In the KNU promoter, there was only one predicted MAR,

and the enrichment index showed a bell-shaped distribution

centered on the binding site (Figure 6G). These results suggest that

ectopically expressed GIK binds directly to the putative MARs of

these target genes and represses their transcription.

To determine whether endogenous GIK is involved in the

regulation of CRC, JAG, or KNU, we examined the expression of

these genes in the gik mutant background. Real-time PCR using

flowers from gik homozygous plants showed that JAG and KNU

were relatively highly expressed in the gik mutant (Figure 6H).

Expression of CRC was slightly increased, but expression of LUG

was not changed in the gik mutant. These results suggest that GIK

is involved in a mode of regulation that ensures proper levels of

expression of multiple genes during reproductive development

(Figure 7).

Discussion

The floral homeotic protein AG is a key determinant of

reproductive organ development. AG is thought to control the

spatiotemporal expression of over 1,000 genes responsible for

stamen and carpel development [9]. We showed that AG regulates

the expression of GIK, which codes for a MAR binding protein

with an AT-hook DNA binding motif. We further demonstrated

that the expression of various key transcription factors in flower

development, including ETT/ARF3, is modulated directly by GIK

by binding to the putative MARs. We also showed that GIK

modulation of target genes is closely associated with epigenetic

modifications. Our data strongly suggest that GIK has multiple

inputs into transcriptional control of reproductive development

downstream of AG (Figure 7).

GIK Expression Balances Patterning and Organogenesis
Although organ patterning and organogenesis are generally

thought to occur independently, evidence has emerged that there

is cross-talk between these processes. The homeotic protein AG

controls stamen identity partly by activating SPL/NZZ, a gene

necessary for specification of male gametophytes [12]. During late

stamen development, AG directly controls DAD1 to induce

jasmonic acid biosynthesis for stamen maturation [18]. Here we

show that another target of AG, GIK, modulates the expression of

the auxin response factor ETT through epigenetic modification of

the ETT promoter. ETT controls patterning in both the abaxial-

adaxial and apical-basal axes of reproductive organs [19–21,57].

GIK also influences the expression of other key regulators during

reproductive development, such as CRC, another abaxial-adaxial

polarity-controlling YABBY family gene [25,26]; JAG, which is

involved in proliferation and differentiation of carpels [28]; and

KNU, which is involved in floral meristem determinacy and

gametophyte differentiation [30]. Thus, we propose that organ

patterning that is mediated by ETT (and possibly CRC) and

reproductive differentiation that is regulated by KNU and JAG are

under partial control of AG, and that GIK acts as a molecular

organizer to orchestrate expression of these key regulators for

floral reproductive patterning and differentiation (Figure 7).

Ectopic GIK expression in the ag-1 mutant background had

minor effects on organ identity and patterning. This does not,

however, imply that GIK has no clear function as an AG target.

Rather, our data suggest that GIK may modulate and refine

spatial and temporal expression of multiple genes downstream of

AG. The direct GIK targets, ETT, CRC, JAG, and KNU, are

predominantly expressed in reproductive organs, and their

expression depends on AG activity to varying degrees. CRC and

KNU are directly regulated by AG [13,31]. ETT locus is directly

bound by SEPALLATA3, a binding partner of AG [14]. Thus, the

effects of ectopic GIK expression were only observed in the wild-
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Figure 6. GIK regulates multiple reproductive regulators. (A–D) Time-course expression analysis of CRC (A), JAG (B), KNU (C), and LUG (D)
transcripts upon GIK activation. Inflorescences from 35S::GIK-GR-6HA plants were harvested at 0, 4, 8, 16, and 24 h after a single DEX treatment for
quantitative real-time PCR. Target gene expression was normalized to TUB. Relative expression in DEX-treated samples was calibrated with mock-
treated samples. Standard deviation was obtained from three independent biological samples. The differences between 0 h and 8 h were statistically
analyzed using paired student’s t-test. *p,0.05 in (A), (B), and (C). p.0.1 in (D). (E–G) GIK binds the upstream MAR regions of CRC (E), JAG (F), and KNU
(G) genomic DNA in vivo. Schematic representations of genomic regions of these genes are shown with demarcated SMARTest-predicted MAR
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type context in which genes downstream of AG are activated.

Based on this observation, we conclude that the general role of

GIK is to fine-tune the expression of key regulators necessary for

patterning and differentiation during reproductive development

(Figure 7).

We observed a relatively low penetrance of GIK loss-of-function

phenotypes, despite robust phenotypes caused by GIK overexpres-

sion. In addition to a possible redundancy, this observation may

suggest that GIK does not act as a steadfast controller of gene

expression but rather that it fine-tunes the expression of multiple

genes through chromatin formation. Furthermore, GIK is

expressed in tissues other than flowers, with especially robust

expression in roots. Therefore, GIK may have an AG-independent

and root-specific function during root growth and development. In

agreement with this observation, overexpression of GIK caused

root growth inhibition (Figure S12), even though loss of GIK

function did not show clear morphological defects in roots

(unpublished data).

Regulation of ETT by GIK
We showed that ETT is a major target gene for repression by

GIK during reproductive development based on the results of a

series of genetic and molecular experiments: (1) GIK overexpres-

sion mimics the phenotypes of ett mutants, (2) GIK and ETT show

complementary expression patterns during late reproductive

development, (3) ETT expression is increased in gik mutants, (4)

GIK binds to ETT putative MARs in vivo, and (5) the putative

ETT MARs are important in GIK-regulated ETT expression.

GIK-mediated repression of ETT occurred relatively rapidly after

GIK induction in floral tissues, and the stable repression of ETT

required continuous GIK activity. We also showed that ETT

silencing was associated with repressive histone dimethylation of

H3K9 in the ETT promoter, especially at the distal putative

MAR. It remains unclear whether GIK is directly involved in this

histone modification. Because GIK lacks known domains typically

found in chromatin-modifying enzymes, GIK may introduce

structural changes to the genomic region through MAR binding

and may thereby facilitate the binding of chromatin-modifying

enzymes to carry out histone modifications. It is also possible that

GIK serves as a center for organizing chromatin remodeling

complexes in the nuclear matrix to regulate target gene expression.

Alternatively, MAR binding by GIK may inhibit the binding of

the transcriptional machinery to the proximal promoter, leading to

gene silencing associated with dimethylated H3K9. However, our

time-course analysis showed that the dynamic changes in H3K9

dimethylation levels appeared to precede negative regulation of

ETT transcription, which does not support the later hypothesis.

Dimethylation of H3K9 increased rapidly during the 2 h after

GIK induction. A further increase in dimethylation at the 4 h

time point corresponded with the steepest downregulation of

ETT transcription at the 8 h time point. Conversely, a dynamic

reduction of H3K9 dimethylation to a level lower than that seen

prior to induction at the 8 h time point was followed by a steady

recovery of ETT transcription at the later time points of 16 h and

24 h. Nevertheless, how this dynamic methylation pattern is

achieved remains unknown. The mammalian AT-hook protein

SATB1 has been shown to mediate gene repression by directly

recruiting histone deacetylases [62]. Further studies of proteins

that interact with GIK may provide a more detailed account of the

mechanism of GIK-mediated repression.

ETT has recently been shown to be regulated by trans-acting

short interfering RNAs (siRNAs) [63–65]. Interestingly, ETT

expression may be refined by two different molecules, GIK and

siRNA, to establish strict spatiotemporal expression boundaries.

These events may also partially explain the modest effects of the

GIK loss-of-function mutant and of deletion of putative MAR

regions in the ETT-promoter reporter construct in the wild-type

context. However, it remains to be determined whether GIK and

siRNA have separate or overlapping roles in the control of ETT in

reproductive development.

Figure 7. Summary diagram of GIK regulation and function. The MAR binding protein GIK is directly regulated by the floral homeotic protein
AG during reproductive development. GIK modulates and refines the expression of ETT and CRC to control reproductive patterning and JAG and KNU
for reproductive differentiation. GIK functions as a multifunctional determinant to coordinate gene expression during reproductive development.
doi:10.1371/journal.pbio.1000251.g007

regions. Primer sets used for quantitative PCR are shown below each graph. Arrows indicate transcription start sites. Relative enrichment was
obtained from the ratio of enrichment achieved by anti-HA to that of control IgG. The enrichment value obtained from a sequence amplified from the
TUB locus is shown as a control and set to 1.0. Standard deviation was obtained from PCR triplicates. The differences between the control and the
primer pairs showing the highest enrichment were statistically analyzed using student’s t-test. **p,0.1 in (E), ***p,0.05 in (F) and (G). (H) Expression
analysis of CRC, JAG, KNU, and LUG in the gik mutant using real-time PCR as in Figure 4O.
doi:10.1371/journal.pbio.1000251.g006
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Evolutionary Convergence on AT-Hook Motif MAR-
Binding Proteins

In mammals, MAR-binding proteins have been implicated in

the control of expression of multiple genes. SATB1 in mice

contains an AT-hook DNA binding motif and acts as a ‘‘gene

organizer’’ to regulate temporal and spatial expression of multiple

genes during thymocyte maturation and breast tumor growth and

metastasis [40,44]. Another SATB1-related MAR-binding protein,

SATB2, represses the expression of several Hox genes during

skeletal development and osteoblast differentiation [43]. In

agreement with these studies, we show that GIK exhibits similar

properties in its regulation of target genes. First, these proteins

share the role of a matrix binding protein with an AT-hook DNA

binding motif and regulate expression of multiple genes. Second,

they are important regulators of various developmental processes:

SATB1 in T-cell development, SATB2 in craniofacial patterning

and osteoblast differentiation, and GIK in floral reproductive

development. Third, most of these proteins execute their effects

by modifying chromatin (SATB1 recruits histone deacetylase,

whereas negative regulation by GIK is associated with H3K9

methylation). Thus, convergent evolution may have permitted

proteins with the same motif to be used for transcriptional

coordination in the two kingdoms. Plants and animals are

considered to have independently evolved their multicellular

developmental processes, but organ or segment identity control in

plants and animals starts with transcription factors: HOX genes in

animals and MADS genes in plants [66]. Proteins with AT-hook

motifs are predominantly present in eukaryotes. The motif is found

in some families of HMG proteins that bind to the minor groove of

DNA, and the proteins may serve as an anchor for chromatin

modifying proteins or may change chromatin architecture

[37,38,62]. Such properties may explain why AT-hook proteins

have been used in the evolution of both plant and animal

development. In mice, SATB2 controls the expression of the

homeotic protein Hoxa2 [43]. In contrast, the homeotic protein

AG controls the expression of GIK in Arabidopsis. Thus it is

possible that AT-hook motif proteins have been independently

incorporated into multicellular developmental processes in animals

and plants, but with similar functions of orchestration and fine-

tuning of tissue-specific expression of multiple genes.

Materials and Methods

Plant Materials and Chemical Treatments
All plants used in this study are on the Landsberg erecta background

and were grown at 22uC under continuous light. DEX treatment was

done by submerging inflorescences in a solution containing 10 mM

DEX together and 0.015% Silwet L-77 for ,1 min. Transgenic

plants were generated by Agrobacterium-mediated infiltration [67].

Plant photographs were taken using a Nikon SMZ 1500 stereoscopic

microscope attached to a digital camera (SIGHT DS-U1). Scanning

electron microscope images were taken using a JEOL JSM-6360LV

scanning electron microscope.

Generation of GIK Loss of Function, Complementation,
RNAi, and Overexpression Lines

To generate the 35S::GIK and 35S::GIK-GR-6HA constructs, GIK

cDNA was cloned into a pMAT137 vector and a composite pGreen

vector containing a rat GR hormone binding domain and a

66HA tag, respectively [12,68]. Transgenic plants were selected

with kanamycin (for the pMAT137 construct) and BASTA (for the

pGreen construct) for two generations to obtain homozygous lines.

35S::GIK-GR-6HA plants were treated with DEX five times at 1 d

intervals for phenotypic observation. More than 90% of DEX-

treated flowers showed reproductive defects. A GIK insertion line

was obtained from the TRAPPER collection (http://genetrap.

cshl.edu/TrHome.html) (NASC stock number, ET14389). The

enhancer trap was inserted into the middle of the coding region,

450 bp downstream from the start codon. Homozygous lines were

verified by PCR-based genotyping. In total, ,1% of gik mutant

flowers showed reproductive defects. For the rescuing experiment

of the gik mutant, a genomic copy of GIK, containing 4,660 bp of

the 59 upstream region, 858 bp of the GIK coding region, and

1,767 bp of the 39 region, was cloned into the pDONR221 vector

(Invitrogen) and later into the pBGW binary vector using gateway

cloning [69] for plant transformation. Unexpectedly, we obtained

lines showing 5–50-fold higher expression levels of GIK, thus

showing the ectopic expression phenotypes. To generate the

35S::GIK-RNAi construct, a C-terminal fragment of the GIK coding

region (GIK-Cter, 410–808 bp) was amplified using UltraPfu-High-

Fidelity DNA polymerase (Stratagene) to produce BamHI-GIK-

Cter-ClaI and XhoI-GIK-Cter-KpnI fragments. These fragments were

cloned into the pKANNIBAL vector [70]. pKANNIBAL-GIK-RNAi

was cut by NotI to produce a 35S::GIK-RNAi fragment, which was

then cloned into the pMLBART binary vector [71]. GIK-RNAi

transgenic plants were selected using BASTA. A few percentages

of the examined flowers showed reproductive defects in the T1

and T2 generations. In the T3 generation, the lower ratio of the

GIK-RNAi flowers showed reproductive defects. To generate the

35S::GIK2-RNAi construct, an N-terminal fragment of the GIK2

(AT4g17800; 39–260 bp) coding region was amplified using

UltraPfu-High-Fidelity DNA polymerase to produce BamHI-

GIK2-Nter-ClaI and XhoI-GIK2-Nter-KpnI fragments. These frag-

ments were cloned into the pKANNIBAL vector and later into the

pMLBART binary vector as described in the cloning process for

35S::GIK-RNAi. A T1 35S::GIK2-RNAi plant was crossed to gik and

the GIK2 RNAi gik plants were obtained and confirmed following

BASTA selection and PCR genotyping.

Antigen Purification and Polyclonal Antibody Production
Full-length GIK cDNA and cDNAs of the conserved N-terminal

and AT-hook domains were cloned into the pQE30 vector

(QIAGEN) to produce 66His-GIK proteins. Recombinant

protein was induced using 1 mM IPTG and purified on a nickel

column (QIAGEN) under denaturing conditions. Protein was then

partially refolded through buffer exchange and concentrated using

a Centriprep Centrifugal Filter with an Ultracel YM-10

membrane (Millipore). Purified 66His-GIK recombinant protein

was injected intramuscularly into guinea pigs with Freund’s

adjuvant. Blood was withdrawn after the fourth and sixth

immunizations. Whole blood was processed to obtain polyclonal

anti-GIK serum.

Western Blot Analysis
Approximate 0.035 g each of Arabidopsis roots, flowers, and

leaves was ground in liquid nitrogen and re-dissolved in 80 mL

SDS sample loading buffer (0.125 M Tris-HCl, pH 6.8, 4% SDS,

10% b-mercaptoethanol, 20% sucrose, 0.02% bromophenol blue).

The samples were boiled for 10 min, and 25 mL of each sample

was loaded onto a 12% SDS polyacrylamide gel for electropho-

resis. Proteins were transferred onto a PVDF nylon membrane

(Bio-Rad) and blocked with skim milk. The membrane was then

incubated overnight with polyclonal anti-GIK at 4uC, washed with

20 mM Tris-HCl, pH 7.5, 137 mM NaCl, and 0.1% [v/v] Tween

20 and further incubated with secondary anti-guinea pig coupled

to horseradish peroxidase. Signal was detected using SuperSignal

West Dura extended duration substrate (Pierce). A replicate
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membrane was stained with Coomassie Blue to show protein

loading.

Immunofluorescence Staining
Arabidopsis seedlings were rinsed with 16 phosphate buffered

saline (PBS) and fixed with 4% paraformaldehyde in PBS for 1 h.

Seedlings were washed three times with PBS and incubated with

4% Driselase (Sigma) at 37uC for 30 min. After washing, seedlings

were further incubated with PBS containing 10% dimethyl

sulfoxide and 3% [v/v] NP-40 for 1 h at room temperature.

Seedlings were washed three times with PBS and blocked with 3%

bovine serum albumin for 30 min. Seedlings were then incubated

overnight with polyclonal anti-GIK or monoclonal anti-trimethyl-

guanosine (Calbiochem). Cy3-conjugated anti-guinea pig and

FITC-conjugated anti-mouse were used as secondary antibodies.

TOPRO-3 was used as a fluorescent DNA dye. Immunostaining

was analyzed with a laser scanning confocal microscope (Zeiss

Meta LSM510).

In Vitro MAR Binding Assay
Recombinant proteins GIK-AT (residues 74-173) and GIK-

MUT (residues 74-173; R83K) were produced in the pQE30

expression vector carried by E. coli M15 cells. ETT MAR probes

were generated by cloning SMARTest-predicted MAR sequences

[60] in the ETT upstream genomic region into the pCRII vector

(Invitrogen). Probe 1 (25,233 to 25,084 bp from translation start

site) and Probe 2 (24,283 to 24,134 from translation start site)

fragments were generated by EcoRI digestion and were end-

labeled with a digoxigenin probe synthesis mix (Roche) using

Klenow fragment (New England BioLabs). South-Western analysis

was performed as described [34] with some modifications. Briefly,

induced and noninduced bacterial lysates were separated by 10%

SDS-PAGE and blotted onto a nitrocellulose membrane (Bio-

Rad). The membrane was incubated overnight with 20 ng/mL of

digoxigenin-labeled ETT putative MAR probes in DNA binding

buffer containing 20 mM Tris-HCl, pH 7.4, 150 mM NaCl, and

20 ng/mL salmon sperm DNA at room temperature, washed, and

incubated with anti-dioxigenin coupled with alkaline phosphatase

(Roche). Signal was detected using CDP-Star (Roche) as a

substrate. P1 and P2 probes showed similar binding efficiencies

to GIK-AT. The binding result with the P2 probe is shown.

Real-Time PCR Analysis
Total RNA was isolated from floral bud clusters at stage 10 or

younger [18] using the RNeasy plant mini kit (Qiagen) and

reverse-transcribed using the Superscript III RT-PCR system

(Invitrogen). Quantitative real-time PCR assays were performed in

triplicate with the 7900HT fast real-time PCR system (Applied

Biosystems) using the SYBR Green PCR master mix (Applied

Biosystems). Statistical analysis was done using paired student’s

t-test.

ChIP Assay
The ChIP assay was performed as described [18,72] with some

modifications. Briefly, inflorescences were ground in liquid

nitrogen and postfixed with 1% formaldehyde for 10 min.

Chromatin was isolated and solubilized by sonication, resulting

in an average DNA length of 500 bp. The solubilized chromatin

was precleared with salmon sperm DNA-treated protein A- (for

anti-AG, anti-dimethylated H3K9, and normal rabbit IgG) or

protein G- (for anti-HA) agarose beads (Upstate). After centrifu-

gation, the supernatant was incubated overnight with anti-AG

(for AG ChIP experiments), anti-HA (Roche) (for GIK ChIP

experiments), anti-modified histone (Upstate) for dimethylated

H3K9, dimethylated H3K4, acetylated histone H3, and trimethy-

lated H3K27 (for histone modification ChIP experiments), or

normal rabbit IgG (for both AG and GIK ChIP experiments as a

control). The DNA-protein complex was precipitated by adding

protein A- or protein G-agarose beads, and the purified DNA

samples were used for enrichment tests with real-time PCR assays.

We measured the ratio between the input DNA before IP and

bound DNA after IP for each primer set. The relative enrichment

for AG and GIK ChIP experiments was the ratio obtained from:

[{(Bsp/Isp)/(Bctrl/Ictrl)} of Absp]/[{(Bsp/Isp)/(Bctrl/Ictrl)} of control

IgG], where Bsp = amount of bound DNA measured by a specific

primer pair; Isp = amount of Input DNA by a specific primer pair;

Bctrl = amount of bound DNA by control primer pair (ACT);

Ictrl = amount of Input DNA by control primer pair; and

Absp = anti-AG or anti-HA. The control value was set at 1.0.

The relative enrichment for the histone modification experi-

ments was the ratio obtained from: [(Bsp/Isp) of X time points]/

[(Bsp/Isp) of 0 h].

At least three independent biological replicates of the ChIP

assay were performed for the AG ChIP and GIK ChIP

experiments. Two independent biological replicates were per-

formed for the histone modification ChIP assay. The real-time

PCR assay was done in triplicate for each ChIP assay. One

representative data set showing a reproducible trend is shown.

Nuclear Matrix Isolation for Protein Analysis
Nuclei matrix was isolated as described [59] with some

modifications. Briefly, nuclei were isolated using the ChIP method

(see previous section) without fixation or sonication. The isolated

nuclei were washed once with RSB buffer (10 mM NaCl, 3 mM

MgCl2, 10 mM Tris-HCl, 0.5 mM PMSF, pH 7.4) and a fraction

was kept as a total nuclear control. The remaining sample was

digested with 50 U of DNaseI (Roche) in RSB containing 0.25 M

sucrose and 1 mM CaCl2 for 2 h at room temperature. After

centrifugation, pellets were resuspended in RSB and an equal

volume of high-salt buffer I (4 M NaCl, 20 mM EDTA, 20 mM

Tris-HCl, pH 7.4) and incubated for 10 min at 0uC. After

centrifugation, the pellets were further extracted twice with high-

salt buffer II (2 M NaCl, 20 mM EDTA, 20 mM Tris-HCl,

pH 7.4, 0.25 mg/mL BSA). After high-salt extractions, the

matrices were washed with RSB buffer containing 0.25 M sucrose

and 0.25 mg/mL BSA and resuspended in the same buffer. The

resuspended matrices and total nuclear lysates were used for

western analysis. Anti-HA and anti-AG were used to detect GIK-

GR-6HA and AG proteins, respectively.

ETT Promoter Analysis
To generate the pETT::GUS construct, 8.7 kb of ETT upstream

genomic sequence was first amplified using UltraPfu-High-Fidelity

DNA polymerase with an extension time of 8 min and then cloned

into the pDONR221 (Invitrogen) to create the entry clone.

Similarly, the 4.9 kb pETTDMAR::GUS construct was amplified

using UltraPfu-High-Fidelity DNA polymerase with an extension

time of 5 min and then cloned into the pENTR directional TOPO

cloning vector (Invitrogen). Both clones were sequenced for

confirmation. Subsequently, both entry clones were cloned into

the pBGWFS7 binary vector [69] using the Gateway cloning

method. Transgenic plants with positive GUS reporter expression

were crossed with 35S::GIK-GR-6HA plants to obtain pETT::GUS

35S::GIK-GR-6HA and pETTDMAR::GUS 35S::GIK-GR-6HA dou-

ble transgenic plants. DEX treatment was performed as described

above continuously at 2 d intervals. Whole inflorescences were
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rinsed and stained to determine GUS activity for GUS expression

analysis [73].

In Situ Hybridization
Nonradioactive in situ hybridization was performed as de-

scribed [74]. Full-length ETT cDNA and a 39 specific region of

GIK cDNA were amplified with PCR and cloned into pSK

(Stratagene) and pCRII vectors, respectively, and used as templates

for in vitro transcription.

Accession Numbers
Arabidopsis Genome Initiative locus identifiers of Arabidopsis genes

used in this article are as follows: AGAMOUS (AG, At4g18960),

GIANT KILLER (GIK, At2g35270), ETTIN (ETT, At2g33860),

CRABS CLAW (CRC, At1g69180), JAGGED (JAG, At1g68480),

KNUCKLES (KNU, At5g14010), LEUNIG (LUG, At4g32551),

TUBULIN 2 (TUB, At5g62690), MU-LIKE TRANSPOSASE (MU,

At4g03870), PHOSPHOFRUCTOSE KINASE (PFK, At4g04040), and

LIPASE (At1g10740).

Supporting Information

Figure S1 Semi-quantitative RT-PCR of 110 genes. PCR

products approximately 500 bp in length were amplified using

primer sets designed for 110 genes located near putative AG binding

sites. Primer sets were designed to span intron sequences when

possible to distinguish RT-PCR products from the amplification of

genomic DNA. If no amplification was detected, primers were

redesigned. If after the second round of PCR no amplification was

observed, the gene was considered to be a pseudogene. PCR

conditions were determined using a dilution series of control DNA

(22n, n = 0–12) from 40 ng to 10 pg of genomic DNA equivalent to

46105 to 100 copies of targets per reaction. We set the conditions as

follows: to one cycle of 96uC for 15 min, followed by 40 cycles of

94uC for 50 s, 60uC for 50 s and 72uC for 90 s, followed by 72uC
for 10 min using Hot StartTaq DNA polymerase. In this condition,

target sites in the range of 16105 and 16103 copies/reaction can be

quantified, and therefore abundant genes were disregarded. AG and

SUP RT-PCR products roughly correspond to 16105 and 46103

copies in our flower samples (unpublished data). After this screen, 24

genes showed reduced expression in ag mutant flowers, as marked

by asterisks next to gene names. Left lane, 100 bp ladder (100 bp

,1 kb in every 100 bp, 1.2 kb, and 1.5 kb; bands of 500 bp and

1 kb are thicker). Lanes show amplification products using cDNA

synthesized from RNA isolated from wild-type roots, wild-type

leaves, and flowers from wild-type and ag-1 mutant plants, from left

to right. Accession numbers are as follows, 1-ABP, AT1G21530;

1-ANK, AT1G04780; 1-C3H, AT1G24580; 1-CON, AT1G61740;

1-DSO, AT1G05100; 1-ENP, AT1G09060; 1-EPO, AT1G74300;

1-ERP, AT1G80690; 1-EXG, AT1G14455; 1-HLH, AT1G73830;

1-HMR, AT1G48620; 1-HYP, AT1G43690; 1-INV, AT1G56555;

1-LIP, AT1G10740; 1-PEX, AT1G14540; 1-RIG, AT1G80400;

1-SEC, AT1G56660; 1-SKK, AT1G60940; 1-SRP, AT1G47710;

1-TIN, AT1G22810; 1-TNY, AT1G74930; 1-TRA, AT1G64150;

2-AG5, AT2G42830; 2-ATH, AT2G35270; 2-BRA, AT2G19460;

2-BZP, AT2G36270; 2-CHA, AT2G02710; 2-CON, AT2G15590;

2-CTH, AT2G04240; 2-CYP, AT2G28850; 2-DOB, AT2G41940;

2-DSK, AT2G17530; 2-INI, AT2G31430; 2-LIP, AT2G15230;

2-PHD, AT2G31650; 2-RLK, AT2G02220; 2-SIG, AT2G18770;

2-SPI, AT2G39260; 2-TFL, AT2G27550; 2-TTV, AT2G31990;

2-TYK, AT2G39740; 2-WRY, AT2G37260; 2-ZIN, AT2G32930;

3-AP2, At3g54990; 3-CAK, AT3G51850; 3-EDF, AT3G58680;

3-HAT, AT3G01470; 3-HUN, AT3G21690; 3-KIN, AT3G61410;

3-KIS, AT3G44050; 3-MYB, AT3G29020; 3-PET, AT3G01350;

3-RAS, AT3G11730; 3-RBL, AT3G50330; 3-REX, AT3G06140;

3-RIN, AT3G19950; 3-SIG, AT3G53920; 3-SUN, AT3G13180;

4-AG19, AT4G22950; 4-AG21, AT4G37940; 4-AIG, AT4G09950;

4-CEL, AT4G17615; 4-CHP, AT4G02180; 4-CLC, AT4G12550;

4-GL2, AT4G17710; 4-GLU, AT4G02290; 4-GLY, AT4G02480;

4-HOX, AT4G36740; 4-MYA, AT4G12350; 4-PEC, AT4G13210;

4-PIT, AT4G09160; 4-PRG, AT4G14965; 4-PRO, AT4G10510;

4-RHF, AT4G14220; 4-RIN, AT4G09100; 4-SAB, AT4G07320;

4-SAL, AT4G39070; 4-SEN, AT4G30430; 4-SKK, AT4G11460;

4-STK, AT4G25160; 4-TOP, AT4G22360; 4-TSP, AT4G27910;

4-TUB, AT4G14960; 4-UBQ, AT4G10570; 4-UBS, AT4G10590;

5-CDC, AT5G39420; 5-CHH, AT5G57520; 5-CHR, AT5G42920;

5-CLV, AT5G62230; 5-CO, AT5G41380; 5-CYT, AT5G57570;

5-DAG, AT5G44780; 5-DIS, AT5G45500; 5-DRO, AT5G47900;

5-GAL, AT5G26920; 5-GAS, AT5G15230; 5-HAP, AT5G67180;

5-HYP, AT5G40860; 5-KIN, AT5G25440; 5-MCR, AT5G55670;

5-MYB, AT5G49330; 5-NAL, AT5G39610; 5-NAM, AT5G39540;

5-PEC, AT5G66920; 5-REK, AT5G12000; 5-RLK, AT5G35390;

5-RLL, AT5G03140; 5-SET, AT5G43990; 5-SHG, AT5G14640;

5-WRK, AT5G22570.

Found at: doi:10.1371/journal.pbio.1000251.s001 (1.60 MB TIF)

Figure S2 Control ChIP assay using mock-treated ag-1
35S::AG-GR inflorescences. Chromatin immunoprecipitation

(ChIP) was performed using ag-1 35S::AG-GR inflorescences at day

0 before DEX treatments. P1, P2, and P3 indicate primer pairs

used for detecting different regions of GIK genomic DNA. Relative

enrichment was obtained from the ratio of enrichment achieved by

AG antibody to that of control IgG. Enrichment of a sequence

amplified from PFK genomic DNA was used as a basal control and

was set to 1.0. Standard deviation was obtained from PCR

triplicates. No significant statistical differences among the relative

enrichment ratios were found.

Found at: doi:10.1371/journal.pbio.1000251.s002 (0.78 MB TIF)

Figure S3 Western blotting and immunostaining using
the GIK antibody. (A) Western blotting using whole protein

extracts from Arabidopsis leaves, roots, and flowers. Bottom panel

shows Coomassie Blue staining as a protein loading control.

Several larger bands were observed in roots, which may be

modified GIK proteins or GIK homologs. The band in leaves was

barely detectable, indicating that GIK may be regulated at the

protein level. (B) Immunostaining of wild-type Arabidopsis root cells

with anti-GIK at low magnification. Bar, 5 mm.

Found at: doi:10.1371/journal.pbio.1000251.s003 (1.63 MB TIF)

Figure S4 Verification of the gik mutant and flower
phenotypes. (A) Isolation of homozygous gik plants. Homozy-

gous plants were confirmed with PCR genotyping using primer

sets P1 and P2. Plant #1 is homozygous as shown by amplification

with P1 but not P2, whereas plant #2 is heterozygous as shown by

amplification with both P1 and P2. All ET14389 plants were

grown on kanamycin MS-agar plates to select for the presence of

the transposon before genotyping. A schematic diagram of the GIK

coding region with the positions of the transposon insertion and

the respective regions amplified by P1 and P2 are shown. (B)

Expression analysis of GIK in the gik mutant using real-time PCR

performed as described in Figure 4O. (C–F) gik mutant flowers

showing bipartite anthers (* in C), a petalloid anther (D), and

unfused carpels (F).

Found at: doi:10.1371/journal.pbio.1000251.s004 (5.21 MB TIF)

Figure S5 Overexpression of GIK enhances heterozy-
gous and homozygous backgrounds of the weak ett-3
mutant. (A) The gynoecium of an ett-3/ett-3 mutant flower. (B)

The gynoecium of an ett-3/+35S:GIK-GR-6HA flower after
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continuous DEX treatment. (C) The gynoecium of an ett-3/ett-3

35S:GIK-GR-6HA flower after continuous DEX treatment. Scale

bars, 1 mm.

Found at: doi:10.1371/journal.pbio.1000251.s005 (1.27 MB TIF)

Figure S6 GIK expression is not upregulated in ett
mutant flowers. Expression analysis of GIK in the ett-1 mutant

using real-time PCR with RNA extracted from the inflorescences

of wild-type and ett-1 mutant plants. Expression was normalized to

the TUB expression. Relative expression level in the wild-type was

set to 1.0.

Found at: doi:10.1371/journal.pbio.1000251.s006 (1.30 MB TIF)

Figure S7 AG positively regulates the expression of
ETT. Time-course of ETT transcript expression after AG

activation, as measured by real-time PCR. Inflorescences from

ag-1 35S::AG-GR plants were treated with DEX four times at 1 d

intervals and harvested at 0, 1, 2, 3, 4, 5, and 6 d after the first

DEX treatment. ETT expression was normalized to the TUB

RNA level. Relative expression at day 0 (0D) was set as 1.0.

Found at: doi:10.1371/journal.pbio.1000251.s007 (2.99 MB TIF)

Figure S8 Endogenous GIK binds to the putative MARs
of the ETT promoter in wild-type plants. Wild-type

inflorescences were harvested for ChIP experiments. Anti-GIK

was used for immunoprecipitation. P1, P2, P3, P4, and P5 are

primer pairs used to detect different regions of the ETT genomic

DNA (as illustrated above). For details, please see the legend of

Figure 5D.

Found at: doi:10.1371/journal.pbio.1000251.s008 (1.88 MB TIF)

Figure S9 Effect of a deletion of distal MARs after GIK
induction and real-time PCR analysis of GUS reporter
gene expression. (A) A plant transgenic for promoter constructs

of pETTDMAR::GUS with a deletion of distal MARs (* a different

line from the one shown in Figure 5F) was crossed with 35S::GIK-

GR-6HA transgenic plants, and the time-course promoter analysis

of the ETT gene after GIK induction was done as shown in

Figure 5F, G. (B, C) RNA was isolated from inflorescences of

pETT::GUS 35S::GIK-GR (B) and pETTDMAR::GUS 35S::GIK-GR

(C) transgenic plants shown in Figure 5E and F, respectively, at

days 0, 3, and 4 after the DEX treatment. Primers specific for the

GUS reporter gene were used for quantitative analysis. Each

expression level at day 0 was set to 1.0. Paired student’s t-test was

used to analyze the differences between D0 and D3 (**p,0.01)

and between D0 and D4 (**p,0.01) in (B).

Found at: doi:10.1371/journal.pbio.1000251.s009 (2.24 MB TIF)

Figure S10 Analysis of histone modifications at ETT
genomic loci. Wild-type and 35S::GIK inflorescences were used

for the ChIP assay with antibodies for dimethylated H3K9,

trimethylated H3K27, and trimethylated H3K4. Primer pairs P2,

P3, and coding are shown at the top. Relative enrichment was

obtained from the ratio of bound/input achieved at the respective

time points to that wild-type.

Found at: doi:10.1371/journal.pbio.1000251.s010 (1.29 MB TIF)

Figure S11 Real-time PCR analysis of 35S::GIK-GR
inflorescences after mock, cycloheximide (CYC), DEX,
and DEX+CYC treatments. Samples were harvested 2 h after

the treatment and used for cDNA synthesis for the expression

analysis of ETT (A), CRC (B), JAG (C), and KNU (D). Standard

deviation was obtained from PCR triplicates.

Found at: doi:10.1371/journal.pbio.1000251.s011 (1.41 MB TIF)

Figure S12 Overexpression of GIK affects root develop-
ment. Seedlings of Ler wild-type and 35S::GIK plants at day 5

post-germination. Seeds of Ler wild-type and 35S::GIK transgenic

plants were planted on MS agar plates before observation of the

phenotype.

Found at: doi:10.1371/journal.pbio.1000251.s012 (2.87 MB TIF)

Table S1 Genes located near the putative binding sites
for AG with reduced or no expression in ag mutant
flowers. Listed are the isolation name, accession number,

position of CArG box sequences related to a gene-coding region

(number of nucleotides from the initiation codon for the 59

upstream region or from the stop codon for the 39 downstream

region), and gene description shown on the TAIR Web site (www.

arabidopsis.org).

Found at: doi:10.1371/journal.pbio.1000251.s013 (0.03 MB

DOC)

Table S2 Sequences of oligonucleotide DNA used in this
study. All are shown in the 59 to 39 direction.

Found at: doi:10.1371/journal.pbio.1000251.s014 (0.03 MB

DOC)

Table S3 Number of T1 transgenic plants for ETT
promoter-GUS categorized by staining strength in
inflorescences. Two lines for each construct show the results

of two independent transformations.

Found at: doi:10.1371/journal.pbio.1000251.s015 (0.06 MB PDF)

Table S4 List of genes tested in the time-course analysis
following GIK activation.

Found at: doi:10.1371/journal.pbio.1000251.s016 (0.02 MB

DOC)
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