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Abstract: A self-oscillating microcantilever in a feedback loop comprised of a gain, a saturator, and
an adjustable phase-shifter is used to measure the viscosity of Newtonian fluids. Shifting the signal
of the loop with the adjustable phase-shifter causes sudden jumps in the oscillation frequency of
the cantilever. The exact position of these jumps depends on whether the shift imposed by the
phase-shifter is increasing or decreasing and, therefore, the self-excited cantilever exhibits a hysteretic
non-linear response. This response was studied and the system modeled by a delay differential
equation of motion where frequency-dependent added mass and damping terms accounted for
the density and the viscosity of the medium. Experimental data were obtained for solutions with
different concentrations of glycerol in water and used to validate the model. Two distinct sensing
modalities were proposed for this system: the sweeping mode, where the width of the observed
hysteresis depends on the viscosity of the medium, and the threshold mode, where a sudden jump of
the oscillation frequency is triggered by an arbitrarily small change in the viscosity of the medium.

Keywords: microcantilever; viscosity sensing; non-linear dynamics; delay differential equation;
hysteresis; bifurcation phenomenon

1. Introduction

Measuring the viscosity of Newtonian and non-Newtonian fluids is crucial in applica-
tions such as microfluidics, healthcare, environmental monitoring, and food and process
industries. One possible strategy to obtain these measurements is probing the viscous
medium with a vibrating mechanical microdevice. Indeed, the dynamic response of such
a device is affected by the rheological properties of the surrounding environment [1–3]
and, therefore, changes observed in the device response can be linked to changes in the
fluid properties. Using microscale devices is advantageous to probe smaller time and space
scales, allowing measurement of local viscosities (instead of bulk) in real time, with high
sensitivities, and using minimal volumes of liquid.

Initial strategies were based on the detection of frequency shifts in the dynamic re-
sponse of externally excited resonating microdevices, caused by the interaction with the
surrounding Newtonian fluid [4–6]. Similar strategies to measure the elastic and viscous
response of non-Newtonian fluids were also proposed, involving measuring the amplitude
and phase of vibrations excited at different frequencies [7–9]. However, techniques based
on external excitation are limited by the low-quality factor of microresonators’ oscillations
in highly viscous medium and by the presence of noise and vibrations coupled with the
experimental apparatus (a phenomenon called “forest of peaks” [10,11]). To overcome these
limitations, strategies in which the resonator self-oscillates in a feedback loop were subse-
quently developed [12]. These works typically use microcantilevers or doubly clamped
beams, and include delayed force or phase feedback [13,14], Q-control [15], or parametric
resonance [16–19] to excite oscillations with very high signal-to-noise ratio. Closed-loop
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strategies used to measure the viscosity of fluids are shown in [20,21], where a cantilever
attached to a disk immersed in a high-viscosity fluid is self-excited with a feedback signal
proportional to its velocity.

In particular, a closed-loop feedback system in which the self-oscillations are induced
by the competition between a gain and saturator was developed and modeled [22] and
subsequently used for atomic force microscopy (AFM) imaging [23]. A controllable analog
phase-shifter was then added to this system, and sudden jumps between oscillation frequen-
cies, induced by controlled shifts of the signal in the loop, were observed, modeled [24],
and used to measure the viscosity of Newtonian fluids [25].

Recent works described in [26,27] also report the presence of sudden jumps of the
oscillation frequencies of self-excited resonators, but showing, in addition, a hysteresis
region in the position of these jumps. To study the hysteresis region in [27], the authors
develop a self-excited (macro)cantilever by coupling the mechanical dynamics of the
cantilever with the electrical dynamics of the piezoelectric layer attached to the cantilever
and responsible for its excitation (hence, avoiding using an external displacement detector).
They analytically analyzed the fourth-order dynamics of the full system and showed the
existence of two Hopf bifurcations by studying the root locus of the eigenvalues of the
system. The distance between the two Hopf bifurcation points defines the hysteresis region,
whose width depends on the viscosity of the medium. An analogous hysteresis region was
also previously observed in [28], where Floquet theory was used to study the stability of
an AFM setup used for imaging.

In the present work, new experiments with the setup used in [25] also reveal a similar
hysteretic response of the microcantilever. Here, the microcantilever self-oscillates in
viscous fluids and the controllable phase-shifter is used to induce the sudden jumps of
the oscillating frequency of the system. The exact position of these jumps is observed to
depend on whether the shift of the signal in the feedback loop (induced by the adjustable
phase-shifter) increases or decreases. It is then proposed to use the sudden jumps and
the hysteresis region to enable two new and distinct viscosity-sensing modalities for the
cases in which the viscosity of the medium is constant or time-variant. Contrary to the
existing setups, the system presented in this work benefits from the self-excitation strategy
(overcoming energy losses and showing a very high signal-to-noise ratio), the reduced
dimensions and high frequencies of the microcantilever (enabling exploration of smaller
space and time scales in real time), and the high sensitivity of the proposed methods, since
these are based on sudden jumps of the oscillation frequencies that can be triggered by
arbitrarily small changes.

The work is organized as follows. In Section 2, the experimental setup and methodol-
ogy is presented. Section 3 shows the experimental data and the modeling approach to
describe this system. The numerical results obtained were used to propose two different
viscosity-sensing modalities. Section 4 discusses some of the limitations of the proposed
modeling approach, while Section 5 summarizes the main findings and conclusions of
the work.

2. Materials and Methods

The experimental setup considered in this paper is shown in Figure 1a. It consists of a
cantilever embedded in a closed-loop feedback system and immersed in a viscous medium.
The cantilever was excited by a dither piezo and its motion was detected by reflecting a
laser to a four-quadrant detector. This signal was amplified by a gain G, then saturated (to
avoid exponential growth of the deflection), and, finally, shifted by an adjustable phase-
shifter before being fed back to the piezo. The polarity of the signal fed to the piezo could
still be changed manually. When closing the feedback loop, the frequency component of the
intrinsic thermal noise that satisfies the phase requirement for self-oscillations (total phase-
shift of the signal around the feedback loop must be an integer multiple of 2π radians)
is amplified, then saturated, until a stable oscillation with frequency ωosc = 2π fosc sets
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in. The frequency of the oscillation is measured by reading the deflection signal with a
spectrum analyzer and its amplitude is such that the gain of the loop was unitary [14,24].

The signal from the displacement detector is naturally shifted along the loop, due to
the delays caused, for example, by the propagation of the acoustic waves from the piezo
to the cantilever tip and through the electronic components [24]. This natural delay is
captured in the term τloop and causes a natural phase shift of the displacement signal, given
by φloop = ωoscτloop. As discussed in [24,25,29], sudden jumps in the oscillation frequency
of the closed-loop occur when the phase of the cantilever is perturbed around its limits
(either 0 or −π). In this case, the signal along the feedback loop wraps to a different integer
multiple of 2π radians and the phase (and oscillation frequency) of the cantilever jumps to
the other edge (−π or 0, respectively).

The Phase-Shifter (PS) included in the experimental setup was used to shift the signal
along the feedback loop and perturb the phase (and, therefore, the frequency) of the
oscillating cantilever. It consisted of two all-pass filters, connected in series, that could
be controlled using two potentiometers, R1 and R2. Each stage has its own capacitance
(C1 = 2.37 × 10−10 F and C2 = 5.14 × 10−9 F) and works effectively in a different range
of frequencies (typically associated with the oscillation of the cantilever in air or liquid,
respectively). The transfer function of the PS shown in Figure 1b is given by

PS(jω) =
Vout2

Vin
=

Vout2

Vout1
× Vout1

Vin
× p =

1− jωR1C1

1 + jωR1C1
× 1− jωR2C2

1 + jωR2C2
× p, (1)

with p = ± 1, depending on the polarity of the signal fed to the piezo. The phase-shift
introduced by the adjustable PS, φPS, is then given by

∠PS(jω) = φPS = −2atan(ωR1C1)− 2atan(ωR2C2)− Pπ, (2)

where P = 1 when p = −1 and P = 0 when p = 1. Note that the adjustable φPS
added to the natural phase shift of the loop, φloop, mentioned previously. As discussed in
Section 3.2.1, it is helpful to approximate the phase-shift introduced by the PS, φPS, given
by Equation (2), via a sigmoid as

φPS ≈ φPS(sig) = −π
ωR1C1

1 + ωR1C1
− π

ωR2C2

1 + ωR2C2
− Pπ. (3)

The phase-shift introduced by the adjustable PS in the feedback loop is a function
of the oscillation frequency of the loop, ωosc. Figure 1c shows a comparison between
the phase-shifts predicted by Equations (2) and (3) for different polarities applied to the
piezo and constant values of R1 and R2 (used in this work). As can be observed, the
approximation used in Equation (3) introduces negligible errors.
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Figure 1. (a) Schematic of the experimental setup. The deflection of the cantilever is detected by a four-quadrant detector, 
naturally delayed, amplified, saturated, controllably delayed with an adjustable Phase-Shifter (PS), and, finally, fed back 
to the exciting piezo. (b) Schematic of the two-stage PS. The second stage was used to control the imposed shift in the 
feedback loop with the potentiometer R2. (c) Phase-shift introduced by the PS shown in (b) as function of the oscillation 
frequency of the closed-loop given by the transfer function (Equation (2), solid lines) and the sigmoid approximation 
(Equation (3), dashed lines), for different polarities of the piezo. 
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33 µm, and thickness T = 2.5 µm. The natural frequency and quality factor in air were 
estimated as, respectively, f0 = 139.4 kHz and Q = 240, by sweeping the frequency of a 
classical external excitation scheme and fitting a Lorentzian curve to the measured fre-
quency response. 

The experimental protocol used to understand the system behavior in viscous solu-
tions consisted of fixing the polarity and R1 of the PS and then sweeping the value of the 
potentiometer R2 up and down, while recording the oscillation frequencies of the closed-
loop. Four different solutions of water and glycerol were used: (1) pure water, (2) water + 
5% glycerol (v/v), (3) water + 10% glycerol (v/v), and (4) water + 15% glycerol (v/v). These 
corresponded to medium viscosities of, respectively, 1.005 × 10−3, 1.239 × 10−3, 1.384 × 10−3, 
and 1.650 × 10−3 Pa s at 20 °C [30]. The density of the water–glycerol solutions does not 
change significantly with the concentration of glycerol (only ~2.5 % in this range [30]) 
and, therefore, the solution density was assumed to be constant and equal to the density 
of water (998 kg/m3 at 20 °C [30]) throughout this work. 

Constant values of the potentiometer R1 (R1 = 6.11 kΩ) and polarity (p = −1 with P = 
1) were chosen so that sudden jumps in oscillation frequency were observed when sweep-
ing R2 [24,27]. 

Figure 2 shows the experimental results obtained when sweeping the potentiometer 
R2 up and down while the cantilever was immersed in the four viscous solutions. It was 
observed that when R2 was swept up (Figure 2a), the position of the sudden jump from 
low to high frequencies changed with the viscosity of the medium. Higher viscosities re-
quired a higher value of R2 (bigger phase-shift imposed by the PS on the feedback loop) 
to jump. 

Figure 1. (a) Schematic of the experimental setup. The deflection of the cantilever is detected by a four-quadrant detector,
naturally delayed, amplified, saturated, controllably delayed with an adjustable Phase-Shifter (PS), and, finally, fed back to
the exciting piezo. (b) Schematic of the two-stage PS. The second stage was used to control the imposed shift in the feedback
loop with the potentiometer R2. (c) Phase-shift introduced by the PS shown in (b) as function of the oscillation frequency
of the closed-loop given by the transfer function (Equation (2), solid lines) and the sigmoid approximation (Equation (3),
dashed lines), for different polarities of the piezo.

3. Results
3.1. Experimental Measurements

All the experimental results presented in this paper were obtained using a standard tip-
less ACST-TL cantilever from AppNano, with nominal length L = 160 µm, width W = 33 µm,
and thickness T = 2.5 µm. The natural frequency and quality factor in air were estimated as,
respectively, f 0 = 139.4 kHz and Q = 240, by sweeping the frequency of a classical external
excitation scheme and fitting a Lorentzian curve to the measured frequency response.

The experimental protocol used to understand the system behavior in viscous so-
lutions consisted of fixing the polarity and R1 of the PS and then sweeping the value
of the potentiometer R2 up and down, while recording the oscillation frequencies of the
closed-loop. Four different solutions of water and glycerol were used: (1) pure water, (2) wa-
ter + 5% glycerol (v/v), (3) water + 10% glycerol (v/v), and (4) water + 15% glycerol (v/v).
These corresponded to medium viscosities of, respectively, 1.005 × 10−3, 1.239 × 10−3,
1.384 × 10−3, and 1.650 × 10−3 Pa s at 20 ◦C [30]. The density of the water–glycerol
solutions does not change significantly with the concentration of glycerol (only ∼ 2.5 % in
this range [30]) and, therefore, the solution density was assumed to be constant and equal
to the density of water (998 kg/m3 at 20 ◦C [30]) throughout this work.

Constant values of the potentiometer R1 (R1 = 6.11 kΩ) and polarity (p = −1 with
P = 1) were chosen so that sudden jumps in oscillation frequency were observed when
sweeping R2 [24,27].

Figure 2 shows the experimental results obtained when sweeping the potentiometer
R2 up and down while the cantilever was immersed in the four viscous solutions. It was
observed that when R2 was swept up (Figure 2a), the position of the sudden jump from low
to high frequencies changed with the viscosity of the medium. Higher viscosities required
a higher value of R2 (bigger phase-shift imposed by the PS on the feedback loop) to jump.



Sensors 2021, 21, 5592 5 of 13
Sensors 2021, 21, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 2. Experimental oscillation frequencies of the self-excited microcantilever as function of the phase-shift introduced 
by the PS, with fixed R1 and polarity (p = −1). (a) Potentiometer R2 swept up; (b) potentiometer R2 swept down. Insets detail 
the jump regions and G5, G10, and G15 indicate the concentration of the glycerol solutions. 

When sweeping R2 down (Figure 2b), this dependence was less evident, and the sud-
den jump from high to low frequencies occurred for similar values of R2. Furthermore, it 
was observed that the position of the jumps from low to high frequencies (increasing R2) 
and from high to low frequencies (decreasing R2) did not match. This defined an hysteresis 
region delimited by two bifurcations, as also found in [27]. 

3.2. Modeling of the System Behavior 
3.2.1. Equation of Motion 

The response of the experimental setup shown in Figure 1a can be modeled by a de-
lay differential equation of the single-degree-of-freedom damped-harmonic oscillator, i.e., ൫𝑚଴ + 𝑚୅(𝜔௢௦௖)൯𝑥ሷ(𝑡) + ൫𝑐଴ + 𝑐୅(𝜔௢௦௖)൯𝑥ሶ (𝑡) + 𝑘ଵ𝑥(𝑡) = ቂsat ቀ𝐺𝑥୔ୗ൫𝑡 − 𝜏௟௢௢௣൯ቁቃ, (4) 

where 𝑥(𝑡) is the deflection of the cantilever in time and the dots are its time derivatives, 𝑚଴ = 𝜌𝐿𝑊𝑇 is the total mass of the cantilever, 𝑐଴ =  ఠబ௠బொ  is the intrinsic damping coeffi-
cient (with 𝜔଴ and 𝑄 as the natural frequency and intrinsic quality factor of the first res-
onance mode of the cantilever), 𝑚୅(𝜔௢௦௖) and 𝑐୅(𝜔௢௦௖) are the added mass and damping 
coefficients due to the viscous fluid (with 𝜔௢௦௖ as the oscillation frequency of the system), 
and 𝑘ଵ = ாௐ்యସ௅య ଷ(ఉభ௅)ర is the effective spring constant of the first flexural mode (with 𝛽ଵ𝐿 =1.875, ଷ(ఉభ௅)ర = 0.243 [31–33], and E = 180 GPa as the Young’s modulus of silicon). The right 
side of Equation (4) describes the force that acts on the cantilever, where sat() represents 
the saturation function, 𝐺 represents the gain, 𝜏௟௢௢௣ represents the natural delay along 
the loop and 𝑥୔ୗ represents the output of the PS (dependent on the chosen values of the 
R1, R2, and on the oscillation frequency of the closed-loop 𝜔௢௦௖). 

The added mass and damping terms 𝑚୅ and 𝑐୅ induced by the fluid on the vibrat-
ing cantilever correspond to the inertial and viscous parts of the hydrodynamic function 
developed by Sader and Maali [1,3], i.e., 𝑚୅(𝜔௢௦௖) = గସ 𝜌௙𝑊ଶ ቆ𝑎ଵ + ௔మௐ ට ଶఎఘ೑ఠ೚ೞ೎ቇ, (5) 

𝑐୅(𝜔௢௦௖) = గସ 𝜌௙𝑊ଶ𝜔௢௦௖ ቆ௕భௐ ට ଶఎఘ೑ఠ೚ೞ೎ + ௕మௐమ ଶఎఘ೑ఠ೚ೞ೎ቇ,  (6) 

where 𝜔௢௦௖ is the oscillation frequency of the system, 𝜌௙ and 𝜂 are the density and vis-
cosity of the fluid, respectively, and a1 = 1.0553, a2 = 3.7997, b1 = 3.8018, and b2 = 2.7364. 

Figure 2. Experimental oscillation frequencies of the self-excited microcantilever as function of the phase-shift introduced
by the PS, with fixed R1 and polarity (p = −1). (a) Potentiometer R2 swept up; (b) potentiometer R2 swept down. Insets
detail the jump regions and G5, G10, and G15 indicate the concentration of the glycerol solutions.

When sweeping R2 down (Figure 2b), this dependence was less evident, and the
sudden jump from high to low frequencies occurred for similar values of R2. Furthermore,
it was observed that the position of the jumps from low to high frequencies (increasing R2)
and from high to low frequencies (decreasing R2) did not match. This defined an hysteresis
region delimited by two bifurcations, as also found in [27].

3.2. Modeling of the System Behavior
3.2.1. Equation of Motion

The response of the experimental setup shown in Figure 1a can be modeled by a delay
differential equation of the single-degree-of-freedom damped-harmonic oscillator, i.e.,

(m0 + mA(ωosc))
..
x(t) + (c0 + cA(ωosc))

.
x(t) + k1x(t) =

[
sat
(

GxPS

(
t− τloop

))]
, (4)

where x(t) is the deflection of the cantilever in time and the dots are its time derivatives,
m0 = ρLWT is the total mass of the cantilever, c0 = ω0m0

Q is the intrinsic damping
coefficient (with ω0 and Q as the natural frequency and intrinsic quality factor of the
first resonance mode of the cantilever), mA(ωosc) and cA(ωosc) are the added mass and
damping coefficients due to the viscous fluid (with ωosc as the oscillation frequency of the
system), and k1 = EWT3

4L3
3

(β1L)4 is the effective spring constant of the first flexural mode

(with β1L = 1.875, 3
(β1L)4 = 0.243 [31–33], and E = 180 GPa as the Young’s modulus of

silicon). The right side of Equation (4) describes the force that acts on the cantilever, where
sat() represents the saturation function, G represents the gain, τloop represents the natural
delay along the loop and xPS represents the output of the PS (dependent on the chosen
values of the R1, R2, and on the oscillation frequency of the closed-loop ωosc).

The added mass and damping terms mA and cA induced by the fluid on the vibrating
cantilever correspond to the inertial and viscous parts of the hydrodynamic function
developed by Sader and Maali [1,3], i.e.,

mA(ωosc) =
π

4
ρ f W2

(
a1 +

a2

W

√
2η

ρ f ωosc

)
, (5)

cA(ωosc) =
π

4
ρ f W2ωosc

(
b1

W

√
2η

ρ f ωosc
+

b2

W2
2η

ρ f ωosc

)
, (6)

where ωosc is the oscillation frequency of the system, ρ f and η are the density and viscosity
of the fluid, respectively, and a1 = 1.0553, a2 = 3.7997, b1 = 3.8018, and b2 = 2.7364.
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The output signal of the PS, xPS, can be related with the deflection of the cantilever, x,
if the PS is approximated by a pure delay with τPS (see Figure 1a). In this case, the right
hand of Equation (4) can be rewritten as

sat
(

GxPS

(
t− τloop

))
≈ sat

(
Gx
(

t− τloop − τPS

))
. (7)

Under this framework, the delay introduced by the PS, τPS, is a function of the polarity
and the values of the potentiometers R1 and R2 and can be modeled using Equation (3).
In this case, it was assumed that the delay τPS is the proportionality constant between the
phase-shift that it introduces in the feedback loop (given by Equation (3)) and its oscillation
frequency ωosc, as

τPS(ωosc) = −
φPS(sig)

ωosc
=

π
1

R1C1
+ ωosc

+
π

1
R2C2

+ ωosc
+ P

π

ωosc
. (8)

Substituting Equation (7) into Equation (4), the final equation of motion is written as

(m0 + mA(ωosc))
..
x(t) + (c0 + cA(ωosc))

.
x(t) + k1x(t) = sat

(
Gx
(

t− τloop − τPS(ωosc)
))

, (9)

where the terms mA(ωosc), cA(ωosc), and τPS(ωosc) are described by Equations (5), (6),
and (8), respectively. All these terms depend on the oscillation frequency of the loop to
be determined, ωosc. In addition, mA(ωosc) and cA(ωosc) also depend on the viscosity
and density of the medium. The τloop is a constant of the feedback loop and can be
experimentally determined, as in [24], by measuring the input/output transfer function of
each element of the circuit.

The highly non-linear nature of Equation (9) prevents obtaining analytical solutions
to determine the oscillation frequency of the self-excited cantilever, and, therefore, the
numerical approach described below was proposed to perform the analysis.

3.2.2. Solving for the Oscillation Frequency of the Loop, ωosc

By defining x2(t) = x(t) and x1(t) =
.
x2(t) =

.
x(t), Equation (9) can be written as a

system of first-order delay differential equations as{ .
x1(t) = − c0+cA(ωosc)

m0+mA(ωosc)
x1(t)− k1

m0+mA(ωosc)
x2(t) + B tanh

(
Gx2

(
t− τloop − τPS(ωR)

))
,

.
x2(t) = x1(t)

(10)

where the saturator is also approximated by a (naturally limited) continuous hyperbolic tan-
gent function multiplied by a constant B. A constant oscillation frequency is imposed in the de-
lay induced by the PS in Equation (10), defined by τPS(ωR) = π

1
R1C1

+ωR
+ π

1
R2C2

+ ωR
+ P π

ωR
,

where a constant ωR is used in all terms. This approximation will be justified in Section 4, but
it is used to further simplify the problem and improve the numerical stability of the solver. In
practice, this approximation makes the delay introduced by the PS, τPS(ωR), dependent on
the variable parameter R2 only (P, R1, and ωR are fixed in the model).

Delay differential equations with constant delays, such as Equation (10), can be solved
with the numerical solver dde23 of Matlab by providing a past history of the function and
integrating for a chosen period with a variable-step Runge–Kutta method (see [34] for
details). Solving the system of Equation (10) for ωosc requires an initial estimation of the
added mass and damping terms (Equations (5) and (6)), using the values of the density
and viscosity of the medium, ρ f and η, and choosing an initial frequency (ωi, ideally close
to the expected final oscillation frequency). Subsequently, the polarity P and the values
of the potentiometers R1 and R2 are fixed, resulting in a constant τPS(ωR). Finally, the
system of Equation (10) is integrated for a chosen time interval (4 ms), with x1(t) = 0 and
x2(t) = 0.1 when

(
−τloop − τPS(ωR)

)
≤ t ≤ 0, as the past history of the function. The

solution from the solver is interpolated with the Matlab function deval to obtain evenly
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time-spaced results (time step of 10−8 s). Finally, the oscillation frequency of the system
is obtained by detecting the maximum of the Power Spectral Density (PSD), calculated
from the Fast Fourier Transform (FFT) of the time deflection signal x2(t) after transients
are removed.

The oscillation frequency obtained after solving the system of Equation (10) once
(first iteration, ωosc_1) is already significantly different from the initial frequency used to
initialise the added mass and damping terms (ωi). For full consistency, an iterative process
can be implemented where Equation (10) can then be solved again using the value of ωosc_1
to initialise the added mass and damping coefficients, and the analysis repeated to obtain
a new frequency of the loop, ωosc_2 (second iteration), and so on. Nevertheless, it was
observed that the consecutively measured oscillation frequencies converged very fast and
that solving the system of Equation (10) once was already enough to obtain a constant
value for the oscillation frequency of the loop, i.e., ωosc_1 ≈ ωosc_2 ≈ ωosc.

When solving the system of Equation (10) and showing the results in Figures 3–5, a frequency
ωR in the interval between the high- and low-frequency branches (ωR = 2π × 55, 000 rad/s)
and a closed-loop delay τloop = 10.7 µs were fixed. The value of τloop = 10.7 µs used in the
simulations compare well with the value of τloop_exp = 8.9 µs measured experimentally in [24].

Figure 3 illustrates the process for determining the frequency of oscillation of the loop,
ωosc, as detailed in the previous paragraph, for the case of a cantilever oscillating in water,
with R2 swept up (red line and symbols of Figure 2a).
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Figure 3. Solving system of Equation (10) for different values of increasing R2, for the case of the cantilever oscillating in
water. (a) Top, middle, and bottom rows show the time deflection, phase space, and normalized Power Spectral Density
(PSD) of the signals far from the jump region for different values of R2, respectively. (b) Time deflection, phase space, and
normalized Power Spectral Density (PSD) of the signals close to the jump region, for different values of R2.

Figure 3a shows results when sweeping R2 in the region away from the jump (R2 = 5 kΩ
and R2 = 6 kΩ, see Figure 2a). Increasing R2 delays the time displacement signal (top row),
but the phase space (x1(t) vs. x2(t)) and oscillation frequency remain essentially unaltered
(middle and bottom rows, respectively). Figure 3b shows the case around the jump region
(R2 = 0.9 kΩ, R2 = 1.0 kΩ and R2 = 1.1 kΩ, see Figure 2a). Here, it can be observed that the
time displacements in this region are no longer described by pure sinusoids, but that the
motion already contains components at different frequencies (top row, blue and orange
curves), due to the eminency of the sudden jump between different oscillation frequencies
(see also [24]). By increasing R2, a sudden change in the time displacement signal occurs
(yellow curve, R2 = 1.1 kΩ), which corresponds to the jump to a higher frequency of
oscillation. This jump can also be seen in the sudden change of the shape of the phase
space (middle row) and by the normalized PSD curves (bottom row).
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3.3. Simulation Results
3.3.1. Dependence of the Oscillation Frequency with Viscosity and Potentiometer R2

The process for determining the self-oscillation frequency of the closed-loop system
described in Section 3.2.2 was then used to study its dependence on the viscosity of
the medium, while sweeping R2 up and down. The results are shown in Figure 4. In
these simulations, the viscosity of the medium was varied between η = 0.2 × 10−3 Pa s
and η = 2.0 × 10−3 Pa s, in steps of η = 0.04 × 10−3 Pa s, while R2 was increased or
decreased between 0 and 10 kΩ, in variable steps (narrower in the jump region), for
constant R1 = 6.11 kΩ and polarity p = −1 (P = 1).

The top row shows the case of increasing R2. The simulation proceeded row by row,
with constant viscosity, while R2 was swept up. The added mass and damping coefficients
were initialized with the frequency of the previous calculated point, then the value of
R2 was incremented, and the system of Equation (10) was solved for the new oscillation
frequency. This method proceeded until the potentiometer R2 was fully swept, as indicated
by the horizontal green arrows in the top row of Figure 4b. After the complete sweeping of
R2, the viscosity of the system was increased. In this case, the added mass and damping
coefficients were initialized with the oscillation frequency and R2 of the first point of the
previous viscosity row. Then, the value of viscosity was incremented and the system of
Equation (10) was solved to determine the oscillation frequency of the first point of the
new viscosity row, as indicated by the red arrows in Figure 4b. The simulation protocol
was the same for the case of decreasing R2, as indicated by the colored arrows in Figure 4b,
bottom row.
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Figure 4. Dependence of the oscillation frequencies on the viscosity of the medium and value of R2 when the potentiometer
was swept up (upper row) or swept down (lower row). (a) Jump region when sweeping R2, for different viscosities. (b) Color
map of the oscillation frequencies and (c) color map of the amplitude of oscillation, for the full range of potentiometer and
viscosities used.

Figure 4a shows a clear dependence between the value of potentiometer R2 required
to jump from low to high (top row) and from high to low frequencies (bottom row) with
the viscosity of the medium. Nevertheless, the position of the sudden frequency jump
was less sensitive to the viscosity when R2 was swept down (bottom row). This frequency
dependence is color-mapped in Figure 4b, with the jump from low to high frequencies
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(increasing R2, top row) delimited by the line between the blue and yellow areas, and
the jump from high to low frequencies (decreasing R2, bottom row) delimited by the line
between the yellow and red areas.

Figure 4c shows the amplitude of the oscillation for each condition, measured directly
from the deflection curves shown in the top panels of Figure 3. The jump between fre-
quency branches is also evident in the amplitude map, and it appears as a delimiting line
with minimum amplitude, as indicated by the darkest color. This is expected since the
jumps between low and high frequencies correspond to jumping between the limits of
the amplitude/phase curves of the cantilever frequency response [29]. Away from the
jump, higher values of potentiometer R2 causes a higher amplitude of deflection since
the oscillation frequency of the loop gets closer to the natural frequency of the cantilever.
Higher amplitude deflection is also observed in low-viscosity mediums, which can be
explained by the reduced damping induced by the cantilever–fluid interaction. Note that
the magnitude of the values of amplitude of oscillation are arbitrary and depend on the
chosen values of B and G (see Equation (10)) used in the simulations.

3.3.2. Sensing Modalities

Figure 5 highlights insets of the Figure 4b. The left panel of Figure 5 shows the jump
from low to high frequencies (increasing R2) and the right panel of Figure 5 shows the
jump from high to low frequencies (decreasing R2). The red and green circles indicate the
values of potentiometer R2 for which the jumps were experimentally registered for each
solution (different viscosities), as shown in Figure 2a,b, respectively. The thick, dashed,
black lines delimit the jump region while the thin, white lines represent the jump region of
the opposite panel.
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tively (Figure 4b, top and bottom rows), with thick, dashed, black lines delimiting the jumps. The red and green circles
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Figure 5 is useful to discuss two different sensing modalities proposed for the device
described in this paper. The first, termed sweeping mode, consists of progressively sweep-
ing the potentiometer R2 up and down, while the self-excited cantilever is immersed in
a solution of constant density and viscosity. By measuring the values of R2 required for
the first jump, from low to high frequency (sweeping up), and for the second jump, from
high to low frequency (sweeping down), one can then determine the viscosity. Indeed, the
difference between these values, or the width of the hysteresis, is univocally connected to
the viscosity of the medium, as shown by the purple double arrows in both panels. The
width of the hysteresis increases (non-linearly) with the viscosity of the medium. The
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second working modality is termed threshold mode. In this case, the sensor should be
self-oscillating in a solution whose viscosity changes with time. It is this change in the
viscosity of the medium that triggers the jump between oscillation frequencies.

Note that the exact same hysteresis region defined by the area between the dashed
black and white lines in both panels was defined when viscosity increased/decreased.
When the viscosity of the medium decreases, the system follows the behavior indicated on
the left panel (corresponding to R2 swept up), jumping from low to high frequencies. This
is shown by the decreasing red arrow on the left panel. Conversely, if the viscosity of the
medium increases, the system follows the behavior indicated in the right panel (R2 swept
down), jumping from high to low frequencies. This is also indicated by the respective red
arrow on the right panel.

4. Discussion

A detailed mathematical model was developed to explain the dynamic response of
the self-excited microcantilever, exhibiting sudden jumps of the oscillation frequency and
the existence of a hysteresis region, and shed some light on the physics behind it. Such a
model was successfully validated with experimental data and can easily be extended to
other ranges of viscosities or geometries.

A simplifying assumption used in the proposed model was to impose a constant
frequency in the delay imposed by the PS, τPS(ωR), in the system of Equation (10). This
allowed τPS(ωR) to depend on the value of R2 only and to clearly separate between the
jumps in frequency when R2 was swept up or down, defining the hysteresis region.

However, observing Equation (8) for τPS(ωosc), one notes that there are two competing
effects that play a role if the value of R2 and the oscillation frequency ωosc are simulta-
neously updated. When sweeping R2 up with constant ωosc, then τPS increases. If τPS
gets bigger than the threshold value required to jump from low to high frequencies, the
jump occurs. However, on the other hand, if the jump occurs, the oscillation frequency
ωosc suddenly increases (with constant R2) and, therefore, τPS suddenly decreases. In this
case, τPS may become again smaller than the threshold value required to jump from low
to high frequency, and the system will go back to the low-branch solution (the reasoning
is equivalent but opposite when R2 is swept down). In summary, when simultaneously
updating R2 and ωosc in τPS(ωosc) of Equation (8), the solution of Equation (10) jumps back
and forth between the two solution branches. The hysteresis region is then measured as
the R2 interval that causes the system to alternate between the two branches. Above a
certain value of R2, the system remains definitely in the upper solution branch, since R2
gets sufficiently big (high τPS) to guarantee that the decrease in τPS that occurs when the
system jumps to the high-solution branch does not get lower than the threshold value. This
mechanism allows us to conjecture that the system shows two fold bifurcations, leading to
the sudden jumps and defining the hysteresis region.

Finally, if ωR in τPS(ωR) is chosen in the middle of the frequency interval between
branches (ωR = 2π × 55, 000 rad/s in this work), the simulation predictions are the same
as if updating ωosc. If some other ωR was chosen, then τloop could still be adjusted to
displace the hysteresis region to match the experimental data.

As already stated, fixing ωR in τPS(ωR) removed the dependence on the oscillation
frequency, ωosc, from the delay induced by the PS. Therefore, the hysteresis phenomenon
was solely captured by the dependence of the added mass and damping coefficients on the
oscillation frequency ωosc and η. As discussed in Figure 5, increasing R2 or decreasing the
viscosity η is physically equivalent, since the jumps from low to high frequencies follow
the same path. A physical interpretation of this phenomenon is based on the following ob-
servation: An increase on either ωosc or η is responsible for an increase of the ratio between
Equations (5) and (6), cA(ωosc)/mA(ωosc). So, assuming that the system is oscillating in
the low-frequency branch and that viscosity increases, then η ↑ ⇒ cA(ωosc)/mA(ωosc) ↑ .
On the other hand, if R2 decreases, then the delay imposed by the PS in the loop also de-
creases. This forces the cantilever to compensate, by increasing its phase and, consequently,
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the oscillation frequency of the loop and the ratio cA(ωosc)/mA(ωosc), or, schematically:
R2 ↓ ⇒ τPS ↓⇒ φCT ↑⇒ ωosc ↑⇒ cA(ωosc)/mA(ωosc) ↑ .

This shows the equivalence of decreasing R2 or increasing the viscosity η (the conclu-
sions are opposite when the system is oscillating in the high-solution branch and viscosity
decrease or R2 increase, as also seen in Figure 5).

The physical mechanisms inducing the observed hysteresis are linked to the non-
linear behavior of the terms modeling the cantilever–fluid interaction, namely, mA and
cA. Indeed, as stated above, increasing ωosc increases the ratio cA(ωosc)/mA(ωosc), which,
in turn, decreases the quality factor of the oscillation, QR. Therefore, a jump from the
low-frequency branch to the high-frequency branch is accompanied by a reduction of the
quality factor of the oscillation (and vice versa), which indicates that the jumps require
some energy transfer between the vibrating cantilever and the surrounding fluid to occur,
to accommodate the sudden change of displaced fluids and drag. This mechanism depends
on whether the frequency increases or decreases, which gives rise to the hysteresis.

5. Conclusions

A new setup to measure viscosity of Newtonian fluids was presented, modeled, and
discussed in this paper. The proposed sensing platform is based on the non-linear dynamic
response of a microcantilever embedded on a feedback loop exhibiting sudden jumps of
oscillation frequency, which define a hysteresis region. It is proposed that the dynamic
response of this system can be exploited for two distinct sensing modalities, depending
on whether the viscosity of the medium is constant (sweeping mode) or changing in time
(threshold mode). In the sweeping mode, viscosity of the fluid can be accurately measured
by detecting frequency jumps induced by user-controlled changes in the phase-shifter. On
the other hand, the threshold-mode sensing modality can, in principle, detect arbitrarily
small changes in viscosity in real time, which can be used, for example, to monitor real-time
chemical reactions where a threshold value of some analyte or reagent must be detected.
The detection of sudden jumps in the oscillation frequency of the microcantilever does not
depend on classical sources of noise, such as the signal-to-noise ratio of the four-quadrant
detector, or on the quality factor of the resonance (as in typical setups where frequency
shifts are detected), and, therefore, is promising for obtaining improved sensitivity.
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