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Trends
Numerous viruses modulate host-cell
metabolic processes to ensure suc-
cessful infection.

The host-cell metabolic network con-
tributes the energy, precursors, and
specialized components necessary to
produce infectious virions.

Viruses deploy host-cell metabolic
activities to organize viral maturation
compartments.

Metabolic control is a host–pathogen
interaction that can sway the outcome
of viral infection.
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Host cells possess the metabolic assets required for viral infection. Recent
studies indicate that control of the host's metabolic resources is a core host–
pathogen interaction. Viruses have evolved mechanisms to usurp the host's
metabolic resources, funneling them towards the production of virion compo-
nents as well as the organization of specialized compartments for replication,
maturation, and dissemination. Consequently, hosts have developed a variety of
metabolic countermeasures to sense and resist these viral changes. The com-
plex interplay between virus and host over metabolic control has only just begun
to be deconvoluted. However, it is clear that virally induced metabolic reprog-
ramming can substantially impact infectious outcomes, highlighting the prom-
ise of targeting these processes for antiviral therapeutic development.

The Host Metabolic Network: Multifaceted Contributions to Viral Infection
Viruses are obligate parasites that depend on the host cell to provide the energy and molecular
precursors necessary for successful infection. A wide variety of evolutionarily divergent viruses
have evolved mechanisms that target the host cell metabolic network as part of their infectious
programs, and virally induced metabolic activities are commonly exploited for therapeutic inter-
vention. For example, numerous different nucleotide metabolic activities are targeted by a variety of
pharmaceuticals to treat viral infections, including hepatitis B virus (HBV), hepatitis C virus (HCV),
human immunodeficiency virus (HIV), human cytomegalovirus (HCMV), varicella-zoster Virus
(VZV), and herpes simplex virus (HSV) (Table 1) [1–5]. In recent years, the number of metabolic
activities that have been found to be important for viral infection has expanded. Further, our
understanding of the viral mechanisms through which viruses usurp cellular metabolic resources
has increased. Many of these viral mechanisms stimulate nutrient uptake and catabolism to
support the production of viral progeny. In addition to providing the energy and biomass necessary
for turning cells into productive ‘virus factories’, new metabolic contributions to infection have
emerged. These include small-molecule enzymatic activities that organize viral maturation com-
partments, synthesize specialized virion components, or regulate the immunological environment
(Figure 1). Such virally induced metabolic changes do not go unnoticed by the host, but rather
represent a major host–pathogen interaction that can sway infectious outcomes. Collectively,
recent findings have made it clear that the landscape for metabolically targeted therapeutic
intervention has expanded.

Viral Targeting of Core Metabolic Pathways
A wide variety of viruses activate glycolysis, which drives the production of energy in the form of
ATP, NADH, and NADPH (Figure 2). Activated glycolysis also supplies the carbon necessary for
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Table 1. Nucleoside/Nucleotide-Based Therapeuticsa

Virus Nucleoside/Nucleotide Analogs

HIV Tenovovir; Emtricitabine; Zidovudine; Abacavir; Lamivudine

HBV Tenovovir; Lamivudine; Entecavir; Telbivudine

HCV Sofosbuvir; Ribavirin

HCMV Ganciclovir; Cidofovir

HSV Acyclovir; Valacyclovir

VZV Acyclovir; Valacyclovir

aHIV, human immunodeficiency virus; HBV, hepatitis B virus; HCV, hepatitis C virus; HCMV, human cytomegalovirus; HSV,
herpes simplex virus; VZV, varicella-zoster virus.
the synthesis of numerous core biomolecules, including nucleotides, lipids, amino acids and
carbohydrates (Figure 2). A number of DNA viruses induce glycolysis, including Kaposi's
sarcoma-associated herpesvirus (KSHV) [6], HCMV [7], adenovirus [8], human papillomavirus
(HPV) and Epstein–Barr virus (EBV) [9]. Multiple RNA viruses also activate glycolytic flux,
including dengue [10], hepatitis C (HCV), [11] and influenza A [12]. Although there are some
notable exceptions, such as herpes simplex virus-1 (HSV-1) and vaccinia virus [13,14], both the
number and evolutionary diversity of viruses that target glycolysis speak to the broad importance
of this pathway for viral infection.

Recently, the specific viral mechanisms targeting glycolysis have begun to be elucidated. For
instance, the HCV NS5A protein has been shown to bind and activate hexose kinase, a rate-
controlling glycolytic enzyme [15]. KSHV employs specific viral microRNAs targeting known
regulators of glucose metabolism and mitochondrial biogenesis to induce glycolytic activity [6].
HCMV has been shown to induce the activity of the AMP-activated kinase (AMPK) [16], which
regulates numerous glycolytic activities [17]. HCMV-mediated activation of AMPK was found to
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Figure 1. Small–Molecule Metabolic
Contributions to Viral Infection. Pro-
duction of infectious virions requires
energy and biomolecular building blocks
derived from the host cell metabolic net-
work (A). A diverse set of host metabolic
activities drives the mass production of
viral nucleic acids (red), structural proteins
(black octagons), non-structural proteins
and phospholipid envelopes (both in black
circles), and glycosylated proteins (white
circles). Additionally, organization of viral
maturation compartments has increas-
ingly been found to be dependent on
lipid-modifying enzymes (B). Viral infection
has also been found to induce specific
metabolic activities to form specialized
virion components that are important to
infection (C). Lastly, the evidence support-
ing the importance of small-molecule
metabolism for immune regulation is
increasing, as are the findings that these
processes are targeted by viral infection
(D).
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Figure 2. The Metabolism of Glucose
and Glutamine and Support of Viral
Infection. Glucose and glutamine cata-
bolism provide energy and reducing
equivalents [ATP, NADH, NADPH (shown
in red)] as well as the molecular precur-
sors to synthesize virion components
(shown in blue). Abbreviation: TCA, tricar-
boxylic acid cycle.
be necessary for glycolytic activation and high-titer infection [16]. HCMV has also been shown to
induce a pro-glycolytic transcriptional program through activation of a host transcription factor,
chREBP, which induces the expression of numerous glycolytic enzymes, and is important for
virally mediated activation of glycolysis [18].

Glycolytic carbon can enter the tricarboxylic acid (TCA) cycle, the reactions of which provide
additional energy as well as metabolic precursors that feed biosynthesis of amino acids and fatty
acids (Figure 2). Many of the viruses that activate glycolysis also induce increased concentrations
of TCA cycle components during infection. HCMV activates both the TCA cycle and glycolysis
simultaneously, using glycolytic carbon to feed the TCA cycle and ultimately produce fatty acids
that are important for infection [7]. Similarly to HCMV, vaccinia virus induces increased glutamine
catabolism [13], and both HCMV and vaccinia are dependent on increased glutamine catabo-
lism for high-titer infection [13,19] (Figure 2). In contrast, HSV-1 does not substantially impact
glycolysis, but induces pyruvate carboxylation to anaplerotically replenish TCA cycle metabolites
while diverting other TCA intermediates towards pyrimidine biosynthesis [14]. In comparison to
glycolysis, less is known about how various viral infections impact specific TCA cycle metabolic
fluxes. Measuring TCA cycle metabolic activity is difficult due to the number of metabolic fluxes
that flow into and out of the cycle. Additionally, many TCA intermediates are compartmentalized
into both cytoplasmic and mitochondrial pools, further complicating metabolic inquiry.

Mitochondrial physiology plays an important role in TCA cycle function, and while not covered in
detail here, a number of viruses have been implicated in targeting mitochondrial dynamics
(reviewed in [20]). As stated above, KSHV encodes targeted microRNAs that negatively impact
mitochondrial biogenesis and activity, potentially through an interaction with heat shock protein
HSPA9 [21].HBV and HCV promote mitochondrial fission and mitophagy through dynamin-
related protein 1 (Drp1), which downregulates apoptosis and may enhance viral persistence
[22,23]. The HCMV UL37 protein also disrupts the reticular mitochondrial network and blocks
mitochondrial apoptotic signaling [24]. While many of these activities are anti-apoptotic, with
clear pro-viral consequences, they would also be predicted to have substantial effects on
mitochondrial metabolism, including TCA cycle activity and cellular energetics, which are likely
also important for viral infection. However, it is largely unclear how the viral proteins that target
mitochondria dynamics impact core mitochondrial metabolic function.

TCA-cycle-derived citrate is transported out of the mitochondria to supply carbon for fatty acid
biosynthesis, which ultimately supports lipid biosynthesis (Figure 2). A number of DNA viruses,
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including HCMV and vaccinia, induce lipid biosynthesis, which is necessary for their high-titer
infections [7,25,26]. HCMV activates this pathway in part by inducing the expression and activity
of acetyl-CoA carboxylase (ACC1) [25], a rate-controlling enzyme of fatty acid biosynthesis.
Inhibition of ACC1 or fatty acid synthase (FASN) attenuates HCMV replication at a late stage of
infection without impacting viral protein accumulation [7,25]. The late timing of this defect is
consistent with a role for fatty acid biosynthesis in viral assembly or envelopment. During HCMV
infection, the induction of fatty acid biosynthetic enzymes is mediated by viral activation of the
sterol regulatory element binding proteins (SREBPs) 1 and 2 [25,27], transcription factors that
control the expression of fatty acid metabolic genes. Vaccinia infection is also sensitive to ACC1
or FASN inhibition. Pharmacological inhibition of either ACC or FASN strongly reduces viral titers
and inhibits virion envelopment in a manner that could be partially rescued by the addition of
exogenous palmitate, the key product of fatty acid biosynthesis [26].

Various RNA viruses also target fatty acid biosynthesis. Many studies have implicated the
importance of lipid metabolism during HCV infection, which are summarized in more detail
in the following reviews [28,29]. Rotavirus (RV) replication has also been shown to be susceptible
to inhibitors targeting various lipid synthetic enzymes, and studies in the context of dengue virus
infection show that the viral nonstructural protein 3 preferentially recruits and activates FASN at
sites of viral replication [30,31]. De novo fatty acid biosynthesis and formation of lipid droplets
have been found to promote tombusvirus and rhinovirus replication [32].

In addition to targeting fatty acid biosynthesis, viruses have been found to target the reverse
catabolic process, fatty acid oxidation. HCMV and the Japanese encephalitis virus (JEV) inhibit
fatty acid oxidation by targeting the mitochondrial trifunctional protein (MTP) which catalyzes
fatty acid oxidation [33,34]. JEV inhibits MTP through its NS5 protein [33], while HCMV redirects
the cellular viperin protein to inhibit MTP [34]. In contrast to these viruses that inhibit fatty acid
oxidation, HCV infection requires fatty acid oxidation for its replication, which again highlights
that certain aspects of viral metabolic manipulation are virus specific [35]. Combined, the data
indicate that virally mediated manipulation of lipid metabolism is broadly important to viral
infection, and further, that viruses have evolved diverse mechanisms to ensure that the
host-cell lipid metabolic machinery is co-opted to support viral infection.

Small-Molecule Enzymatic Activities and Viral Replication, Maturation, and
Assembly
As indicated above, a number of viruses induce and rely on host-cell lipid metabolism. In many
cases, the exact contributions that specific lipid metabolic enzymes make towards viral infection
are unclear; however, certain themes are emerging. Increasingly, it appears that viruses are
targeting host-cell lipid-modifying enzymes as a means to organize viral assembly and matura-
tion compartments (Figure 1). This theme is readily apparent in recent work on the replication
complexes formed by plus-strand RNA viruses. Dengue virus, HCV, and rhinovirus all remodel
the endoplasmic reticulum (ER) to generate sites for their replication using mechanisms that rely
on host lipid biosynthesis. The dengue virus NSP3 protein specifically recruits fatty acid synthase
to viral replication sites, which is critical for dengue replication [31,36]. For HCV, phosphatidy-
linositol 4-kinase III alpha (PI4KA) is an important host factor for the formation of replication
compartments [37]. HCV stimulates PI4KA activity, likely through its interaction with the HCV
NS5A, which induces accumulation of phosphatidylinositol 4-phosphate (PI4P) in the ER and
allows for productive replication [37]. Similarly, rhinovirus replication requires redistribution of
PI4P and cholesterol in ER and Golgi membranes [38]. Despite the similar lipid requirements
of these related viruses, their respective ER-derived replication compartments are each
unique in both conformation and size [39]. Further investigation may reveal virus-specific
lipid requirements driving the formation of these structures that could be therapeutically
exploitable [40,41].
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Modulation of host-cell lipid metabolic activities also appears to be important for virion assembly.
HCV relies on triglyceride (TAG) and cholesterol ester biosynthesis for viral assembly, as
pharmaceutical inhibition of these pathways impairs this process, reducing virus infectivity
[42]. TAG mediates the interaction of HCV nucleocapsid protein with lipid droplets and plays
a critical role in the stability of HCV nucleocapsids [42]. Phosphatidylserine, a core phospholipid
membrane constituent, has also been implicated as being important for viral infection. Ebola
particles preferentially incorporate phosphatidylserine-rich membranes into their envelope [43],
and during enterovirus infection, specialized phosphatidylserine-rich vesicles facilitate mass
transmission of multiple genomes to uninfected cells [44]. It is apparent that virally mediated
alteration of lipid-modifying metabolic activities to shape lipid compartments has emerged as an
important component of diverse viral life cycles.

Viral Infection and Specialized Virion Components
It is becoming increasingly evident that, in addition to simply elevating the production of
molecular precursors to support infection, viruses are targeting specific metabolic activities
to individually tailor specialized virion components (Figure 1). For example, HCMV infection
induces the expression of fatty acid elongases, which increase the concentrations of saturated
very-long-chain fatty acids (VLCFAs). These VLCFAs are concentrated in the envelope of
HCMV virions [45,46]. Pharmaceutical inhibition or RNAi-mediated knockdown of long-chain
acyl-CoA synthetase or fatty acid elongase 7, key enzymes for biosynthesis of VLCFAs,
attenuates HCMV replication [45,46]. While the exact contributions that VLFCAs make towards
viral replication are unclear, it is likely that specific biophysical properties of VLCFAs contribute
to aspects of virion maturation, stability, or transmission. Regardless, the findings that viral
infection can selectively induce specific host-cell metabolic activities that are important for
infection raise the possibility that such activities would make attractive targets for therapeutic
intervention.

In addition to tailoring fatty acid metabolic activities for the viral envelope, viruses target small-
molecule metabolic activities to post-translationally modify viral proteins. Such modifications are
diverse and include fatty-acid-based modifications such as myristoylation and palmitoylation.
Myristate modification of HIV gag plays a crucial role in gag binding to the plasma membrane, an
integral step that allows HIV to enter the cell [47–49]. Myristoylation of virion proteins is also
important for HCMV infection. The addition of a myristoyl group to pp28, a tegument protein
required for productive replication, has been shown to be crucial for its proper localization and
function [50–52]. Another fatty-acid-based protein modification, palmitoylation, has been shown
to be important for influenza, coronavirus, and HCV replication by participating in processes
ranging from protein trafficking to virion assembly [53–56].

The infectivity of many viruses also depends on protein glycosylation. Glycosylation of dengue
viral proteins is important for viral genome replication, and mutations that abolish the glycosyla-
tion sites decrease dengue RNA replication and production of infectious virions [57]. HBV
infectivity depends on a specific glycosylation of its envelope protein [58]. Further, the infectivity
of both HSV and HCMV relies on specific glycosylation of their envelope glycoproteins [59,60].
HCMV has recently been found to increase the biosynthesis of various UDP-sugars, the
molecular subunits that supply glycosylation reactions, by funneling increased pyrimidine
biosynthesis towards UDP-sugar biosynthesis [61]. Inhibition of de novo pyrimidine biosynthesis
attenuates envelope protein glycosylation, depletes UDP-sugar pools in an infection-specific
manner and reduces viral titers [61]. Protein glycosylation modifications are varied and complex,
so while it is clear that viral protein glycosylation is targeted by, and critical for, viral infection,
numerous questions remain about how specific glycosylation patterns contribute to virus
infectivity, and whether specific UDP-glycosyl transferases are recruited for modification of viral
proteins.
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Viral Metabolic Modulation of the Inflammatory Environment
A growing body of literature indicates that viral infection modulates small-molecule metabolism
to modulate inflammation and immune function. For example, diverse viruses, including HCV,
HCMV, and West Nile virus, have been observed to target sphingolipid metabolism [62–64].
Sphingolipids are a diverse family of bioactive lipid species that play a role in a variety of
immune processes such as lymphocyte migration, mast cell regulation, and apoptotic control
(reviewed in [65]). The levels of bioactive sphingolipids, such as sphingosine-1-phosphate
(S1P) and ceramide, are induced at early time points during the HCMV life cycle and were
found to be important for infection [62]. HCV infection also induces expression of sphingo-
myelin synthases and increases sphingolipid synthesis, which, if blocked, attenuates infection
[63]. Sphingolipids represent a nexus point of cellular immunological processes, with their
individual small molecules participating in a variety of context-dependent signaling events.
Induction of sphingolipid pools during viral infection can potentially aid infection in a variety of
ways, from enhancing cell proliferation and survival to providing lipid components for replica-
tion compartments.

Prostaglandins are another family of bioactive lipids with various immunomodulatory signal-
ing activities. As a family, prostaglandins are diverse, and their effects on viral infection have
been shown to be context-dependent, with either pro- or antiviral effects observed depend-
ing on the prostaglandin and the specific virus studied. Prostaglandins have been shown to
inhibit a number of viral families, including poxviruses, some herpesviruses, and retroviruses
[66,67]. However, HCMV induces the expression of the rate-limiting biosynthetic enzyme of
prostaglandin biosynthesis, cyclooxygenase-2 (COX2) [68]. The induction of COX2 activity
increases the levels of prostaglandin E2 (PGE2), which is important for high-titer infection
[69]. Further, other primate cytomegaloviruses have acquired COX2 genes from their host,
and these virally expressed homologs are important for viral replication in specific contexts
[70]. Influenza A virus also upregulates PGE2 during infection, which leads to an inhibition of
interferon production and decreases in antigen presentation and T cell-mediated immunity
[71]. While it is clear that bioactive lipid metabolism and signaling can impact viral infection in
diverse ways, their specific contributions to viral infection and host immunity are only just
emerging.

Metabolic Regulation and Viral Tropism
A normal cell possess a specific metabolic program based on its functional role within an
organism. Given the importance of the metabolic network to infection, it follows that viral tropism
could be shaped by underlying tissue-specific metabolic differences. The tropic differences
displayed by retrovirus family members present one such example. All retroviruses are capable
of replicating in dividing cells, whereas only lentiviruses, for example, HIV-1, are capable of
replicating in non-dividing cells, such as macrophages. The levels of dNTPs are a major
metabolic distinction between quiescent non-dividing cells, such as macrophages, and rapidly
dividing cells, with macrophages exhibiting �100–200-fold reduced concentrations of dNTP
precursors relative to CD4 T cells [72]. Comparative biochemical analysis of reverse tran-
scriptases (RTs) expressed by HIV-1 versus those expressed by a variety of retroviruses unable
to replicate in macrophages, demonstrate that HIV-1 RT has a much higher dNTP-binding
affinity than those of non-macrophage-tropic retroviruses [72]. This elevated dNTP binding was
found to be functionally important for macrophage tropism, as HIV-1 mutants that possessed RT
with the reduced retroviral enzymatic kinetics were unable to replicate in macrophages but
retained the ability to replicate in dividing CD4 T cells [72]. A more comprehensive review of
retroviral tropism and nucleotide pools can be found in [73]. As we broaden our understanding of
how host cell metabolism contributes to viral infection, the impact of tissue-specific metabolic
differences on the ability of viruses to grow in different cell types will likely become increasingly
apparent.
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Metabolic Regulation as a Host–Pathogen Interaction
While viruses target many aspects of host-cell metabolic regulation and activity, it is clear that the
host has evolved mechanisms to maintain metabolic control upon infection. SAMHD1 is one
such restriction factor that limits lentivirus infection in various myeloid and dendritic lineages
[74–76]. SAMHD1 is a triphosphohydrolase that controls dNTP pool sizes through its dephos-
phorylation activity, preventing their utilization by lentiviral reverse transcriptases. [77]. Some
lentiviruses have evolved mechanisms to block SAMHD1 activity, such as the Vpx accessory
protein encoded by HIV-2 (but not HIV-1). Vpx binds and inhibits SAMHD1, resulting in increased
dNTP concentrations and restored viral replication [76].

Various sirtuin family members have also been found to have broad antiviral effects [78]. Sirtuins
are evolutionarily conserved NAD-dependent enzymes whose family members enzymatically
regulate a number of protein post-translational modifications, including ADP-ribosylation, acet-
ylation, and acylation (reviewed in [79]). As a class, sirtuins are major metabolic regulators that,
upon activation, typically inhibit metabolic pathways induced by viral infection, including glycol-
ysis [80] and fatty acid biosynthesis [81]. While the specific antiviral effects of various sirtuin family
members require further study, the reversion of common virally induced metabolic phenotypes
known to be important for infection likely contributes to the sirtuin family's antiviral effects.

As mentioned above, prostaglandins have long been known to have immunomodulatory
activities. New studies continue to identify novel ways in which other small-molecule-based
signaling contributes to immunity. One such example is the discovery of the interferon-induced
enzyme cholesterol-25-hydroxylase (CH25H), which produces oxysterols such as 25-hydrox-
ycholesterol that regulate immune responses [82,83]. Increased CH25H activity disrupts HCV
genome replication by interfering with the SREBP lipid biosynthetic transcription factors and
attenuating host lipid synthesis [84,85]. Other examples of small-molecule immunoregulatory
activities include recent findings that intracellular metabolites signal to immune cells upon
extracellular release, for example, during apoptosis or necrosis. Release of extracellular nucleo-
tides serves as a ‘find-me’ signal that recruits monocytes and macrophages [86]. Examples
such as these strongly argue that the intracellular and extracellular small-molecule environment
can shape immunity. However, the field is still at a very early stage; many questions remain about
the specific mechanisms involved (see Outstanding Questions).

Metabolic Similarities between Viral Infection and Oncogenesis
A number of the virally induced metabolic changes mentioned above mirror metabolic changes
that occur during oncogenesis. Despite arising from diverse tissue types, cancerous cells display
relatively similar metabolic programs that include activation of glycolysis, induction of nucleotide
biosynthesis, and activation of fatty acid biosynthesis [87–89]. Many viruses, including HBV [90],
HPV [91–93], HCV [11,15,94], and KSHV [6,95,96], which play direct causal roles in human
tumorigenesis, induce these various metabolic activities. The contributions that these metabolic
changes make towards oncogenesis, regardless of any infectious etiology, have become a
major focus in cancer biology research (reviewed in [97]). To some extent, the shared metabolic
phenotypes associated with oncogenesis and viral infection likely reflect common proliferative
goals between cancer cells and viruses, that is, creation of large amounts of energy and biomass
for the production of progeny. However, common metabolic phenotypes between infected cells
and cancer-derived cell lines also present challenges. The study of viral infection occurs
predominately in the context of cancer-derived cell lines. Given their metabolic similarities, it
is perhaps unsurprising that transformed cell lines produce higher viral titers relative to non-
transformed tissue. However, in studying viral replication in these cells, viral metabolic pheno-
types become difficult to discern from the underlying metabolic contributions associated with
oncogenesis. Further, important contributions of specific viral factors responsible for driving viral
metabolic reprogramming are likely be missed when studied in a cancer-cell background which
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Outstanding Questions
How does viral infection modulate
host-cell metabolism in the most physi-
ologically relevant cell types (i.e., not
cancer-derived tissue)?

Is tissue-specific metabolic function a
major determinant of viral tropism in
vivo?

What additional mechanisms do
viruses employ to direct host-cell met-
abolic activities towards viral infection?
Are these mechanisms conserved
between viral families?

Can newly identified virally induced
metabolic activities be targeted to
attenuate viral infection in vivo?

What additional host innate and adap-
tive immunity-based counter measures
are employed to limit viral metabolic
manipulation?
already exhibits these metabolic changes. In more physiologically relevant systems, the con-
tributions made by these factors would be evident, and could be studied with an eye towards
therapeutic intervention. To avoid complications such as these, ideally, analysis of viral metabolic
modulation should occur in the most physiologically relevant system possible, thereby moving
away from study solely in transformed cells.

Concluding Remarks and Future Perspectives
It is clear that viruses have evolved mechanisms to target host cell metabolism to ensure their
persistence. In doing so, viruses usurp the host's small-molecule resources to provide energy
and molecular building blocks to support infection. Viruses also target small-molecule metabo-
lism to organize viral maturation compartments and to modulate immune responses. The host,
however, is not a passive bystander with respect to viral metabolic manipulation. Rather, the
host responds at various levels, including innate mechanisms to limit viral metabolic modulation
in individually infected cells as well as metabolic immunosurveillance by the immune system. As
such, control of the small-molecule network continues to emerge as a core host–pathogen
interaction that can determine the outcome of viral infection, making it a worthwhile goal to target
viral-host metabolic regulation as a means to limit viral infection. Achieving this goal will be aided
by a number of factors. First, continued elucidation of small-molecule metabolic activities that are
important for viral infection, as well as the mechanisms through which they contribute to
infection, will broaden the number of candidate therapeutic targets. Further, successful thera-
peutic development requires a sufficiently wide therapeutic window to limit viral replication
without inducing toxicity. Targeting virally encoded metabolic activities has been a successful
clinical strategy, for example various nucleotide analogs. However, viral enzymes can quickly
evolve resistance to these targeted therapeutics, which necessitates cocktail-type therapies,
increasing concerns about toxicity. Targeting host-cell metabolic activities would largely limit the
ability for viruses to evolutionarily acquire resistance, but targeting host enzymes also raises
concerns about potential toxicity. With these concerns in mind, virally induced host-lipid
metabolic activities appear particularly attractive as candidates for therapeutic targeting, as a
number of inhibitors of this type are already FDA-approved and are widely prescribed, such as
the cholesterol-lowering statins.

In conclusion, we are at the very initial stages of understanding the mechanisms of virus–host
metabolic interplay and how they contribute to infectious outcomes. However, the importance of
these mechanisms to both viral infection and immunity continues to emerge, and therefore the
area appears increasingly fertile for development of novel therapeutic strategies.
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