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Abstract

The anionic peroxidases play an important role in a variety of plant physiological processes.

We characterized and isolated the Zmap promoter (PZmap) at the 50 flanking region in order

to better understand the regulatory mechanisms of Zmap gene expression. A series of

PZmap deletion derivatives, termed a1 –a6, at positions −1694, −1394, −1138, −784, −527

and −221 from the translation start site were blended to the β-glucuronidase reporter gene.

Agrobacterium-mediated transformation method was used to study each deletion construct

in tobaccos. Sequence analysis showed that several cis-acting elements (MYB binding site,

Box-II, a TGACG-element, a CGTCA-element and a low temperature responsive element)

were located within the promoter. Deletion analysis suggested the sequence between

−1,694 and −1394bp may contain cis-elements associated with GUS up regulation. The

MYB binding site (-757) might act as a negative drought-responsive element. There might

be repressor elements located in the region (−1,694 to −1394bp) to repress Zmap expres-

sion under 4˚C. The characterized promoter would be an ideal candidate for genetic engi-

neering for improving the resistance of maize to different stressors.

Introduction

Plants are usually subjected to many hostile environments, such as drought, salinity, and low

temperatures, which severely affect plant growth and productivity. A series of complex cell sig-

nal transduction processes will occur to limit the damage under these abiotic conditions.

Many kinds of defense mechanisms can also be activated under abiotic stressors; among them,

the expression of resistance genes can be found under single or multiple stress conditions.

Therefore, the expression of stress-inducible genes and promoters play an important role in

plant resistance.

Promoters are important DNA sequence signals in gene expression. Constitutive promoters

can continuously drive transcription and expression of downstream genes, including exoge-

nous genes. However, gene over expression may hinder the energy required for normal growth

and the synthesis of RNA and proteins [1–3]. In contrast, inducible promoters limit gene
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expression to specific tissues or organs, or to defined growth stages, such as limited growth

conditions or the presence of insults, which could reduces the adverse effects on plant growth.

Therefore, the study of inducible promoters will improve our understanding the molecular

mechanisms of signaling pathways [4].

Anionic peroxidases play an important role in a variety of plant physiological processes

such as lignifications, suberifications, wound repair, and defense against disease [5]. Anionic

peroxidase expression can be divided into constitutive and inducible expression. Inducible

expression anionic peroxidases considered some of the most important plant protective iso-

zymes, play an important role in both pathogen infection and abiotic stressors [6]. To under-

stand the expression mechanism of the anionic peroxidase gene, we functionally characterized

the promoter region of anionic peroxidase in maize (Zmap promoter). In this report, we inves-

tigated the Zmap promoter region inducible activity and identified the response of the 5’-

flanking sequence to different stimuli, including methyl jasmonate (MeJA), low temperature

and drought. The study could provide valuable insights into the mechanism of the Zmap pro-

moter involved in Zmap gene expression patterns under abiotic stressors.

Materials and methods

Plant materials and growth conditions

Zea mays (B73) plant seeds were collected in the experimental field of our university and the

author was not obliged to have any permissions. This work did not involve endangered or pro-

tected species and the species Zea mays (B73) is a common plant. Maize plants were propa-

gated within a controlled environment chamber with a photoperiod of 16 h light/8 h dark at

25˚C. At the same time, tissue-culture tobacco Nicotianatabacum (NC 89) plants were raised

on Murashige-Skoog (MS) medium supplemented with 30 g/l sucrose, 7 g/l agar, 3 mg/l 6-ben-

zyladenine, 0.2 mg/l α-naphthaleneaetic acid and adjusted to pH 5.8. Plants were maintained

16 h light/8 h dark photoperiod at 25˚C. Genetic transformation experiments were carried out

with fully developed tobacco leaves.

Promoter cloning and sequence analysis

Bioinformatics analysis to identify putative regulatory motifs in the Zmap promoter sequences

from maize was performed using the database of PlantCARE [7].

For determination of the structure of Zmap promoter, polymerase chain reaction (PCR)

was carried out using the primer pair aP-F/aP-R shown in Table 1 with maize DNA as tem-

plate. Cycling conditions including 94˚C for 5min; 30 cycles of 94˚C for 45s, 58˚C for 40s,

72˚C for 2min; and 72˚C for 10min. BamHI and NcoI restriction enzymes restriction sites

were represented by underlined letters. Recombinant clones were sequenced following cloning

of PCR products into the pMD18-T vector.

Genetic transformation and construction of expression vectors

The functional regions of the Zmap promoter were investigated by5’-end deletion analysis. A

series of Zmap promoter deletions were generated by PCR, named as a1 (1694 bp), a2 (1394

bp), a3 (1138 bp), a4 (784 bp), a5 (527 bp) and a6 (221 bp) using the primers shown in Table 1.

CaMV35S promoter was replaced following the cloning of amplicons into the pCMBIA1301

plasmid (Fig 1). The recombinant plasmids were introduced into Agrobacterium tumefaciens
strain EHA105. Expression of reporter β-glucuronidase (GUS) gene was measured in order to

evaluate promoter activity.

Functional analysis of Zmap promoter in maize
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Generation and identification of transgenic plants

Tobaccos were inflected using the Agrobacterium-mediated method. Briefly, the leaves were

cut into small pieces and were cultured on MS premedium for 2 days followed by transgenic

Agrobacterium tumefaciens strain EHA105 infection. The leaf pieces were cultured on selec-

tion medium and then were transferred onto rooting medium following growing sprouting,

and finally potted in soil (Fig 2). The second generations of transgenic plants were used for the

subsequent study.

In total, 0.1g tobacco leaves were collected from each transgenic plant and the genome

DNA were extracted using CTAB method. PCRs were carried out using the Zmap promoter

and hygromycin gene contained in plasmid, with water as blank control and wild type tobacco

as negative control (Fig 3).

As shown in Fig 3A, the Zmap promoter DNA fragment of 1694 bp can only be detected in

seven transgenic tobaccos, while not in water or wild type tobacco controls. Similar results

were observed in hygromycin gene plasmid PCR (Fig 3B). These results indicated that the tar-

get gene had been successfully transferred into transgenic tobaccos.

Table 1. Primers used for polymerase chain reaction (PCR).

Primer name Primer sequence (5’- 3’)

aP-F(a-1) CGGGATCCTGCCGTGATACCGACTTGA

a2 CGGGATCCAACTCACAGCACCTACGCAC

a3 CGGGATCCATACCCACACCACCCACCAC

a4 CGGGATCCCCTGATTCCCCATCTGTGTG

a5 CGGGATCCAATAGCCCAGTTGCCATCTC

a6 CGGGATCCGAGAAATGAGATCATCCCACC

aP-R CCCATGGTTCAGCTTGCTTGTTGCTTG

ACTIN- F CGGAATTCACAATATCGGTTCCGCTGC

ACTIN- R CCCATGGCTTCTTATTCGATCAGAC

GUS-F CGGGATCCTGCCGTGATACCGACTTGA

GUS-R CCCATGGTTCAGCTTGCTTGTTGCTTG

https://doi.org/10.1371/journal.pone.0211941.t001

Fig 1. Schematic representation of the PZmap: GUS construct. The insertion position of the Zmap promoter in the vector is

indicated with restriction enzyme sites (BamHI and NcoI). LB, left border; RB, right border; 35s-ter; Cauliflower Mosaic virus 35S

terminator; 35s Pro, Cauliflower Mosaic virus 35S promoter; GUS; β-glucuronidase gene; HPTII, hygromycin phosphotransferase

(II) coding region; NOS-ter, nopaline synthase terminator; Zmap Pro, Zmap promoter.

https://doi.org/10.1371/journal.pone.0211941.g001
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Histochemical staining

Histochemical staining was performed as described previously [8]. Samples collected from

transgenic tobacco after different stress-related stimuli were incubated in GUS reaction buffer

(3 mg/ml X-gluc, 40 mM sodium phosphate pH7, 10mM EDTA, 0.1% Triton X-100, 0.5mM

potassium ferricyanide, 0.5mM potassium ferrocyanide, and 20% methanol).Stained samples

were bleached ethanol (70% (v/v)) to remove chlorophyll after overnight incubation (37˚C)

and observed under white light using a Nikon SMZ1000 microscope. GUS expression patterns

in whole plants were visualized by histochemical assay.

Plant treatment

The fourth and sixth leaves of the transgenic tobacco were used to investigate the effects of the

different stress-related stimuli on GUS reporter gene expression. For drought stress treatment,

Fig 2. Generation of transgenic tobaccos. (A) Wild type tobacco; (B) Pre-culture tobaccos; (C) Selective culture

transgenic tobaccos; (D) subculture transgenic tobaccos; (E) Screening of transgenic tobaccos resistant buds; (F)

Rooting culture transgenic tobaccos; (G) transgenic tobacco seedlings.

https://doi.org/10.1371/journal.pone.0211941.g002
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tobacco plant roots were treated with 20% polyethylene glycol (PEG). Tobacco plants were put

in growth chamber at 4˚C for low temperature treatment. Tobacco plants were put in growth

chamber at 4˚C for low temperature treatment. Untransformed tobacco plants, plants trans-

formed with CaMV35S (pCAMBIA1301 vector), and transgenic plants treated with water in

the same areas were provided as controls. All tobacco samples were treated at 1, 3, 5, 10 and

24h. After each treatment, tobacco leaves were frozen in liquid nitrogen, and stored at a tem-

perature of -80˚C for total RNA isolation.

Total RNA extraction and real-time quantitative RT-PCR analysis

Total RNA from tobacco leaves was extracted by the RNAiso Reagent (Takara, Changchun,

China). Total RNA was reverse transcribed into single-stranded cDNA by using M-MLV

Reverse Transcriptase and anoligo (T) 18 primer (Takara, Changchun, China). RT-PCR analy-

sis was performed using SYBR Green I (TaKara) on an Applied Biosystems 7500real-time PCR

machine (Applied Biosystems, Foster City, USA). The tobacco actingene (GenBank Accession

No.U60491) was taken as endogenous control gene. RT-PCR primers are shown in Table 1.

Real-time PCR cycling conditions were as follows: 95˚C for 30sec; and 40 cycles of 95˚C for 5s,

56˚C for 40s. All reactions were performed three times. The data were analyzed via2−ΔΔCT

method [9].

Fig 3. Identification of transgenic tobaccos. (A) Zmap promoter (1694 bp) in transgenic tobacco; (B) Hygromycin gene (647 bp) in

transgenic tobacco; M: Marker, 1: water (blank control), 2: wild type tobacco (negative control), 3–9: transgenic tobaccos.

https://doi.org/10.1371/journal.pone.0211941.g003
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Fluorometric GUS assay

GUS activity was detected by fluorometric assay according to the method of Jefferson et al [8].

GUS extraction buffer (0.1% TritonX-100; 50 mM phosphate buffer, pH 7.0; 10 mM EDTA;

0.1% sodium lauryl sarcosine; 10 mM β-mercaptoethanol; 20% methanol) was used to extract

various tissues of tobacco leaves. After centrifugation, the total protein content of extracted

supernatants was measured by the Bradford method [10] by using a Bio Rad Protein Assay Kit

with BSA as a standard. The assays were performed in triplicates for each sample.

Results

Structure analysis of cis-acting elements in Zmap promoter sequences

Zmap promoter was analyzed by bioinformatics using the PlantCARE database to identify the

cis-acting regulatory elements. The 1694bp DNA sequence located upstream of the translation

start site (indicated with “+1” at the ATG start codon of the Zmap gene) was considered the

putative promoter in this study. Bioinformatic analysis of Zmap promoter allowed us to iden-

tify the existence of some putative regions that could modulate gene expression. These putative

regions are also known as cis-acting regulatory elements (Table 2). Zmap promoter sequence

contains several core fragments shown in Table 3. They consisted of one TGACG-motif

(TGACG), one LTR(CCGAAA), one CGTCA-motif (CGTCA), one CAT-box (GCCACT), one

box-II (TCCACGTGGC), one G-Box (GTGCAA), one GA-motif(TCATCTTT), three MYB bind-

ing sites (MBS, one TAACTG and two CAACTG), and many other cis-acting regulatory ele-

ments, such as TC-rich repeats, HD-Zip 2and AuxRR-core. Analysis of Zmap expression

potentially indicates its regulation and expression by many different stress stimuli [11].

GUS reporter gene expression from Zmap promoter in response to

different stimuli

The 1694bp full-length Zmap promoter was transferred into tobacco plants following the

fusion of the GUS reporter gene in a plant expression vector in order to determine the regula-

tory mechanisms of controlling the expression of Zmap gene. Histochemical GUS staining was

used to measure the expression levels of GUS gene in transgenic tobacco which showed the

inducible activity of the Zmap promoter. The data revealed that a decrease in GUS gene expres-

sion after low temperature treatment (4˚C) (Fig 4A, 4C and 4F), but an increase after the other

treatments (Fig 4A, 4C, 4D and 4E). Slight GUS staining was observed in untransformed

plants, though these background levels were far below those observed in CaMV35S-trans-

formed tobacco plants (Fig 4A, 4B and 4C). GUS gene expression occurred mainly in the aerial

parts of the plants rather than the roots.

GUS reporter gene expression was examined quantitatively by real-time RT-PCR using

total RNA extracted from the aerial parts of transgenic tobacco between the fourth and sixth

leaves at chosen time points after treatment with MeJA, PEG, or low temperature (Fig 5). GUS
transcript levels were induced by PEG, with a maximal level at 10 h. MeJA treatment also sig-

nificantly increased GUS gene transcription at 24 h. In contrast, low temperature treatment

decreased GUS transcript levels compared to the untreated control (0 h).

Collectively, GUS expression levels were examined by histochemical GUS staining (Fig 6).

The results confirmed our observations above, with GUS expression about 4-fold higher after

PEG treatment. Expression levels were lowest in plants treated with low temperature, corrobo-

rating results showing inhibition of GUS gene expression in cold-treated transformed tobacco

plants. MeJA-treated plants had 2-fold higher GUS expression levels compared to untreated

Functional analysis of Zmap promoter in maize
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Table 2. Analysis of the Zmap promoter region.

Position Sequence

-1693 TGCCGTGATA CCGACTTGAG TCCGAAGGTA CCTGCTCACA CAT TATA CTT CCAGAAATAC

TATA-box

-1633 TGTTAAATCC TGTTTTTGAG GACAGCAAAT ATATTTAGAA CCGACCCGTC ACTATATTGT

-1573 AGTAGTGATG TGGTCTGCAA TTTTTTTTTA TTTCTTCCAT TTTTTGCATA TAAACGTGCT

-1513 AGTGGTGTGG ACGTGTGGTA TGAATTTTTT GGTTGTACTG TGAATGAGAT TGGACCTGTC

-1453 GCTCAGTGCA ATGCGCTTAT ATATCCACTA AGATTGCTAT TAACTG GTAA TGCAGATCCA

MBS

-1393 ACTCACAGCA CCTACGCACA TCTACAATAG AAAA CGTCA T CCGAAA CACT GTAGAGTCCA

TGACG-motif LTR

-1333 GATCAATTTC CCCACGGTGC AAACATGGCA CTATTGCTAG CTGCATACTA CAGAATTGAA

-1273 TAGTACAGCA ACTATGATCC CATCTAGGAA TGACAGTGGT AAGG TATA TG TAATTGGCGC

TATA-box

-1213 ACAATGTCAT ACCCATACAT ATTAGAGAAA AATGTCTCAC CCACTACATC GTGGATACAA

-1153 AACTA CGTCA TACTCATACC CACACCACCC ACCACGGGTA GTGGGTATCC ATCGAATACC

CGTCA-motif

-1093 CATATATAAC CACTAACATT ACAATAGACA CGATCAACAA CATTCAACAT TAAATAGCAA

-1033 CATCATACAA GCCATGCATG AGAGAGAACA AGCCCCTTAA TCTGGACTCA TATGTTATAT

-973 GTTAACGGGT CTCCCATCGA GTAGCGGGTA TTTGGCAAAA GAGAACATGC ACACATCCAT

-913 CATACCCAAT GTA TATA ATA AATGACCCAA TAAAATACCT ATAGGTATAA AAAAACACCT

TATA-box

-853 TATA TACATG TGCACTAATA G GTTTTTTTA C CTATCAGAT ATCGGGTTTC AGGTA TCCAC
TATA-box TC-ricrepeats box II

-793 GTTGC CACCC CTGATTCCCC ATCTGTGTGG CAGTTG TCTG CAAAACCCAA ATCCTGCACG

MBS

-733 AAACTGCATG CATTTTAGGG TAATATCACA TGCATGCTTG CATTTCATTG GTTGGGTCTC

-673 TCCACT GCCA CT CTCGACTC GTCGAGACAG AGAGCACTGG GAAGCATGCA CATGCTAAGT

CAT-box

-613 GCAGCACCAT CAGTCCACAG CCCCCGGCAT CACATTAGTG ACTCCACGGA GCAAATAAAA

-553 GAGCCCTCGC CACTCGCCAG TGCTCCAATA GCC CAGTTG C CATCTCCCCC GAGTGGTGCA

MBS

-493 GGC CAATCAT TGTTTT TCAA AAAAAAAAAC TTTCTAACCG CCGGAGATTA GAGACCATTA

HD-Zip 2

-433 TTGCATGCTG TGCAGGCCGC AGCCGCCGGT CACCCACTAG CTATCGTCGC ACCGAATTAG

-373 CCTAACCCGA GGTAGTATTA AGCTGTTTAG TATGAGGAAT GATCTAGTCC A TCATCTTT T
GA-motif

-313 CACTCCTCAC TTTTTTTTGT TTGGTTTGTG GAATAAATTG AGTTGATCAA TCATCACCTC

-253 ATTCCTTATA GTTATTTAGT TAGTACTAAT ATGAGAAATG AGATCATCCC ACCAAATTTG

-193 AGGA ATGGAC C TATGATGCA CCACTATATT TTGGATAAAG TGATTCCTCA AACCAAACAA

AuxRR-core

-133 CCC TATA TTC CGCGACGGAC GATCGCTTTT TACCGTCTAT AAGAACAACG ATGCAAGAAA

TATA-box

-73 CTGTGTGGAG T GTGCAA GCT CAATACAGGC ACAGTGGAGA TCGAGACAGC TAGCAAGCAA

G-box

-13 CAAGCAAGCT GAAATG

+1

Putative cis-acting regulatory elements, detected in the promoter fragment using the PlantCARE database, are indicated within grey shaded boxes. The translation start

site is indicated with “+1”.

https://doi.org/10.1371/journal.pone.0211941.t002
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Table 3. Putative cis-acting elements and their positions in the Zmap promoter.

Cis element Sequence Position Function

TC-rich repeats GTTTTCTTAC -832 defense and stress responsiveness element

TGACG-motif TGACG -1359 MeJA-responsiveness element

box II TCCACGTGGC -798 part of a light responsive element

LTR CCGAAA -1353 low temperature responsiveness element

HD-Zip 2 CAATCATTGTTTT -490 leaf morphology development control element

AuxRR-core GGTCCAT -189 auxin responsiveness regulatory element

CAT-box GCCACT -667 meristem expression regulatory element

CGTCA-motif CGTCA -1148 MeJA-responsiveness regulatory element

G-Box GTGCAA -57 light responsiveness regulatory element

GA-motif TCATCTTT -315 part of a light responsive element

MBS TAACTG -1407 MYB binding site involved in drought-mediated induction

CAACTG -514; -757

https://doi.org/10.1371/journal.pone.0211941.t003

Fig 4. Histochemical staining of GUS activity in six-week-old transgenic tobacco plants. β-glucuronidase (GUS) expression in (A)

wild-type; (B) CaMV35S-transformed tobacco plants; (C) untreated transgenic tobacco plants; and transformed tobacco plants treated

with 20% polyethylene glycol (D), 100 μM methyl jasmonate (E) and low temperature (4˚C) (F).

https://doi.org/10.1371/journal.pone.0211941.g004
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plants. Differences in overall expression levels between the different treatments are probably

due to differential rates of gus mRNA or protein turnover.

Analysis of Zmap promoter deletion mutants

To further study stress-inducible expression from the Zmap promoter, a series of 50 promoter

deletion-GUS constructs were transferred into the tobacco plant by transient expression. GUS

expression in transformed plants was then measured by a fluorometric GUS assay. Deletion

Fig 5. Time course of GUS transcript levels in the leaves of transgenic tobacco after treatment with polyethylene glycol (PEG),

methyl jasmonate (MeJA) and low temperature (4˚C). CK (wild-type) and 0 h-treated tobacco plants were left untreated as controls.

At least three independent experiments were performed for each sample.

https://doi.org/10.1371/journal.pone.0211941.g005

Fig 6. Zmap promoter-driven GUS activity after treatment with polyethylene glycol (PEG), methyl jasmonate (MeJA), and low

temperature (4˚C). GUS activity from CaMV35S (pCAMBIA1301 vector) transformants, wildtype, and untreated transformants

served as controls.

https://doi.org/10.1371/journal.pone.0211941.g006
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promoters were named a1 (1694 bp), a2 (1394 bp), a3 (1138 bp), a4 (784 bp), a5 (527 bp) and

a6 (221 bp), respectively (Fig 7). Fluorometric GUS activity assay was used on the leaves of

stress-treated transgenic tobaccos. It has been noted that GUS activity of a1-promoter plants

was higher than other deletion promoter plants treated with phytohormone (MeJA) (Fig 8).

Comparing with untreated controls, GUS activity of a1 and a2 deletion promoter plants

increased significantly, suggesting that MeJA-responsive elements (TGACG-motif and

CGTCA-motif) might play important roles on driving GUS expression in a1 and a2 plants.

However, a1-mediated GUS activity was reduced significantly after low temperature treatment

compared with untreated plants, while GUS expression increased in a2 plants (Fig 8). There

was no obvious difference in GUS activity mediated by other deletion promoters. GUS activity

increased in all plants after PEG treatment (Fig 8), with a1 plants increasing the most and a5

plants also showing a large increase.

Discussion

Studies demonstrated that the expression of many plant genes such as, metabolic, regulatory

and structural genes [12–15] were induced by light. In this study, the activity of the Zmap pro-

moter was investigated by a fusion reporter construct (PZmap: GUS) after transformation into

the tobacco genome. GUS activity from transgenic plants provided a detailed pattern of Zmap
promoter function. Leaves and stems of transgenic tobacco plants exhibited blue staining, but

roots not showed any signs of blue staining (Fig 4). It was found that light could interfere with

Zmap promoter, and several light-responsive elements such as the GA-motif, box-II and the

G-box [16–18] were also found in the promoter sequence (Table 3).

Bioinformatic analysis revealed adversity stress elements (one low temperature element,

two MeJA-responsive elements, and three putative drought-responsive elements) in the Zmap
promoter region. These elements were hypothesized to have a strong effect on gene expression.

To further understand the expression level of stress-induced transcriptional activity of the

Zmap promoter at the protein level, real-time RT-PCR analysis was performed (Fig 5). GUS
transcript levels decreased in response to low temperature treatment. In contrast, transcript

levels increased in response to MeJA and drought treatment. These results were corroborated

by histochemical GUS staining analysis (Fig 6).

Fig 7. Bioinformatic analysis of cis-regulatory elements in the Zmap promoter and its six deletion fragments: a1

(1694 bp), a2 (1394 bp), a3 (1138 bp), a4 (784 bp), a5 (527 bp) and a6 (221 bp).

https://doi.org/10.1371/journal.pone.0211941.g007
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Deletion analysis showed that the Zmap promoter possess adversity stress cis-regulatory ele-

ments that could allow maize to respond to stress. Agrobacterium-mediated leaf-disc was used

to transform deletion promoter constructions into tobacco plants. In this study, GUS activity

decreased with decreasing Zmap promoter length (a1—a6) in untreated plants. Interestingly,

highest activity was shown the full-length Zmap promoter (a1) among all deletion promoters.

It is speculated that cis-elements were found in the sequence between −1,694 and −1394bp of

the Zmap promoter involved in up regulation of GUS expression.

Compared with untreated controls, the GUS activity of the a1 and a2 deletion promoter

plants increased more significantly compared to other deletion promoter plants treated with

MeJA (Fig 8). This result showed that the MeJA-responsive elements (TGACG-motif and

CGTCA-motif) played a crucial role in enhancing the GUS activities of a1 and a2 [19–22]. Oth-

erwise, a1-mediated GUS activity declined significantly under low temperature treatment,

while a2-mediated activity increased in response to the same stimulus. No significant differ-

ences in GUS activity were found in other groups. It can be concluded that the low tempera-

ture responsive element has a positive regulatory role under low-temperature stimuli [23–24]

and that there may be other still unidentified negative elements in this 300bp fragment (−1,694

to −1394). Sequence analysis showed that there are three drought responsive elements (MBS)

in the Zmap promoter. Transcription factor MYB could bind to MBS, which could act as a tar-

get for other regulators [25–28]. After PEG treatment, a1 plants had the highest activity, fol-

lowed by a5 plants. Therefore it can be obtained that these elements (-1407 and -514) play

Fig 8. Analysis of Zmap promoter deletion mutants. GUS activities in plants carrying the Zmap promoter deletion series treated

with low temperature (4˚C), methyl jasmonate (MeJA) and polyethylene glycol (PEG). GUS activity from CaMV35S (pCAMBIA1301

vector) transformants, wild-type and untreated transformants served as controls.

https://doi.org/10.1371/journal.pone.0211941.g008
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important roles under drought stimulation, while the (-757) element might act as a negative

drought-responsive element.

In conclusion, the results revealed the activity patterns of the Zmap promoter, and thus

could provide better understanding of the complex regulatory mechanisms and functional

regions of Zmap promoter. A fluorometric GUS assay and qRT-PCR results indicated that

Zmap promoter-mediated activity increased after MeJA and drought treatment but decreased

after low temperature treatment. These data will support further studies of the role of adver-

sity-inducible promoters in maize defense response and offer a foundation for improving the

resistance of maize to different stressors.
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