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SIRT3 is an NAD+-dependent deacetylase in the mitochondria with an extensive ability to
regulate mitochondrial morphology and function. It has been reported that SIRT3
participates in the occurrence and development of many aging-related diseases.
Osteoporosis is a common aging-related disease characterized by decreased bone
mass and fragility fractures, which has caused a huge burden on society. Current
research shows that SIRT3 is involved in the physiological processes of senescence of
bone marrow mesenchymal stem cells (BMSCs), differentiation of BMSCs and
osteoclasts. However, the specific effects and mechanisms of SIRT3 in osteoporosis
are not clear. In the current review, we elaborated on the physiological functions of SIRT3,
the cell types involved in bone remodeling, and the role of SIRT3 in osteoporosis.
Furthermore, it also provided a theoretical basis for SIRT3 as a therapeutic target
for osteoporosis.
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INTRODUCTION

Osteoporosis is a systemic bone disease characterized by bone loss and bone tissue microstructure
destruction (1). After the bones mature, bone formation and bone resorption are under an
equilibrium, thereby maintaining normal bone mass (2). Several factors might cause the
destruction of this balance and the occurrence of osteoporosis, such as aging, hormone
deficiency, genetic factors, etc. (3). As the aging population grows, osteoporosis and the related
complication fragility fractures result in a high disability rate. In the United States, approximately 54
million adults over the age of 50 suffer from osteoporosis or are at risk of insufficient bone mass (4).
Notably, the incidence of osteoporotic fractures is about 3 to 4 times higher than that of
cardiovascular disease or cancer (5). Therefore, it is of great significance to explore its molecular
mechanism and develop high-efficiency treatments for osteoporosis.

Mitochondria are the unique organelles of eukaryotes, which play an important role in
maintaining homeostasis, such as metabolism, energy production, oxidative stress, and apoptosis
(6, 7). Osteoporosis is a prevalent aging-related disease, which is usually accompanied by changes in
metabolic processes and mitochondrial dysfunction (8, 9). And mitochondrial dysfunction will lead
to the accumulation of reactive oxygen species (ROS) and induce the damage of various
macromolecules such as proteins, nucleic acids, and lipids in cells (10). Besides, oxidative stress
could increase the activity of osteoclasts and decrease the osteogenic potential of osteoblasts, thereby
destroying bone homeostasis (11–13). All these suggest that mitochondrial dysfunction might
contribute to the occurrence and development of osteoporosis.
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Sirtuins (SIRTs) are a family of highly conserved NAD+-
dependent deacetylases in mammals, which influence several
metabolism processes (14–16). As a member of mitochondrial
sirtuins, SIRT3 is located on chromosome 11 (Chr11p15.5) and
serves a critical role in mitochondrial homeostasis, metabolic
regulation, gene transcription, and genome stability (17–19).
SIRT3 has been reported to be involved in a variety of aging-
related diseases, such as Alzheimer’s disease, Parkinson’s
disease, cardiovascular disease, and bone diseases (20, 21). A
previous study showed that the senescence of bone
mesenchymal stem cells (BMSCs) could lead to osteogenic
damage and osteoporosis (22). And the maintenance of
mitochondrial NAD+ levels and the expression of SIRT3
could delay the senescence of MSCs (23). Though recent
evidence indicates that SIRT3 is linked to osteoporosis, the
exact mechanism is still unclear. In this review, we are devoted
to explaining the role and molecular mechanism of SIRT3
in osteoporosis.
THE PHYSIOLOGICAL FUNCTION
OF SIRT3

In the mitochondrial sirtuins, SIRT3 exhibits strong deacetylase
activity, which contains a large Rossman fold domain that binds
to NAD+ and a small domain with a zinc finger structure (24). A
large amount of evidence proves that SIRT3 could regulate
mitochondrial functions from many aspects, such as energy
metabolism, oxidative stress, mitophagy, etc. (25). For example,
SIRT3 could deacetylate FOXO3 under the induction of
hydrogen peroxide, thereby regulating mitochondrial quality,
ATP production, and clearance of defective mitochondria (26).

As one of the most basic characteristics of life, energy
metabolism mainly includes the release, transfer, storage, and
utilization of energy. SIRT3 could promote energy production by
deacetylating the subunit proteins of the mitochondrial
respiratory chain complex (27). For instance, SIRT3 could
maintain intracellular metabolic balance by deacetylating ATP
synthase beta (28, 29). In addition, SIRT3 could deacetylate
Acetyl-CoA Synthase 2, succinate dehydrogenase and 3-
hydroxy-3-methylglutaryl CoA synthase 2, thereby indirectly
regulating energy production (30–32). The in-vivo study also
confirmed that ATP production in SIRT3-/- mice was
approximately reduced by 50% (33). In short, SIRT3 is an
important regulator of energy homeostasis.

Mitochondria are not only involved in energy metabolism,
but also crucial for the production and scavenging of ROS (34). A
previous study showed that SIRT3 reduced the production of
ROS by deacetylating FOXO3a (35). Besides, SIRT3 could
increase the activity of superoxide dismutase 2 (SOD2), and
result in the reduced ROS and prevention of cell senescence (36,
37). All above evidence shows that SIRT3 serves as a key
mitochondrial protein to protect cells from ROS via enhancing
the activity of the antioxidant defense system.

Mitophagy is a kind of mitochondrial selective autophagy,
which degrades damaged mitochondria in cells (38, 39). In the
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myocardium of SIRT3-/- mice, Li et al. found that SIRT3
deficiency could significantly inhibit p53/Parkin-mediated
mitophagy and promote mitochondrial dysfunction (40). The
deficiency in SIRT3 could also damage the mitochondrial fission
and mitophagy through FOXO3a/Parkin signaling (41).
Additionally, SIRT3 acts as a key activator of mitophagy,
which may be mediated by the VDAC1/Parkin pathway (42).
Therefore, SIRT3 is central to the maintenance of proper
mitochondrial function by regulating mitophagy through
multiple pathways (43).
THE CELL TYPES INVOLVED IN BONE
REMODELING

Bone remodeling is a dynamic process including several stages:
initiation/activation stage; bone resorption stage; reversal stage;
osteogenesis stage; and mineralization stage (44). This process
is mainly carried out in an anatomical and functional structure
called basic multicellular units, involving multiple types of cells:
bone stem cells, osteocytes, osteoclasts, and osteoblasts, etc. (45,
46). MSCs are a group of pluripotent stem cells developed from
the mesoderm and mainly exist in the bone marrow and
adipose tissue (47, 48). As the common progenitor cells of
osteoblasts, adipocytes, and chondrocytes, BMSCs play an
important role in bone homeostasis (49). The differentiation
of BMSCs is affected by many factors, such as hormones,
cytokines, and mechanical factors (49). Previous studies have
shown that estrogen and bone morphogenetic protein 2
(BMP2) were the signals of the osteogenic differentiation of
BMSCs, and peroxisome proliferator-activated receptor g
(PPARg) could promote the differentiation of BMSCs into
adipocytes (50, 51).

Osteoblasts are vital for bone formation, which can not only
differentiate into the most abundant osteocytes but also promote
the mineralization of osteoid and regulate the function of
osteoclasts (52–54). Osteoclasts are multinucleated cells derived
from hematopoietic stem cells and are mainly responsible for
bone resorption (55). It is currently clear that nuclear factor
receptor activator-B (RANK)/RANK ligand (RANKL) is the
main signal pathway for osteoclast differentiation and bone
resorption (56, 57). In the process of osteoclast formation,
bone marrow-derived macrophages differentiate into tartrate-
resistant acid phosphatase+ (TRAP+) preosteoclasts under the
action of the RANKL receptor activator (58). Mononuclear
preosteoclast cells fuse with each other to form multinucleated
mature osteoclasts. Osteoprotegerin (OPG) is secreted by a
variety of cells including osteoblasts and mainly reduces bone
loss by blocking the combination of RANKL and RANK (59).
The OPG levels were reduced due to the aging-related decrease of
osteoblasts, thereby activating osteoclast resorption and causing
osteoporosis (60). Interestingly, osteocytes, as the protagonist of
bone formation, are also the main source of RANKL, thereby
promoting the occurrence of osteoclasts (61). In the dynamic
process of bone remodeling, all participating cells might interact
or restrict each other to achieve bone homeostasis.
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THE ROLE OF SIRT3 IN BONE
REMODELING AND OSTEOPOROSIS

Osteoporosis is a chronic disease caused by the imbalance of
bone formation and bone resorption (62). SIRT3 has been
demonstrated to play an important role in bone remodeling.
Next, we will explain how SIRT3 participates in bone remodeling
and osteoporosis from different aspects, including the senescence
and differentiation of BMSCs, differentiation of osteoblasts,
osteoclastogenesis, and changes in bone mass (Figure 1).

The Role of SIRT3 in the Senescence
of BMSCs
BMSCs are characterized by self-renewal and multi-
differentiation potential (63). And the senescence and aberrant
differentiation of BMSCs are related to a variety of
pathophysiological processes, including osteoporosis (64, 65).
The increased oxidative stress is a major feature of senescent
BMSCs (66, 67). SIRT3 could reduce oxidative stress-caused
BMSCs apoptosis via activating manganese superoxide
dismutase (MnSOD, an alias for SOD2) and catalase (68). In
the BMSCs models of natural senescence and H2O2-induced
premature senescence, the expression of SIRT3 was significantly
reduced, which was related to the decrease of antioxidant
capacity and the aggravation of DNA damage (69). SIRT3
supplementation could alleviate BMSCs senescence by
reducing ROS-induced damage, and enhancing the expression
and activity of SOD2. Besides, SIRT3 positively regulates catalase
and SOD2 by translocating FOXO3a into the nucleus, thereby
protecting aged donor BMSCs from oxidative damage (70, 71).
All the above evidence indicates that SIRT3 could regulate the
senescence of BMSCs through oxidative stress-related pathways.

Abnormal mitophagy could damage mitochondrial quality
and function, and play a key role in stem cell maintenance
and differentiation (39, 72–74). Guo et al. found that advanced
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glycation end products (AGEs) could destroy mitochondria
function and mitophagy, eventually leading to cell senescence
(75). Interestingly, the silencing of SIRT3 can further strengthen
the effect of AGEs, and the overexpression of SIRT3
can significantly reduce the occurrence of BMSCs aging and
osteoporosis. Regulation of mitophagy was another mechanism
for SIRT3 to reduce the senescence of BMSCs and
senile osteoporosis.

In addition to mitochondrial homeostasis, stem cell aging is also
accompanied by various epigenetic changes, including abnormal
DNA methylation, histone modification, and disorganized
heterochromatin (76, 77). Previous studies have shown that
SIRT3 could take a deacetylation effect in mitochondria, thereby
regulating the formation of epigenetic regulators acetyl-Coenzyme a
and b-hydroxybutyric acid (78, 79). Additionally, heterochromatin
is an important epigenetic driving factor in the regulation of aging
(80, 81). Diao et al. found that SIRT3 interacted with nuclear lamina
proteins and heterochromatin-related proteins to consolidate
heterochromatin, which partly explained the mechanism of SIRT3
in preventing the senescence of BMSCs (82).

In summary, SIRT3, as a longevity gene, could not only
maintain the mitochondrial function in the mitochondria but
also stabilize the heterochromatin in the nucleus, so as to delay
the senescence of BMSCs.

The Role of SIRT3 in the Differentiation
of BMSCs
BMSCs have great potential for bone remodeling due to their
osteogenic differentiation ability. As aging progresses, adipogenic
differentiation of BMSCs increases and osteogenic differentiation
weakens, causing abnormal bone metabolism (83, 84). The
SIRT3 deletion reduces the differentiation of BMSCs into
adipocytes and osteoblasts, while overexpression of SIRT3
enhances the differentiation ability of young BMSCs (passage
3) and aging BMSCs (passage 7) (85). Ho et al. found that SIRT3
FIGURE 1 | The molecular mechanism of SIRT3 in bone remodeling. As a major mitochondrial protein deacetylase, SIRT3 can alleviate BMSCs senescence by
regulating oxidative stress, mitophagy, and stabilizing heterochromatin. In addition, SIRT3 could protect osteoblasts and promote bone formation through multiple
pathways. Regarding BMSCs differentiation and osteoclastogenesis, the regulatory role of SIRT3 may be age-related.
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overexpression resulted in more adipocytes in the bone marrow
niche and the decreased bone mass in aging male mice (86).
However, the regulation role of SIRT3 in bone was not observed
in young (6-month-old) and female mice. Furthermore, BMSCs
derived from aging mice overexpressing SIRT3 showed a
stronger ability to differentiate into adipocytes compared with
the control group, and osteoblastogenesis was suppressed (86).
Interestingly, such results are inconsistent with previous research
findings. Instead of protecting bone loss, SIRT3 has deleterious
effects on osteogenic differentiation of BMSCs. It suggests that
SIRT3 plays a complex regulatory role in the differentiation of
BMSCs and the maintenance of bone homeostasis, which may be
related to age and gender, but its specific mechanism need to be
further explored.

The Role of SIRT3 in Osteoblasts
Osteoporosis is associated with increased levels of oxidative
stress in osteoblasts, which may be a key component of the
pathophysiology of bone loss (87). Li et al. found that nicotine
could induce mitochondrial oxidative stress and mitochondrial
DNA (mtDNA) damage in osteoblasts, ultimately leading to
osteoporosis. Mechanically, nicotine can reduce the SIRT3 level,
thereby significantly reducing the deacetylation level and activity
of SOD2 in osteoblasts (88). In mouse pre-osteoblastic MC3T3-
E1 cells, SIRT3 deletion could downregulate mitochondrial
function and biogenesis through the PGC-1a/SOD2 signaling
pathway, leading to impairment of osteogenesis (89). More
importantly, SIRT3 deficiency could contribute to the impaired
osteoblast function, bone loss and osteoporosis in SIRT3−/−mice.
Both in-vivo and in-vitro experiments have proved that the
SIRT3 could support increased ATP production, robust
mitochondrial biogenesis, and osteoblast differentiation via
deacetylating SOD2 (90).

Titanium is an important material for prostheses and stents for
bone reconstruction, which could increase the durability of
mechanical damage (91). With the development of nano-
toxicology, nano-materials have been confirmed to be cytotoxic
(92). For instance, titanium can cause osteoblast damage through
autophagy and excessive mitochondrion-derived ROS (mROS).
SIRT3 could reduce the acetylation of SOD2, the production of
titanium-induced mROS and the expression level of LC3, thereby
improving the viability of osteoblasts (93). Therefore, the SIRT3 and
SOD2 may form an important regulatory network to protect
osteoblasts against the cytotoxic of TiO2NPs (94). Besides,
upregulation of SIRT3 significantly attenuates the titanium
particle-induced inhibition of osteogenesis by inhibiting the
NLRP3 inflammasome (95). To sum up, SIRT3 plays a protective
role in bone formation and maintaining bone homeostasis.

The Role of SIRT3 in Osteoclasts
Osteoclasts, the protagonist of bone resorption, mainly resorb
the mineralized bone matrix to maintain bone and mineral
homeostasis (96, 97). As an indispensable element in various
cell signal transduction, ROS acts as the second messenger in the
process of osteoclast differentiation and activation induced by
RANKL (98). Haemin et al. found that SIRT3 downregulation
Frontiers in Endocrinology | www.frontiersin.org 4
enhanced osteoclasts formation and RANKL-induced bone loss
in five-week-old female ICR mice. Mechanically, SIRT3 could
enhance SOD2 activity through deacetylation of lysine 68 and
reduce intracellular ROS level, thereby inhibiting osteoclast
differentiation (98). What’s more, SIRT3 could inhibit the
osteoclast differentiation by regulating AMPK-PGC-1b
pathway (99). And the decreased bone mass was observed in
the young SIRT3−/− mice (eight-week-old), which was mainly
caused by increased osteoclastogenesis (99). Therefore, SIRT3
might serve as a negative regulator in osteoclast differentiation
and bone mass at a young age.

On the contrary, SIRT3 could promote osteoclastogenesis and
bone loss by activating the mechanistic target of rapamycin
(mTOR) pathway in aging transgenic overexpressing SIRT3
mice (13-month-old) (86). Additional researchers found that
deletion of SIRT3 had no effect on bone in young mice, but
attenuated age-related bone loss in 16-month-old mice. Loss of
SIRT3 impaired bone resorption by reducing the mitochondrial
respiration and mitophagy of osteoclasts, but had no effect on
osteoclast number (100). It seems that elevated SIRT3 may
promote bone loss in old age, partly due to an imbalance in
bone resorption.

Aging and sex steroid deficiency are two common causes of
osteoporosis (101). Therefore, in addition to aging models, the
researchers also constructed estrogen deficiency-related animal
models to study the role of SIRT3 in osteoporosis (100). In 5-
month-old ovariectomized SIRT3-/- mice, remission of
ovariectomy-induced cortical bone loss can be observed,
accompanied by a decreased bone resorption instead of an
increase in bone formation (100). How estrogen directly or
indirectly affects the role of SIRT3 in mitochondria as well as
bone homeostasis needs to be dissected.

In addition to aging and sex steroid-related bone loss, SIRT3
also takes part in the pathogenesis of ionizing radiation
exposure-induced osteoporosis. Ionizing radiation could
increase the expression and enzymatic activity of SIRT3 in
osteoclasts and cause osteoclast differentiation and bone loss in
young adult male mice (102). Nevertheless, the study did not
explore the role of SIRT3 in the response of female and elderly
mice to ionizing radiation.

Moreover, titanium has a side effect on the formation and
function of osteoclasts. Surprisingly, in the murine model of
osteolysis induced by titanium particles, inhibition of SIRT3 could
prevent titanium particle-induced bone resorption and osteoclast
formation by inhibiting ERK and JNK signals (103). Therefore,
SIRT3 could regulate bone resorption to alleviate the cytotoxicity of
titanium. It’s still required to elucidate how SIRT3 maintains the
balance between bone resorption and bone formation.

Taken together, SIRT3 might play an important regulatory
role in bone formation and bone resorption through multiple
pathways. It seems that SIRT3 acts to promote BMSCs
osteogenic differentiation and inhibit osteoclast differentiation
to stabilize bone mass in young age, while in aging stage, SIRT3
may promote adipogenic differentiation of BMSCs, osteoclast
differentiation and bone resorption, eventually leading to bone
loss. However, it is still unknown when and how this regulatory
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effect is switched. Second, how SIRT3 stabilizes in bone
formation and resorption remains unexplained. Indeed,
downregulation of SIRT3 inhibited osteoclast differentiation in
aging, accompanied by a small decrease in osteoblast production
(100). Therefore, various pathological or health conditions and
osteoporosis caused by different reasons should be considered to
explain these inconsistent results and the role of SIRT3
in osteoporosis.
SIRT3 AS A POTENTIAL TARGET FOR THE
TREATMENT OF OSTEOPOROSIS

Accumulating evidence has indicated that intervention for SIRT3
could improve osteoporosis, showing its potential as a treatment
strategy. Exogenous supplementation or overexpression of
SIRT3 could alleviate bone loss and osteoporosis (75, 104). For
example, the overexpression of SIRT3 by intravenous injection of
recombinant adeno-associated virus 9 carrying SIRT3 plasmid
(AAV9-SIRT3) could significantly reduce the occurrence of
senile osteoporosis in the mouse model (75). Mild hypoxia
pretreatment combined with curcumin could improve the
mitochondrial function of BMSCs through PGC-1a/SIRT3/
HIF-1a signal, and significantly increase cell survival (105).

Zoledronic acid is currently a common drug for the treatment
of osteoporosis (106). It could enhance osteogenic differentiation
of BMSCs, inhibit osteoclast activity and induce osteoclast
apoptosis, thereby alleviating osteoporosis (107, 108). Recent
research showed that zoledronic acid might inhibit oxidative
stress through the SIRT3/SOD2 pathway to accelerate BMSCs
osteogenesis and alleviate the progression of osteoporosis (109).

As an indolamine hormone and a potent free radical scavenger,
melatonin could improve osteoporosis through promoting osteoblast
differentiation and bone formation (110–112). Mechanism study
showed that melatonin could improve mitochondrial oxidative
stress through SIRT3/SOD2 signaling pathway, thereby promoting
bone formation and improving bone mass loss (113, 114). Also,
melatonin could inhibit oxidative damage in preosteoblasts and
promote osteogenesis by activating SIRT1, which then regulates the
expression of p66Shc and SIRT3 (115).

Resveratrol is a natural polyphenol found in red wine, which
can inhibit osteoclast differentiation (116). Matsuda et al. found
that resveratrol could alleviate dexamethasone-induced
inhibition of BMP2 and OPG expression and mitochondrial
dysfunction (117). Moreover, resveratrol might stimulate the
SIRT3/PGC-1a/SOD2 axis by activating AMPK, thereby
improving mitochondrial dysfunction and protecting
osteoblasts against dexamethasone-induced cytotoxicity.

Metformin, a traditional antidiabetic drug, has been shown to
have multiple efficacies in the treatment of tumors and aging (118,
119). Metformin may attenuate diabetes-related osteoporosis by
improving the hyperglycemic microenvironment (120). And
metformin could upregulate SIRT3 expression via PI3K/AKT
pathway and reverse H2O2-induced osteoblast apoptosis (121).

Nevertheless, in addition to alleviating the aging of BMSCs
and promoting osteogenic differentiation, it was confirmed that
Frontiers in Endocrinology | www.frontiersin.org 5
SIRT3 could promote osteoclast differentiation and bone
resorption in aging male mice. The SIRT3 inhibitor LC-0296
was shown to increase bone mass in aging mice (100). Besides,
intervention of osteoclast progenitors in 16-month-old female
C57BL/6 mice with LC-0296 reduced osteoclast formation,
which was consistent with the results in aged SIRT3-/- mice.
From the above-mentioned mechanism of SIRT3 in bone
remodeling, the positive or negative effects of SIRT3 may be
related to age and gender. In the same way, the use of
upregulation and downregulation of SIRT3 to treat
osteoporosis needs to be evaluated according to different
situations. In the young period, SIRT3 should be upregulated
to promote osteogenesis, while in the aging period, SIRT3 should
be downregulated to inhibit bone resorption and alleviate
osteoporosis. Of course, more animal experiments and clinical
studies need to be carried out to confirm this speculation.
CONCLUSION

Osteoporosis is a common senile disease caused by a variety of
factors (112). Since SIRT3 contains an N-terminal mitochondrial
signal sequence, it is mainly located in the mitochondria. And
SIRT3 has important implications for aging and diseases by
regulating mitochondrial biology (122). In this review, SIRT3
could participate in several physiological processes including the
senescence and differentiation of BMSCs, and osteoclastogenesis,
thereby modulating osteoporosis. In general, SIRT3 alleviates the
senescence of BMSCs by regulating oxidative stress, mitophagy,
and stabilizing heterochromatin. As for the differentiation of
BMSCs, osteoblastogenesis and osteoclastogenesis, the role and
mechanism of SIRT3 vary with different conditions, especially age.

In conclusion, SIRT3 plays a vital role inmaintaining the balance
of bone formation and bone resorption. However, regarding the role
of SIRT3 in bone metabolism under physiological and pathological
conditions, there is still much to study.
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