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Single-cell RNA sequencing (scRNAseq) technology is still relatively new in the field of
gastric cancer immunology but gaining significant traction. This technology now provides
unprecedented insights into the intratumoral and intertumoral heterogeneities at the
immunological, cellular, and molecular levels. Within the last few years, a volume of
publications reported the usefulness of scRNAseq technology in identifying thus far
elusive immunological mechanisms that may promote and impede gastric cancer
development. These studies analyzed datasets generated from primary human gastric
cancer tissues, metastatic ascites fluid from gastric cancer patients, and laboratory-
generated data from in vitro and in vivo models of gastric diseases. In this review, we
overview the exciting findings from scRNAseq datasets that uncovered the role of critical
immune cells, including T cells, B cells, myeloid cells, mast cells, ILC2s, and other
inflammatory stromal cells, like fibroblasts and endothelial cells. In addition, we also
provide a synopsis of the initial scRNAseq findings on the interesting epithelial cell
responses to inflammation. In summary, these new studies have implicated roles for T
and B cells and subsets like NKT cells in tumor development and progression. The current
studies identified diverse subsets of macrophages and mast cells in the tumor
microenvironment, however, additional studies to determine their roles in promoting
cancer growth are needed. Some groups specifically focus on the less prevalent ILC2
cell type that may contribute to early cancer development. ScRNAseq analysis also
reveals that stromal cells, e.g., fibroblasts and endothelial cells, regulate inflammation and
promote metastasis, making them key targets for future investigations. While evaluating
the outcomes, we also highlight the gaps in the current findings and provide an
assessment of what this technology holds for gastric cancer research in the coming
years. With scRNAseq technology expanding rapidly, we stress the need for periodic
review of the findings and assess the available scRNAseq analytical tools to guide future
work on immunological mechanisms of gastric carcinogenesis.
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INTRODUCTION

Gastric cancer remains one of the leading causes of cancer-
related mortality worldwide (1). Gastric adenocarcinomas make
up the majority of all gastric cancers. Adenocarcinomas are
usually classified using the clinically/histologically defined
Lauren classification system or the molecularly defined The
Cancer Genome Atlas (TCGA) and Asian Cancer Research
Group (ACRG) subtypes (2–4). The Lauren classification
system identifies two subtypes of gastric adenocarcinoma, viz.,
intestinal and diffuse; the latter has very poor clinical outcomes
(2). TCGA, with similar results from the ACRG, defines four
subtypes of adenocarcinoma, viz., 1. EBV-positive, 2.
microsatellite instability, 3. genomically stable, and 4.
chromosomal instability (3, 4). While these new classifications
are clinically useful for distinguishing different subtypes of
gastric cancer for different treatment modalities, additional
studies are needed to understand how gastric adenocarcinomas
of all subtypes arise, which is crucial in designing effective
strategies for targeted preventative medicine. Chronic gastric
inflammation, caused byHelicobacter pylori infection, is the most
common instigator of gastric epithelial cell transformation into
precancerous lesions and eventually into dysplastic tumors (5, 6).
We know well that the prominent immune response in the early
stages of chronic gastritis is made up of IFN-g-producing CD4+

T-helper 1 cells (Th1s) and IL-17-producing CD4+ T-helper cells
(Th17s.) (7–11) While conventional studies have established that
these T cells and the cytokines they secrete induce gastritis and
tissue damage, scRNAseq technology now allows for a much
broader and unbiased investigation of the immune landscape,
including immune cells, cytokines, and inflammatory
triggers that regulate the onset of gastric cancer. This thereby
helps to focus our attention on specific mechanisms that
impact tumorigenesis.

The advent of scRNAseq technology has revolutionized
examining cellular mechanisms at single-cell resolution and
mechanisms at the molecular level across many disciplines.

The exceptional success of this technology prompted many
reviewers to provide helpful overviews of its usefulness in
investigating cancers and GI diseases, as this review now
focuses on the immune-mediated mechanisms of gastric
carcinogenesis (12–18). While the first scRNAseq was
performed by Tang et al. as recently as 2009, the widespread
use of scRNAseq technology in the last several years has inspired
developing many convenient protocols with specific tasks, which
are rapidly made commercially available to researchers (19). This
easy access has contributed to an explosive increase in scRNAseq
publications as well as a rapid expansion of refined analytical
capabilities. These trends can be clearly seen within the field of
gastric cancer, with almost forty publications in the last few
years. Among the published scRNAseq gastric cancer works, it is
apparent that they have undertaken various approaches to their
studies. Most groups obtained primary gastric cancer tissues
from patients to generate scRNAseq data (20–35). Some utilized
previously published primary tumor datasets for further analysis
(36–43). Others transcriptionally profiled “liquid biopsies” of
metastatic ascites fluid taken from gastric cancer patients
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(44, 45). Realizing that human tissues are difficult to procure,
some created laboratory models of gastric diseases, either as in
vivo mouse settings or in vitro gastric organoids (35, 46–55).
Beyond the purview of this review, other valuable scRNAseq
datasets also have been generated from healthy gastric tissues
(56–59).

As the scRNAseq publications in gastric diseases continue to
grow, we take a comprehensive look at the published work to
assess how far we have come and how far we can go. As
summarized in Figure 1, across all scRNAseq gastric disease
datasets, the identified subsets of cells that play a role in the
tumor microenvironment (TME) include T cells, B cells,
macrophages, mast cells, ILC2s (innate lymphoid cells-type 2),
fibroblasts, and endothelial cells. Herein, we discuss how they
were identified using scRNAseq and their immunological roles in
driving/impeding cancer progression. Furthermore, we assess the
newly discovered response of epithelial cells, either malignant or
non-malignant, to inflammation. Finally, we overview the
available scRNAseq analytical tools and evaluate how they can
be better utilized in gastric disease research.
T CELLS

T cells are the most identified immune cells across all gastric cancer
scRNAseq datasets using CD2 and CD3D. ScRNAseq analysis by Li
et al. (2022) reveals T cells as the most highly enriched immune cell
population in the tumor microenvironment (TME), and their ratio
increases as the disease advances (24). A greater diversity of unique
T cell subsets and T cell receptor (TCR) repertoire were identified
within tumor tissues when compared with that of patient-matched
healthy tissue or peripheral blood mononuclear cells (PBMCs),
suggesting that a variety of unique T cells infiltrate the TME (22).
The main subsets of T cells that show infiltration into the TME in
gastric cancer scRNAseq datasets include CD4+ T helper cells (Th,
co-expressing CD4), CD8+ cytotoxic T lymphocytes (CTL, co-
expressing CD8A), regulatory T cells (Treg, co-expressing
FOXP3), and natural killer T cells (NKT, co-expressing NKG7)
(20, 22, 26, 39). Among these infiltrated subsets, some T cells have
been implicated in a tumor-promoting role and others in a tumor-
inhibiting role. CD4+ central memory precursor T cells (expressing
CCR7, SELL, IL7R) were the most abundant subtype in tumor
tissue, whereas the effector and effector memory T cells were
abundant in the adjacent tissue (24). Similarly, a large number of
Tregs showed infiltration into the tumor tissue compared to the
adjacent tissue. Along with all these findings, Jiang et al. (2022) and
Kumar et al. (2022) confirmed that with tumor progression the
tissue microenvironment changes from predominance of pro-
inflammatory effectors to predominance of immunosuppressive
Tregs (34, 35). Qu et al. (2022) identified a distinct Treg
phenotype that is increased in tumor tissue compared to patient-
matched blood and defined by enriched expression of the TNF
receptor superfamily member 1B (TNFR2) (30). TNFR2+ Tregs
were found to be functionally immunosuppressive and an increased
infiltration into tumor tissue correlated with poor prognosis. An
interesting study by Jeong et al. (2021) investigated the nature of T
cells along the depth of tumor tissue, from the surface layers to deep
June 2022 | Volume 13 | Article 902017
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layers of diffuse gastric tumors, and found that the greater the depth
of T cell penetration the greater the change in their functional
phenotype–from naïve to exhausted T cells (21). This remarkable
relationship of tumor depth vs. T cell exhaustion also correlates with
a gradient of CCL2 within the tumor tissue. CCL2 production by
fibroblasts and endothelial cells in the deep TME correlates with T
cell exhaustion. Furthermore, the deepest layer of tumor tissue is
enriched in Tregs, indicating that the deep TME promotes T cell
exhaustion as well as immunosuppression, perhaps supporting
tumor protection. These scRNAseq studies indicate that the TME
in gastric cancers abundantly recruits T cells and at the same time,
remodels their functional phenotype, tilting the balance toward an
immunosuppressive pro-tumor milieu.

Autophagy, a self-degradative process, has been associated with
tumor progression (60). Tong et al. (2021) observed an enhanced
autophagy signature in scRNAseq data that increased with gastric
disease progression, which could be used to predict patients at high
risk of succumbing to the disease (38).On the otherhand, a low-risk
autophagy score of gastric cancer correlated with an increase in the
levels of activated Ths and CTLs, expression of PD-1/CTLA-4
transcripts, and a decrease in the prevalence of Tregs. Collectively,
thesefindings suggest that an intensified autophagy pathwaywithin
gastric tumors hinders T cell effector function. With decreased
activation of effectors, T cells are less likely to become exhausted,
which, in turn, limits the efficacy of immunotherapy, further
promoting immune tolerance. Therefore, this autophagy pathway
Frontiers in Immunology | www.frontiersin.org 3
couldbeanothereffective target for future gastric cancer therapies in
combination with immunotherapy.

The exhausted CD4+ Ths in the TME, understandably, have
poor expansion function. In this situation, other T cell subsets,
like NKTs and CTLs, appear to have increased TCR clonotype
amplification, suggesting that they might play essential roles in
the antitumor T cell response (22). Studies show that NKT cells
are abundant in gastric cancer tissue with matured tertiary
lymphoid structures, whereas CTLs are abundant in tumor
tissue lacking lymphoid structures, suggesting that CTLs may
be the earlier effectors, but NKTs may have a greater role later in
orchestrating antitumor immune cells. A study that examined
the CTLs within a rare type of gastric cancer, hepatoid
adenocarcinoma of the stomach, found the CTLs with an
exhausted phenotype; therefore, NKT cells may be more
capable of long-standing cytotoxic effector function (25). There
was also an enrichment in exhausted CTLs in patients with
metastatic compared to non-metastatic gastric cancer correlating
with worse survival outcomes (34). Fu et al. (2020) found there
was decreased expression of the transcription factor IRF8 in
cancer CTLs compared to normal tissue CTLs, thereby hinting
that this method could be a new way to identify exhausted CTLs
(20). Soon after, it was discovered that a low expression of IRF8
in gastric cancer patient PBMCs correlated with enhanced
disease progression. Taken together, these observations
indicate that advancing gastric cancer microenvironments
FIGURE 1 | Schematic overview of the immune-mediated mechanisms in gastric carcinogenesis. (A) Cartoon depicting a stomach with gastric adenocarcinoma. (B)
Role of T cells in tumor immunity. Peripheral Cytotoxic T cells (CTL) and Natural Killer T cells (NKT) produce granzyme to promote antitumor immunity, but regulatory
T cells (Treg) and exhausted T helper cells (Th) are dominant near the tumor center. (C) Role of B cells in tumor immunity. B cells promote antitumor immunity via IgA
production and complement activation early in the pathogenesis, but these B cells undergo apoptosis as cancer progresses. (D) Role of macrophages in tumor
immunity. Some macrophages (M1-like) promote antitumor immunity, while other macrophages (M2-like) promote tumor growth. (E) Role of ILC2s and mast cells in
tumor immunity. The cytokine IL-13 produced by ILC2s and mast cells may promote tumor progression and act on tumor-promoting macrophages. Mast cells also
produce histamine, which has a potential role in cancer progression. (F) Role of fibroblasts and endothelial cells in tumor immunity. Inflammatory cancer-associated
fibroblasts (iCAF) regulate immune cells to support tumor growth, while epithelial to mesenchymal CAFs (eCAF) directly promote tumor growth. Endothelial cells
similarly play a role in immune regulation to increase metastatic potential. Created with Biorender.com.
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reduce IRF8 expression in CTLs and suppress antitumor
immunity by promoting exhaustion. In patients treated with
chemotherapy, there was an observed increase in expression of
LAG3, an immune checkpoint molecule, within the tumor tissue
of non-responders, suggesting chemotherapy may contribute to
CTL exhaustion (33). Among responders to chemotherapy,
however, there was an observed increase in NK cell, or
possibly NKT cell, tumor infiltration. These findings point
toward the need for increased research into NKT cells as
cytotoxic effectors, possibly being more resilient to exhaustion
than CTLs. Kwon et al. (2021) similarly found that patients who
responded to immunotherapy had expanded CTLs and NK
populations compared to non-responders (32). When further
classifying the post-treatment CTLs, there was an observed
increase in exhausted CTLs, but in responders these showed
high proliferation phenotypes whereas in non-responders,
exhausted CTLs appeared terminally differentiated. This
finding suggests that in some patients exhausted CTLs have the
capability to proliferate and reactivate after successful
immunotherapy, but further work defining the role of NK and
NKT cells in antitumor immunity is needed to improve
mechanistic understanding and treatment options for
gastric cancer.

Various mouse models have been employed for scRNAseq
analyses to gain insights into the specific role of Th cells in
initiating disease and promoting epithelial cell transformation
into precancerous and dysplastic cells. In a mouse model of
autoimmune gastritis, Bockerstett et al. (2020) conducted
scRNAseq in precancerous gastric lesions and found that IL-
27, likely produced by macrophages and dendritic cells, acts on
Th cells to suppress inflammation and limit disease progression
(48). It appears that IL-27 is important for preventing
carcinogenesis in the early stages of the disease. However, in
models where mice develop similar precancerous lesions, either
induced by deprivation of androgen and glucocorticoids or acute
drug injury, T cells were not required for disease progression (50,
61). This suggests that while T cells and the cytokines they
produce induce tissue damage, additional cell types might be
needed to drive epithelial cell injury and transformation (62, 63).
Similarly, as human gastric cancer is typically brought about by
chronic inflammation, it is likely that T cells initiate gastritis with
early tissue damage and other cell types take over promoting
cancer development and progression (5, 6). Nagaoka et al. (2020)
generated a gastric cancer cell line tumor model in mice,
performed scRNAseq analysis, and found that successful tumor
growth required Il17a in tumor-infiltrating CD4+ Ths (54).
Consequently, treating the tumor-inoculated mice with a
combination of anti-IL-17a and anti-PD-1 eliminated 80% of
the tumors. This suggests that combinational therapeutic
approaches that also target T cells could benefit the patients
who are unresponsive to immune-checkpoint blockade alone.
Considering all the new findings, scRNAseq technology has been
incisive; it has provided new insights that Ths are important
drivers of tissue damage and epithelial cell malignant
transformation early in the disease, a convenient window for
targeting immunotherapy and arresting the disease early.
Frontiers in Immunology | www.frontiersin.org 4
B CELLS

B cells have been identified using CD79A or MS4A1 as a prevalent
subset of immune cells in scRNAseq gastric cancer datasets. In a
mouse model of autoimmune gastritis, which progresses to develop
precancerous and dysplastic lesions, B cells are the predominant
immune cells present in the gastric mucosa (9, 48, 64). This suggests
that B cells may be promoting early gastric tissue injury driving
cancer progression in the setting of autoimmunity. Other models of
precancerous lesions in mice, either by inducing via adrenalectomy
or acute drug injury, found that B cells were not required for disease
progression. These observations suggest that the B cells may act in
parallel to promote tumorigenesis, but their role might be
dispensable (50, 61). Once cancer is established in the tissue, the
proportion of B cells decreases with disease progression (24).
Additionally, the B cell phenotype changes from a
proinflammatory state in the early stages of disease toward a pro-
apoptotic state in advanced gastric cancer. Another study found that
naïve B cells within tumor tissue even upregulate apoptosis-
associated transcripts significantly more than the naïve B cells in
the adjacent tissue (39). The B cell activating receptor, CD40, was
downregulated in B cells isolated from gastric cancer patients
compared to healthy individuals (20). When looking at various
layers of the diffuse gastric tumors, B cells were depleted as the
tumor depth increased (22). Interestingly, Kumar et al. (2022) found
a significant enrichment of plasma B cells in diffuse-type tumors
over intestinal tumors due to increased tumor expression of the
plasma cell recruiting molecule, KLF2 (35). While there may be
more B cells recruited to diffuse tumors, there is still a consistent
decrease in plasma cells as tumor grade and stage increase. Kim et al.
(2022) also found that after chemotherapeutic treatment, non-
responders have an observed increase in proportion of tumor
infiltrating B cells, suggesting a tumor-associated cell type, not
tumor cells directly, are responsible for triggering B cell apoptosis
(33). Altogether, these data indicate that B cells are prevalent and
capable of contributing to malignant transformation in early
gastritis, but as the tumor develops, the TME promotes B cell
apoptosis, thus limiting their contributions to tumor immunity.

To investigate the specific role that B cells play in tumor
growth, Jia et al. (2021) focused on the subset of mucosa-
associated lymphoid tissue (MALT)-derived B cells (22).
MALT B cells, identified by significant upregulation of
immunoglobulin-related transcripts (e.g., JCHAIN, IGHG1),
were prevalent in tumor tissue but absent in patient-matched
PBMCs. As determined by gene expression, a predominant
function of these MALT B cells was related to complement
activation. High expression levels of IGHA, JCHAIN, and
complement activation receptors suggest that MALT B cells
may be promoting antitumor immunity through activating the
complement pathway. IgA, although not classically thought of as
such, has been identified as a complement-activating
immunoglobulin (65). As an alternative to B cells directly
activating complement, a recent scRNAseq study in breast
cancer found complement signaling sensed by B cells to be
associated with B cell-mediated activation of effector T cells
(66). Sathe et al. (2020) found that as gastric tissue transforms
June 2022 | Volume 13 | Article 902017
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from healthy to tumor, B cells undergo isotype switching,
changing from a previously IgA-dominant environment into
an IgG-dominant environment (26). This shift from IgA to IgG
could impact B cell antitumor immunity by limiting IgA-
mediated complement activation in late-stage disease. B cells in
gastric cancer were also found to orchestrate immune function
by producing IFNG, CCL3, and IL-8 (20). This is clear evidence
that B cells may be necessary for promoting migration of
antitumor immune cells. These findings suggest that the main
role of B cells in limiting tumor progression lies in coordinating
complement-mediated lysis and/or immune cell recruitment into
the TME.

When comparing gastric cancer subtypes by survival
outcome, a greater prevalence of B cells is observed in more
prognostically favorable tumors. Wang et al. (2021) conducted a
thorough and sophisticated analysis of peritoneal fluid from
metastatic gastric cancer patients and identified unique subsets
of gastric cancer based on inferred tumor cell lineage (44). The
most common subsets identified were gastric-lineage dominant
and GI-mixed-lineage dominant. In this study, GI-mixed-lineage
tumors provided a significantly better long-term survival than
gastric-lineage tumors. GI-mixed tumors were estimated to have
a significantly higher abundance of B cells over gastric-dominant
tumors, suggesting that either B cells are important for limiting
gastric cancer growth or B cell apoptosis does not occur in less
severe GI-mixed-lineage tumor environments. Looking at EBV+

gastric tumors as opposed to EBV- tumors, B cells were shown to
have higher levels of cell cycle signatures (28). This is likely
because EBV infection of B cells promotes cell cycling and
inhibits apoptotic pathways. This may explain why EBV+

tumors typically have a more favorable prognosis over EBV-

tumors, as B cells are less likely to undergo apoptosis and can
continue promoting antitumor immunity (67). The increased
prevalence of B cells in lower-risk gastric tumors suggests that
novel clinical strategies could be designed to prevent B cell
apoptosis in cancer patients. In future scRNAseq work, a focus
on B cell subtypes present in different severities of gastric disease
will be needed. Looking at how B cells from early gastritis,
possibly driving tissue transformation, are phenotypically
distinct from those present in early cancer, that may be
important for orchestrating the antitumor immune response.
As well, scRNAseq could be utilized to identify uniquely enriched
transcripts in the advanced TME that are promoting B cell
apoptosis, as a potential novel target for therapeutics.
MYELOID CELLS

Typically, tumor-associated macrophages (TAMs), identified in
scRNAseq datasets by CD68 and CD14 expression, are divided
into two distinct polarization states serving opposing roles (68).
M1 macrophages, also considered classically activated
macrophages, are known to be proinflammatory and promote
antitumor immunity. M2 macrophages, also known as
alternatively activated macrophages, can be anti-inflammatory
and may suppress antitumor immunity. In acute drug-injury
Frontiers in Immunology | www.frontiersin.org 5
mouse models, M2s have been postulated as the main immune
cell type that promotes precancerous metaplastic lesions (61).
Prior to the scRNAseq studies, the macrophage types were
identified with a protein marker, the scavenger receptor
CD163, which is differentially enriched in M2s over M1s (69).
However, in many scRNAseq studies looking specifically at the
immune cells of gastric cancer tissue, the subsets of macrophages
do not distinctly cluster based on M1/M2 polarization but fall
into other discrete phenotypes where the same clusters do co-
express M1 and M2 markers (21, 26, 34, 39, 45, 70). These results
suggest that TAMs may be more diverse than previously thought.
To overcome the intricacies, some groups developed alternative
methods for identifying M1s and M2s in scRNAseq datasets.
Among them, Eum et al. (2020) generated signature gene lists
from isolated, in vitro differentiated, and sequenced M1 or M2
cells and then compared with the TAMs isolated from gastric
cancer patients’ metastatic ascites samples (45). Using these
signature gene sets, they show that TAMs indeed more closely
resemble M2s than M1s and patients with a higher overall M2
signature have worse survival outcomes. This enhanced M2
signature also appears to be specific to gastric cancer over
other cancer types like breast and colorectal cancers (45).
Because this study looked only in patients with metastatic
disease, it may be that this enhanced M2 phenotype is more
prominent in metastatic tumors. Wang et al. (2021) used similar
M1/M2 reference data to identify M1s and M2s in scRNAseq
data and arrived at a conclusion that the fraction of M1-like
macrophages is higher in a more favorable gastric cancer
classification. In contrast, the M2-like macrophage fraction
dominates in a less favorable classification (44). Kim et al.
(2022) utilized previously published M1/M2 signature datasets
to conclude that after chemotherapy there is an increase in M1-
like TAMs and a decrease in M2-like TAMs, suggesting
chemotherapy improves the anti-tumor TAM phenotype in
patients who respond to treatment (33). Yet Li et al. (2022)
used the increased expression of CD163 to define one TAM
cluster as M2s and found that the gene signature of these cells
was associated with regulating immune infiltration into the TME
(24). Chen et al. (2019) created a novel in vitro p53 null murine
gastric organoid model, containing epithelium with surrounding
stroma, to study the gastric tissue microenvironment, in which
M1-like macrophages, M2-like macrophages, and proliferating
macrophages could all be identified by scRNAseq (52). This will
serve as a valuable tool for understanding how distinct subsets of
TAMs interact with the gastric epithelium. While these expected
findings confirm that M1-like TAMs are associated with better
outcomes than M2-like TAMs, the evolving scRNAseq
technology holds promise to further delineate the different
subsets of macrophages and their distinct roles in tumor
progression in the coming years.

Aside from macrophage polarization, various groups have
found specific mechanisms of how TAMs contribute to gastric
carcinogenesis. TAMs were found to have enhanced gene
expression profiles related to immunosuppression, including
elevated levels of cytokines IL-10 and IL1B (45). Another study
found that epithelial-mesenchymal transition pathways were
June 2022 | Volume 13 | Article 902017
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upregulated in TAMs in cancer tissue than the macrophages in
adjacent tissue (22). When investigating various layers of tumor
tissue, deep TAMs showed enrichment for SPP1. SPP1, also
known as osteopontin, plays a role in regulating immune
responses and has been found to be enriched in colorectal
cancer TAMs, promoting tumorigenesis by interacting with
fibroblasts and endothelial cells (71, 72). These observations
give clues that TAMs may be driving gastric cancer
progression by regulating proinflammatory immune cells and
facilitating metastasis by enabling interactions between cancer
cells and mesenchymal cells.

Dendritic cells (DC) are responsible for coordinating the
immune response against tumor cells and have been identified
in scRNAseq using CD1C, CD83, and ADAMDEC1. Although
DCs are important immune cells, the current studies with
scRNAseq data in gastric cancer immunity are yet to make a
significant effort to understand the role of DCs. This is because
DCs are not always identified within the datasets, and if they are,
they are generally represented at a low frequency. Jiang et al.
(2022) found the greatest population of DCs in metastatic lymph
node derived tissue compared to primary tumor tissue (34). This
is unsurprising since DCs typically reside in high frequency in
the lymph node. These lymphoid derived DCs during metastatic
disease were classified as plasmacytoid DCs and found to have
primarily immunosuppressive functions. Jeong et al. (2021)
found a DC cluster specific to tumor tissue but absent in
normal adjacent tissue (21). Since the DC cluster lacked genes
associated with classical and plasmacytoid DCs, they were
thought to be new tumor-specific DCs. These tumor-specific
DCs are enriched in deep tumor tissue, correlate with worse
clinical outcomes of patients, and are thought to be activated by
CCL2 within the TME to promote cancer progression. Likewise,
Sathe et al. (2020) found a unique TME-associated DC
population distinct from PBMC derived DCs, which highly
expressed IDO1, a tryptophan catabolic enzyme associated
with immunosuppressive cells (26, 73). DCs from cancer
patient PBMCs were found to express more inhibitory
receptors (FTL) and less proinflammatory chemokines (CCL4,
CCL5) than healthy PBMCs (20). Contrary to many studies that
assign DCs with a tumor-promoting role, Wang et al. (2021)
found a myeloid DC fraction more amplified in less severe
tumors than more severe ones (44). Taken together, these
findings shed light on DCs as a mixed player in tumor
immunity, i.e., depending on the phenotype and location, DCs
may be either tumor-inhibiting or tumor-promoting. Future
scRNAseq studies may need to isolate DCs from the TME to
gain enough cells for clustering analysis, but this work, together
with traditional techniques, will illuminate the intricate roles of
DCs in gastric tumor progression.

Immature myeloid cells, such as myeloid derived suppressor
cells (MDSC), have been identified in scRNAseq datasets using
S100a9, Ccr2, Cxcr2. While MDSCs have been suggested to
promote tumor growth and infiltration through suppressing
the anti-tumor immune response, very few were identified in
gastric cancer scRNAseq datasets (74). MDSCs were found in
Nagaoka et al. (2020), Bockerstett et al. (2020), and Jiang et al.
Frontiers in Immunology | www.frontiersin.org 6
(2022) datasets but limited analysis was conducted to determine
their specific role in gastric carcinogenesis (48, 54). Jiang et al.
(2022) identified subtypes of MDSCs, phenotypically similar to
either monocytes or granulocytes, which contributed to
immunosuppression, tissue damage, and angiogenesis (34).
Alshetaiwi et al. (2020) used scRNAseq to identify a specific
immunosuppressive MDSC phenotype in models of breast
cancer (75). These MDSCs could be distinguished by
expression of Agr2, Il1b, and Cd84. Future work should
establish whether this newly identified cancer localizing,
immunosuppressive MDSC population plays a similar role in
the setting of gastric cancer.

Neutrophils have previously been identified in the gastric
cancer TME; however, granulocytes, such as neutrophils, are
technically difficult to identify using current scRNAseq methods
due to low RNA and high RNase content. Therefore, only a few
scRNAseq studies looking in gastric cancer have discovered
neutrophils (34, 44, 54). Nagaoka et al. (2020) identified
neutrophils in scRNAseq data using S100a8, Ccr1, and Cxcr2
and found that neutrophil recruitment into the TME promotes
angiogenesis and epithelial-mesenchymal transition, suggesting
neutrophils promote gastric tumor progression and metastasis
(54). Similarly, Jiang et al. (2022) identified a CXCR4+ neutrophil
population enriched in metastatic tissue which was functionally
expected to enhance tumor invasion (34). In this study,
neutrophils expressing PD-L1 were also found to directly
interact with CTLs, promoting immune cell exhaustion. These
findings are consistent with what has been shown in other cancer
settings. Using scRNAseq in esophageal cancer, Yao et al. (2020)
established that increased neutrophil proportion in the TME, via
enhanced chemokine signaling, correlates with advancing cancer
progression and found high levels of interaction between
neutrophils and malignant epithelial cells (76). In gastric
cancer, basal level epithelial cells produced high levels of
CXCL2 and CXCL3, which signal through CXCR2, likely
recruiting and activating neutrophils during gastritis (29). In
breast cancer, Szczerba et al. (2019) found that neutrophils escort
circulating tumor cells (CTC) and promote cell cycle progression
in CTCs, increasing the risk of metastasis (77). All of these
findings together suggest that neutrophils promote progression
and metastasis of many different cancers including gastric. In
contrast, Wang et al. (2021) found an increase in neutrophils to
be associated with the better prognostic, GI-mixed tumor lineage
compared to the worse prognostic, Gastric-dominant tumor
lineage (44). While this may contradict previous findings, it is
not substantial enough to suggest an anti-tumor role for
neutrophils in gastric cancer. Future improvement in single
cell technology will hopefully allow for better transcriptional
analysis of granulocytes to further determine the specific roles
neutrophils play in promoting gastric cancer progression.
MAST CELLS AND ILC2S

Seven groups independently identified mast cells in distinct
scRNAseq datasets extracted from human gastric disease
June 2022 | Volume 13 | Article 902017

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Hoft and DiPaolo Immune Mechanisms of Gastric Carcinogenesis
patients, using TPSAB1 and CPA3 (21, 24–26, 28, 29, 34). Yin
et al. (2021) identified mast cells when pairing two previously
published datasets together, and two other groups also identified
mast cells within gastric diseased tissue from mice, using Cpa3
and Mcpt2 (39, 48, 50). This emphasizes that of the many
datasets with mast cells present the majority are derived from
human gastric cancer datasets. However, only a few studies
analyzed them in detail in the setting of gastric disease. Yin
et al. (2021) found a total of 370 mast cells after combining
previously published datasets from various stages of the disease,
from gastritis to cancer (39). Among these cells, they identified
two unique mast cell clusters. Interestingly, one of these clusters
had an increased presence in gastric cancer datasets with
significant enrichment for HDC expression, which encodes
histamine, a molecule that potentially promotes tumorigenesis
(78). In Jeong et al. (2021), mast cells were more prevalent in
normal adjacent and superficial gastric tumor tissues than in
deeper gastric tumor tissues (21). These findings suggest that
mast cells may surround the gastric tumors, promoting lateral
tumor expansion into the neighboring healthy epithelial cells
through histamine release. With such noteworthy observations
from scRNAseq datasets, the lack of overall mast cell studies in
this field warrants more in-depth research to better understand
their role in promoting gastric cancer development.

ScRNAseq analysis also opened new avenues of research as
some groups started focusing on the role of ILC2s (identified by
Gata3, Rora, and Il1rl1) in mouse models of gastric tissue
damage (50, 51). These studies stemmed from previous work
that identified M2 macrophages as important instigators of the
gastric carcinogenesis cascade in mouse models where the IL-33/
IL-13 signaling network is required for initiation (61, 79). This
led to the hypothesis that IL-13 is driving M2 recruitment/
polarization in the gastric mucosa. IL-13 is thought to be
produced by Th2 cells, but macrophages, mast cells, and ILC2s
are also capable of producing IL-13, as observed in mouse
models of gastric disease (49–51). Busada et al. (2019) used a
mouse model where precancerous gastric lesions were induced
by eliminating androgen and glucocorticoid signaling, inflicting
gastric inflammation and tissue damage (50, 80). In this model,
upon scRNAseq analysis of gastric infiltrating immune cells,
ILC2s showed the highest levels of androgen and glucocorticoid
receptors, suggesting that ILC2s stand to be severely impacted by
a lack of these signalings (50). Further analysis of cytokine and
cytokine receptor expressions in various immune cells found that
ILC2s express Il13 and Csf2, which may interact with IL-13
receptors found on macrophages, DCs, and fibroblasts or Csf
receptors found on those same cells types with the addition of
mast cells. The authors conclude that steroid hormones are
important for suppressing inflammation mediated by ILC2s,
which can promote gastric tissue damage via the recruitment
and proliferation of tissue transformation driving immune cells.
Meyer et al. (2020) isolated ILC2s from the stomachs of healthy
and acutely drug-injured mice for scRNAseq (51). They found
that ILC2s from damaged epithelium had increased expression of
Il4, Il5, Il13, Csf2, Pd1, and Ramp3. They infer that gastric
inflammation and tissue damage promote the recruitment of
Frontiers in Immunology | www.frontiersin.org 7
ILC2s into the gastric mucosa, which then produces cytokines
capable of driving gastric carcinogenesis. Thus, these ILC2-
focused studies believe ILC2s as the primary initiator of
epithelial cell metaplastic transformation. Considering these
new significant findings, it is imperative to establish the role of
both ILC2s and mast cells in human gastric carcinogenesis and
the mechanism of action of type two cytokines like IL-13. Future
scRNAseq studies will need to directly compare different settings
of gastric disease to determine if ILC2s and mast cells are
common cell types promoting carcinogenesis or are
setting specific.
FIBROBLASTS AND ENDOTHELIAL CELLS

Fibroblasts, identified by DCN and COL4A1, are known to
facilitate cancer progression in many tumors. Their phenotype,
location near the cancer tissue, and interactions with other cell
types in the TME decide their impact on tumors. In general,
gastric cancer-specific fibroblasts are more prevalent as the
severity of the tumor is higher. They are also abundant in deep
tumor tissues. These are termed cancer-associated fibroblasts
(CAFs) and are known to interact with the cancer cells within
tumor tissue constantly (21, 39, 44). CAFs show increased
expression of genes that support tumor growth, such as genes
involved in proliferation, angiogenesis, inflammation, and ECM
remodeling compared to adjacent tissue fibroblasts (24). CAFs
are also found to have elevated ACTA2 and EGR2, promoting
contractility and fibrosis within tumor tissue (26, 34, 35). CAFs
specifically enriched in INHBA, a subunit of activin-inhibin
complexes, and fibroblast activation protein (FAP) have a
correlated increase with worsening tumor stage/grade and are
associated with poor clinical prognosis (35). Thus, CAFs appear
to have an overall pro-tumor role.

Two distinct fibroblast phenotypes were identified in
scRNAseq gastric cancer datasets (23, 24, 34). One is an
extracellular matrix cancer-associated fibroblast (eCAF), and
another is an inflammatory cancer-associated fibroblast
(iCAF). Fibroblasts matching the iCAF phenotype upregulate
transcripts like IL6, CXCL1, and CXCL12. Enrichment of these
genes and an identified proximity to exhausted CTLs in
lymphoid structures suggest that iCAFs can regulate
lymphocyte function (24). Kim et al. (2022) found that
diffuse gastric cancer tissues showed a high prevalence of
iCAFs compared to intestinal gastric cancer tissues, and
overall iCAF number increased in gastric cancer compared to
normal tissue (23). The same study also found a correlation
between iCAFs and pro-stemness of tumors, suggesting that
these cells promote cancer stem cell formation. Expression of
CXCL12, a chemokine known to recruit lymphocytes, was also
found to increase in fibroblasts with disease severity in a mouse
model of esophageal cancer (76, 81). Qin et al. (2021) observed
high CXCL12 expressing fibroblasts within severe intestinal
metaplasia tissue but not in early gastric cancer tissues;
however, Jiang et al. (2022) found increased iCAFs in tumor
tissue compared to normal adjacent tissue and that interactions
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between iCAFs and various immune cell subsets were mediated
through CXCL12-CXCR4 ligand-receptor pairing (34, 37). It is
likely that CXCL12-producing iCAFs may play dual roles in
recruiting immune cells and promoting their exhaustion. Yin
et al. (2021) identified an iCAF-like population specific to
chronic gastritis and intestinal metaplasia tissues that had
upregulation of complement activation and apoptosis-
associated genes (39). It is unclear whether iCAFs are more
prevalent in precancerous lesions or continue to increase with
cancer progression, but it can be said that iCAFs have the
potential to regulate the immune response and promote an
environment ideal for cancer development. The ECM-related
CAFs, eCAFs, showed high expression of POSTN, a gene that
supports epithelial cell adhesion and migration (24, 82). Distal
tumor-adjacent tissue was more enriched for eCAFs over
iCAFs, supporting the role for eCAFs enhancing the
metastatic potential of gastric cancer. eCAFs were also shown
to promote metastasis and even tumor growth through
interacting with M2 macrophages via periostin (protein of
POSTN). Of note, the expression level of POSTN has been
associated with poorer survival outcomes (24). Kumar et al.
(2022) and Jiang et al. (2022) both identified a CAF subset
expressing muscle cell related transcripts (i.e., ACTA2, TAGLN)
which likely represent a subset of eCAFs that promotes tumor
invasion (34, 35). Further scRNAseq analysis and other works
are needed to understand the roles of iCAFs, eCAFs, and other
CAFs in gastric carcinogenesis. As evident from the
development of specific organoid models, including stromal
cells, efforts are underway to facilitate more studies on CAFs
(35, 52).

Endothelial cells with markers PECAM and VWF are also
identifiable in most scRNAseq studies. Tumor-derived
endothelial cells (TDE) show unique gene expression profiles
compared to tumor-adjacent endothelial cells (24). Studies
show TDEs upregulate extracellular matrix genes and interact
with CAFs via VEGFA receptor pairs, pointing to a pro-
metastatic role (24, 26, 34). TDEs unique to gastric cancer
and different from metaplasia show upregulated pathways
associated with chemokines, metastasis, and cell cycle (39).
Deep in diffuse tumors, inflammatory TDEs with increased
expression of IL6, ICAM1, and CCL2 are prevalent, suggesting a
role for TDEs in immune regulation. Moreover, increased CCL2
expression correlates with worse survival outcomes (21).
Intestinal metaplasia-associated endothelial cells express
CXCL12 similar to iCAFs (37). Also, certain tumor-adjacent
endothelial cells are significantly more enriched in genes
associated with angiogenesis and cytokine production over
TDEs (24). These findings suggest that peripheral or early
tumor endothelial cells regulate immune cells to promote
early tumor development. Li et al. (2022) found that
endothelial to mesenchymal transitioning endothelial cells
made a distinct cell subset in tumor tissue, suggesting TDEs
not only promote tumorigenesis as a bystander, but also
actively envelope the TME for enhanced growth (24). More
research is needed to demystify how the various types of
endothelial cells impact gastric cancer progression.
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EPITHELIAL CELL RESPONSE
TO INFLAMMATION

The cellular lineage of gastric adenocarcinoma is epithelial cells,
specialized glandular cells lining the stomach wall. Therefore, it is
critical to know how these cells respond to inflammation, which
sets the course for gastric cancer development. In gastric tissue
injury models, a precancerous lesion, referred to as spasmolytic
polypeptide expressing metaplasia (SPEM), can be identified in
two unique settings, viz., acute drug injury and chronic
autoimmunity, based on the differential expression of the
SPEM-defining transcript spasmolytic polypeptide (also known
as Trefoil Factor 2 or TFF2) (47). SPEM derived from both
settings was found to be transcriptionally similar, but because the
acute drug injury model has significantly less inflammatory
infiltrate than the autoimmune model, the autoimmune-
induced SPEM significantly upregulates several inflammatory
transcripts (e.g., Cd74, H2-Ab1). Therefore, the autoimmune
model is useful to understand how chronic inflammation
triggers the transformation of healthy epithelial cells into
inflamed precursor metaplastic cells that become SPEM (46).
The findings from these studies suggest that inflammation
actively contributes to epithelial cell transformation, initiating
the pathological progression towards gastric cancer. Future
scRNAseq work should compare SPEM arising out of other
etiologies of gastritis, including the most common risk factor for
gastric cancer,Helicobacter pylori infection (5). Noto et al. (2021)
also found that IL-4 and/or IL-13, produced by mast cells or
ILC2s, were required to drive the epithelial cell transition from
precursor inflamed epithelial cells toward SPEM (49).
Interestingly, in autoimmune animals that lack the IL-4/IL-13
receptors, making both epithelial and immune cells unable to
respond to signaling, inflamed precursor epithelial cells arise but
fail to progress to SPEM. Future studies may want to enhance IL-
4/IL-13 signaling in models of autoimmune gastritis to
determine how these inflammatory signals promote
epithelial transformation.

IL-6/STAT3 signaling shows significant enhancement in tumor
tissue in human gastric cancer datasets. STAT3 has been previously
identified as an oncogene in gastric cancer from non-scRNAseq
studies. STAT3 promotes gastric cancer cell proliferation, invasion,
and chemoresistance (83). Through scRNAseq studies, we learn
that IL-6, a cytokine that signals through STAT3, is enriched in
malignant epithelium compared tonon-malignant epithelium (28).
Deep tumor tissue, where the immune response is exhausted and
tumor growth is fostered, also has enhanced IL-6/STAT3 signaling,
suggesting that this pathway favors carcinogenesis (21).Contrary to
these data, Wang et al. (2021) found that, in long-term gastric
adenocarcinoma survivors, this pathway was still enriched with
other-immune-related pathways (i.e., IL-17 signaling, complement
cascade, IFNa/g signaling), suggesting a positive role in tumor
immunity (44). Thus, the IL-6/STAT3 pathway appears to play a
more complex role than just promoting cancer growth, even though
several studies show a good correlation between activation of this
pathway in epithelial cells and cancer progression. Transcriptomic
studies focusingonSTAT3/IL-6 signalingat various stagesofgastric
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disease and cancer could improve mechanistic understanding of
this pathway’s role in carcinogenesis.

Studies have found enhanced proinflammatory signatures in
gastric cancer types with better prognoses. For example, EBV-
derived gastric cancer clustered distinctively from worse prognosis
gastric cancers with differential expression found in immune-related
genes like Ly6 family members, antigen presentation molecules, and
type I IFNs (28). GI-lineage tumors, which have a better prognosis
than Gastric-lineage tumors, were found to be more
immunologically active (44). It was also found that in diffuse
gastric tumors there was a higher infiltration of immune cells,
with enrichment for an exhaustive profile, than in the prognostically
more favorable intestinal adenocarcinoma (24). Tong et al. (2022)
discovered that tumors with a high autophagy signature score had
dysfunctional T cell responses compared to low autophagy signature
tumors which have a better prognosis; however, in contradiction to
previous work, high autophagy score was also associated with low
tumor expression of exhaustive transcripts (i.e., CTLA4, PDL1) (38).
These combined findings suggest that gastric cancers with better
survival outcomes overall have a proinflammatory antitumor
phenotype and may be strong candidates for immunotherapy if
possessing a low-moderate autophagy signature. Sundar et al. (2021)
defined a unique profile of gastric tumors based on epigenetic
changes in alternate promoter burden (APB) (31). APBhigh tumors
were found to have a poorer prognosis, depleted immune
microenvironments, decreased immune checkpoint expression,
and likely have enhanced immune evasion capabilities over
APBlow tumors. This epigenetic profile was then found to be
identified across a variety of cancer types suggesting that the ABP
phenotype could be another strategy used to identify strong
candidates for immunotherapy or a potential target for novel
therapies. Some groups focused on identifying inflammatory
signatures associated with worse prognostic tumors. In an
organoid model, diffuse gastric cancer showed enrichment for
chemokines, such as CXCL3, CXCL5, CXCL7, which have been
associated with malignant progression (53, 84). In metastatic
tumors, transcription factors FOS and JUN were associated with
metastatic progression and kinases ERBB2 and CDK12 could
identify metastatic tissue compared to primary tumor tissue (27).
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Wang et al. (2021) found that tumor cell surface expression of the
molecules CMTM4/CMTM6 positively regulates expression of PD-
L1 (42). Co-expression of CMTM4/6 with PD-L1 correlated with
poorer prognoses, but these patients have higher early efficacy with
immune checkpoint blockade therapy, making these molecules a
potential prognostic indicator for favorable treatment. Zhao et al.
(2021) also identified four novel diagnostic and prognostic gastric
cancer biomarkers using scRNAseq including BGN, COMP,
COL5A2, and SPARC (43). Enriched expression of these
transcripts was associated with increased immune cell infiltration
and drug sensitivity as well as decreased survival outcomes. Taken
together, epithelial cells seem to mount multifaceted responses to
inflammation, and further explorations across adenocarcinoma
settings will likely unravel the complexities, identifying novel
diagnostic and therapeutic targets for improving clinical outcomes.
TOOLS FOR ANALYZING GASTRIC
CANCER SCRNASEQ DATA

Several reviews have provided overviews of currently available
scRNAseq technologies with exhaustive lists of available
analytical tools. Therefore, in this review, we focus on the
scRNAseq tools relevant to gastric cancer datasets (12, 13, 15,
85). An overview illustrating the general pipeline, workflow for
scRNAseq can be found in Figure 2. To run scRNAseq on any
tissue, single cells must first be disassociated from the tissue and
then thoroughly filtered to avoid clogs and to assure isolation of
transcripts from single cells. For gastric tissue processing, either
human or mouse, tissue must undergo two rounds of digestion to
disassociate glands and then single cells. Organoids require only
a single digestion step to disassociate glands (53). Groups that
utilize liquid biopsies from metastatic ascites fluid can avoid this
double digestion step and simply run centrifugation and clean-
up for single cell isolation (44, 45). Isolated single cells, which
may be sorted into specific populations (i.e., immune cells or
epithelial cells) for enriched datasets, are then ready to undergo
scRNAseq library generation. Among the several technologies
available, the most common one is the microfluidic, droplet-
FIGURE 2 | Pipeline for Acquisition and Analysis of Single Cell Data. Created with Biorender.com.
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based method available through 10X Genomics (Pleasanton, CA)
(86). 10X Genomics also offers a VDJ kit for amplifying TCR or
BCR sequences within scRNAseq datasets for downstream
clonotype analyses. For TCR and BCR data visualization, Jia
et al. (2021) plotted the number of unique clonotypes, overall
clonotype abundance, and clonotype frequency within various
cell subsets as well as utilized Circos plots to annotate receptor
sharing across T and B cell subsets (22, 87). Other prominent
library generation techniques utilized for gastric cancer datasets
include FACs-based isolation via CEL-seq2, SMART-Seq2, and
BD Rhapsody, as well as a targeted gene expression vertical flow
array chip (VFAC) system (54, 88–91). Several current reviews
compare the different scRNAseq methodologies, providing
further insight for experimental design and approach (12, 14,
15, 18, 85, 92). After libraries are constructed, the sequenced data
can be extracted for QC and analysis. 10X Genomics provides
their own software, CellRanger, which works seamlessly with
their library generation methods. With CellRanger, raw
sequencing data can be aligned and converted into count
matrix files, which are then used in downstream analyses.
Methods for FACs-based single cell prep are less simplified,
but programs like STAR can be used to align transcripts to a
Frontiers in Immunology | www.frontiersin.org 10
genome of interest, htseq-count can be utilized to generate a
count matrix, and scran and/or scater conduct normalization of
mapped reads (27, 56, 58, 93–96). For those more familiar with R
language, Seurat, created by the Satija lab, can be utilized for QC,
integration, dimensionality reduction, clustering, and differential
gene expression analysis (97, 98). For those more comfortable
with the python language, SCANPY is another software available
for preprocessing, clustering, and differential gene expression
analysis of scRNAseq data (99).

After generating unbiased cell clusters within scRNAseq
datasets, analyzing and assigning cell identity to the established
cluster profiles is an essential step. A summary of tools and
programs useful to analyze gastric disease datasets is presented in
Table 1. As evident from this Table, various groups have used a
variety of programs specific to their needs to assign or estimate
cell identity. Aran et al. (2019) developed SingleR program that
automatically annotates scRNAseq data (21, 22, 100). It labels the
identity of new cells from a test dataset based on similarity to the
reference, primarily obtained from bulk RNAseq data.
DynamicTreeCut is a dynamic tree-cutting approach for
assigning cell types to a dendrogram of hierarchical clustering
(58, 100, 101). Of note, CIBERSORT is a valuable tool that has
TABLE 1 | Summary of analytical tools available for gastric cancer scRNAseq data.

Analysis Type Program Datasets

Cell Identity SingleR (100)
dynamicTreeCut (101)
scHCL (102)
CIBERSORT (bulk RNA seq) (103)

HCL (102)

Gene Ontology EnrichR (104, 105)
Metascape (107)
clusterProfiler (108)
GSVA (109)
WebGestalt (110)

MSigDB (106)
Hallmark (111)
REACTOME (112)
KEGG

HAdb (38)
Cell State SCENIC/ (113)

CellCycleScoring (97)
Intercellular Interaction FANTOM5 (114)

STRING (115)
CellPhoneDB (116, 117)
CellChat (118)

Trajectory Monocle2/3 (119)
Slingshot (120)
SCORPIUS (121)
Markov HC (122)
RNA velocity (123)

Chromosomal Variation inferCNV (44, 124)
LIAYSON (55)
VarTrix (23)
GISTIC2 (125)
Mutect2 (126)
CopyKAT (127)

Survival Survminer (29)
KaplanMeier Plotter (128)

Cancer Gene Expression CIPHER (129)
CancerSEA (130)
GEPIA2 (131)
UCSC Xena (132)

TCGA STAD (133)
Firebrowse (134)

PanCanAtlas
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helped researchers to make use of scRNAseq analyses to expand
bulk RNAseq findings, utilizing scRNAseq transcriptomic
profiles to infer cell-type composition that is lost in the bulk
datasets (38, 44, 103). Wang R, et al. (2021) used the human cell
lineage (HCL) database through the package scHCL to estimate
the origin epithelial cell types of different gastric cancer clusters
(44, 102). Gene Ontology (GO) analysis is a widely used effective
tool for estimating the cellular function of identified clusters
based on gene expression. The molecular signature database
(MSigDB), accessible through the Gene Set Enrichment Analysis
(GSEA) website, offers a vast number of curated gene sets
available for download to conduct pathway analysis (106).
Some of the databases utilized for pathway analysis in gastric
cancer research include Hallmark, REACTOME, Kyoto
Encyclopedia of Genes and Genomes (KEGG), Aung et al.
(2006) gastric cancer enriched gene library and the recently
developed Human Autophagy Database (HADb) (38, 111, 112,
135). Multiple gene annotation programs are currently being
used to conduct GO analysis, viz., EnrichR, Metascape,
clusterProfiler, WebGestalt, and GSVA (104, 105, 107–110).
Other cell enrichment programs specific for identifying cell
state, regulatory gene networks, and cell cycle score are
SCENIC and CellCycleScoring (found in the Seurat Package)
(24, 26, 39, 44, 56, 59, 97, 113). To infer intercellular interactions
and communications between clusters, the following programs
are applied: FANTOM5, STRING, CellPhoneDB, and CellChat
(114–118). Many groups choose to conduct cellular
differentiation “pseudotime” trajectory analysis using various
programs, such as Monocle2 and 3, Slingshot, SCORPIUS, and
MarkovHC (119–122). RNA velocity is another trajectory
program that can estimate cellular differentiation state based
on percentages of unspliced to spliced mRNAs (123). Of
important consideration for scRNAseq datasets, the spatial
context within tissue is lost due to the nature of sample
preparation. To address this, Jia L, et al. (2021) used CSOmap
to computationally reconstruct cellular spatial organization
within the tissue (22, 136). Jiang et al. (2022) also utilized
NanoString’s GeoMx Digital Spatial Profiler to expand upon
scRNAseq results, identifying the spatial relationships and
further gene expression differences between previously
identified cell subsets (35). We expect that the future gastric
cancer-focused works will likely incorporate this kind of direct
rather than inferred spatial information with scRNAseq.

Groups working with human gastric cancer datasets can utilize
multiple analysis programs to estimate cancer severity and
associated high-risk expression patterns. Various groups
attempted to analyze chromosomal alteration, such as copy
number variants (CNV) present within tumor tissue, to find
relevant and reproducible mutations associated with gastric
cancer. CNVs can be estimated by averaging relative gene
expression levels over their respective genomic regions. The
program inferCNV, available through the Broad Institute, has
been used by several groups to identify copy number alterations
of malignant cells within scRNAseq data (18, 21, 22, 44, 45, 124,
137). Many other programs are also useful to estimate chromosomal
alterations within cancer scRNAseq datasets, viz., LIAYSON, 10X
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supported VarTrix, GISTIC2, CopyKAT, and Mutect2 (23, 25, 44,
55, 125–127). ABSOLUTE can be used to infer intratumoral
heterogeneity (28, 128, 138). As well, the TIMER tool is a
comprehensive resource designed to analyze immune cell
infiltrates across diverse cancer subtypes (139). The TCGA has a
publicly available human stomach adenocarcinoma (STAD) dataset
containing clinical annotations along with molecular profiles that
were utilized as a reference or primary dataset in several studies (25,
28, 36, 37, 41, 45, 133). FirebrowseR, also generated by the Broad
Institute, is a database which provides access to the PanCanAtlas,
containing conserved cancer gene expression data (134). Kaplan-
Meier survival curves for gastric cancer datasets were generated
based on differential gene expression using programs like the
survival and survminer R packages and Kaplan-Meier Plotter.
CellMiner is another valuable database and web tool designed to
facilitate estimations in pharmacological sensitivities of various
cancer cells (140). Other programs are also available for
determining differential gene expression in high-risk gastric
tumors or other cancers, including CIPHER, CancerSEA, UCSC
Xena and GEPIA2 (129–132).

Some of the above tools were adapted from bulk RNA
sequencing (e.g., EnrichR, FANTOM5, MSigDB), while others
were specifically designed to address the challenges of single-cell
analysis (e.g., SCENIC, CellPhoneDB, inferCNV). ScRNA
technology in gastric cancer is advancing rapidly, and by
combining different programs, scRNAseq data can now be
applied to cancer cell profiling and risk assessment strategies.
The future of scRNAseq technology in gastric cancer appears
promising for developing precision medicine.
DISCUSSION

ScRNAseq technology focused on gastric cancer and immune-
mediated mechanisms of carcinogenesis have begun to advance
the field greatly in a short period. We have learned that T cells may
be important for initiating tissue damage, but after cancer arises,
exhaustion limits their protective role (21, 24, 38, 48, 54). New
findings that NKT cells as a possible long-lasting cell type that
promotes antitumor immunity will undoubtedly drive future
studies (22, 25). B cells appear to be prominent in the early
stages of the disease, possibly promoting cancer development in an
autoimmune setting or limiting cancer progression through
complement activation (9, 22, 48, 64). However, as cancer
progresses, the TME induces B cell apoptosis, limiting their role
in advanced gastric cancer (22, 24, 39). Like in many cancers,
scRNAseq results reveal M1macrophages as prominent antitumor
immune cells while M2 macrophages support gastric tumor
growth (44, 45, 52). Unlike in other forms of analysis, M1 and
M2 phenotypes are not clearly identifiable with scRNAseq. In fact,
studies reveal that there could be multiple distinct subsets of
macrophages playing opposing roles in tumor immunity, an
interesting finding that may change our view in other cancers as
well (21, 26, 39, 45). Dendritic cells and immature myeloid
suppressor cells are not prevalent in these gastric cancer
datasets. Hence, their role in gastric cancer is still obscure,
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warranting a need for more advanced research in the future (19,
20, 25, 54). Neutrophils were also not commonly identified, as
granulocytes do not always make it through scRNAseq processing,
but likely play a protumor role in disease (54). In contrast, mast
cells were identified in multiple datasets, but still, there are many
unanswered questions regarding their role in tumor development
(21, 24–26, 28, 29, 39, 48, 50). Interestingly, ILC2s have been
implicated as being responsible for driving early tissue damage and
recruiting destructive inflammatory cells; however, more studies in
human gastric cancer datasets are needed (50, 51). Both ILC2s and
mast cells can produce the cytokine IL-13, which has been
associated with driving epithelial metaplastic transformation
(49). Further work is required to establish the roles of both of
these cell types early on in cancer development. Other stromal cells
within the TME, like fibroblasts and endothelial cells, also likely
play immunological roles in tumor progression. CAFs and
endothelial cells have been found to play distinct roles in
regulating the antitumor immune response and promoting
cancer growth and metastasis (23, 24, 26, 39). Epithelial cell
responses to these various inflammatory signals have displayed
mixed findings with regards to promotion and inhibition of tumor
progression, especially when focusing on different time points of
disease and distinct gastric cancer types. Further work on
understanding the epithelial cell response to inflammation is
needed to determine the mechanisms of cancer development
and progression. In summary, a wealth of new information has
been obtained using scRNAseq technology including a better
understanding of the immunological landscape and roles of
distinct immune cells within the gastric cancer TME. Although
we are still in the early stages of using this technology in gastric
cancer, it has already stoked poignant questions and opened new
avenues of research. The current trend clearly points to the robust
growth of this technology in this field and promises to shed more
light on the immunological mechanisms underlying
gastric carcinogenesis.

In the future, scRNAseq can be utilized to significantly
advance the field of gastric cancer. Specifically, scRNAseq can
be utilized on immune cells surrounding and within gastric
tumor samples to identify the inflammatory infiltrate profile at
different stages of disease. This will help determine the type of
inflammation associated with increased risk of cancer
progression. Novel therapeutics can be identified through
scRNAseq, finding new immune cells for immunotherapy
targets. As well, scRNAseq can help transcriptionally define
precancerous lesions with higher risk of progressing to cancer.
Among the datasets selected for this review, there was little
inclusion of spatial information, but future work will likely
harness spatial transcriptomics for single-cell analysis (141).
Incorporating spatial transcriptomics with single-cell
technology will allow for an enhanced understanding of
intertumoral interactions and structure. New frontiers in single
cell transcriptomics combine tissue morphology (spatial
transcriptomics), cell-surface protein expression (CITE-seq),
and CRISPR screening technology (CROP-seq) with scRNAseq
to improve and increase the methodologies for revealing
immune mediated mechanisms of gastric carcinogenesis (142–
Frontiers in Immunology | www.frontiersin.org 12
146). Expanding beyond the field, this technology can be used to
identify shared features across tumor environments from
different cancer settings to try and discover pan-cancer
phenotypes/targets/inflammatory profiles.

While the scRNAseq technology has proven incisive and
powerful in providing new insights into gastric cancer initiation
and progression, there are many challenges to applying this
technology. Challenges with scRNAseq include a low sequencing
depth achieved when compared to bulk sequencing depth,
relatively high cost, low sample numbers, lack of detection for
lower abundance transcripts, need for fresh tissue samples, certain
cell type bias (granulocytes are typically difficult to target due to
low RNA and high RNase content) and potential differences in
expression profiles when capturing transcripts from either the 3’
or 5’ end with a predominance in datasets generated using the 3’-
targeted technology. These challenges add to the ongoing debate of
whether scRNAseq findings require validation by alternative wet-
lab approaches (e.g., qPCR, immunostaining, RNA in situ
hybridization) which can increase costs and time to publication.
How often and in what contexts scRNAseq findings need
confirmation remains unstandardized, but when emphasizing a
select few genes it is advisable to validate with alternative methods
(147). Furthermore, the rapid pace at which this field is growing
makes it difficult for many researchers (more so clinicians) to keep
up with the advances. While all these issues may look daunting,
the overall need for this technology and its capability to advance
the field is also overwhelming. Never before has it been possible to
unbiasedly identify transcriptional changes at a single-cell
resolution and gain vast amounts of information from small
samples. Once costs are reduced, workflows standardized, and
accessibility to clinical research is streamlined, scRNAseq can be
effectively utilized for early detection, diagnosis, risk stratification
of cancer patients, accelerated drug discovery, and gastric
cancer prevention.
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82. Malanchi I, Santamaria-Martıńez A, Susanto E, Peng H, Lehr H-A, Delaloye
J-F, et al. Interactions Between Cancer Stem Cells and Their Niche Govern
Metastatic Colonization. Nature (2012) 481:85–9. doi: 10.1038/nature10694

83. Ashrafizadeh M, Zarrabi A, Orouei S, Zarrin V, Rahmani Moghadam E,
Zabolian A, et al. STAT3 Pathway in Gastric Cancer: Signaling, Therapeutic
Targeting and Future Prospects. Biol (Basel) (2020) 9(6):126. doi: 10.3390/
biology9060126

84. Yamamoto Y, Kuroda K, Sera T, Sugimoto A, Kushiyama S, Nishimura S,
et al. The Clinicopathological Significance of the CXCR2 Ligands, CXCL1,
CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8 in Gastric Cancer.
Anticancer Res (2019) 39:6645–52. doi: 10.21873/anticanres.13879

85. Chen G, Ning B, Shi T. Single-Cell RNA-Seq Technologies and Related
Computational Data Analysis. Front Genet (2019) 10:317. doi: 10.3389/
fgene.2019.00317

86. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al.
Massively Parallel Digital Transcriptional Profiling of Single Cells. Nat
Commun (2017) 8:14049. doi: 10.1038/ncomms14049

87. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al.
Circos: An Information Aesthetic for Comparative Genomics. Genome Res
(2009) 19:1639–45. doi: 10.1101/gr.092759.109

88. Hashimshony T, Senderovich N, Avital G, Klochendler A, de Leeuw Y,
Anavy L, et al. CEL-Seq2: Sensitive Highly-Multiplexed Single-Cell RNA-
Seq. Genome Biol (2016) 17:77. doi: 10.1186/s13059-016-0938-8

89. Picelli S, Björklund ÅK, Faridani OR, Sagasser S, Winberg G, Sandberg R.
Smart-Seq2 for Sensitive Full-Length Transcriptome Profiling in Single
Cells. Nat Methods (2013) 10:1096–8. doi: 10.1038/nmeth.2639

90. Shirai M, Arikawa K, Taniguchi K, Tanabe M, Sakai T. Vertical Flow Array
Chips Reliably Identify Cell Types From Single-Cell mRNA Sequencing
Experiments. Sci Rep (2016) 6:36014. doi: 10.1038/srep36014

91. Shum EY, Walczak EM, Chang C, Christina Fan H. Quantitation of mRNA
Transcripts and Proteins Using the BD Rhapsody™ Single-Cell Analysis System.
Adv Exp Med Biol (2019) 1129:63–79. doi: 10.1007/978-981-13-6037-4_5

92. Gao C, Zhang M, Chen L. The Comparison of Two Single-Cell Sequencing
Platforms: BD Rhapsody and 10x Genomics Chromium. Curr Genomics
(2020) 21:602–9. doi: 10.2174/1389202921999200625220812

93. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:
Ultrafast Universal RNA-Seq Aligner. Bioinformatics (2013) 29:15–21. doi:
10.1093/bioinformatics/bts635

94. Anders S, Pyl PT, Huber W. HTSeq–a Python Framework to Work With
High-Throughput Sequencing Data. Bioinformatics (2015) 31:166–9. doi:
10.1093/bioinformatics/btu638
Frontiers in Immunology | www.frontiersin.org 15
95. Lun AT, Bach K, Marioni JC. Pooling Across Cells to Normalize Single-Cell
RNA Sequencing Data With Many Zero Counts. Genome Biol (2016) 17:75.
doi: 10.1186/s13059-016-0947-7

96. McCarthy DJ, Campbell KR, Lun AT, Wills QF. Scater: Pre-Processing,
Quality Control, Normalization and Visualization of Single-Cell RNA-Seq
Data in R. Bioinformatics (2017) 33:1179–86. doi: 10.1093/bioinformatics/
btw777

97. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating Single-Cell
Transcriptomic Data Across Different Conditions, Technologies, and
Species. Nat Biotechnol (2018) 36:411–20. doi: 10.1038/nbt.4096

98. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, et al.
Integrated Analysis of Multimodal Single-Cell Data. Cell (2021) 184:3573–
3587.e29. doi: 10.1016/j.cell.2021.04.048

99. Wolf FA, Angerer P, Theis FJ. SCANPY: Large-Scale Single-Cell Gene
Expression Data Analysis. Genome Biol (2018) 19:15. doi: 10.1186/s13059-
017-1382-0

100. Aran D, Looney AP, Liu L, Wu E, Fong V, Hsu A, et al. Reference-Based
Analysis of Lung Single-Cell Sequencing Reveals a Transitional Profibrotic
Macrophage. Nat Immunol (2019) 20:163–72. doi: 10.1038/s41590-018-
0276-y

101. Langfelder P, Zhang B, Horvath S. Defining Clusters From a Hierarchical
Cluster Tree: The Dynamic Tree Cut Package for R. Bioinformatics (2008)
24:719–20. doi: 10.1093/bioinformatics/btm563

102. Han X, Zhou Z, Fei L, Sun H, Wang R, Chen Y, et al. Construction of a
Human Cell Landscape at Single-Cell Level. Nature (2020) 581:303–9. doi:
10.1038/s41586-020-2157-4

103. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust
Enumeration of Cell Subsets From Tissue Expression Profiles. Nat Methods
(2015) 12:453–7. doi: 10.1038/nmeth.3337

104. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr:
Interactive and Collaborative HTML5 Gene List Enrichment Analysis Tool.
BMC Bioinf (2013) 14:128. doi: 10.1186/1471-2105-14-128

105. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z,
et al. Enrichr: A Comprehensive Gene Set Enrichment Analysis Web Server
2016 Update. Nucleic Acids Res (2016) 44:W90–7. doi: 10.1093/nar/gkw377

106. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette
MA, et al. Gene Set Enrichment Analysis: A Knowledge-Based Approach for
Interpreting Genome-Wide Expression Profiles. Proc Natl Acad Sci U.S.A.
(2005) 102:15545–50. doi: 10.1073/pnas.0506580102

107. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O,
et al. Metascape Provides a Biologist-Oriented Resource for the Analysis of
Systems-Level Datasets. Nat Commun (2019) 10:1523. doi: 10.1038/s41467-
019-09234-6

108. Yu G, Wang LG, Han Y, He QY. Clusterprofiler: An R Package for
Comparing Biological Themes Among Gene Clusters. Omics (2012)
16:284–7. doi: 10.1089/omi.2011.0118

109. Hänzelmann S, Castelo R, Guinney J. GSVA: Gene Set Variation Analysis for
Microarray and RNA-Seq Data. BMC Bioinf (2013) 14:7. doi: 10.1186/1471-
2105-14-7

110. Wang J, Vasaikar S, Shi Z, Greer M, Zhang B. WebGestalt 2017: A More
Comprehensive, Powerful, Flexible and Interactive Gene Set Enrichment
Analysis Toolkit. Nucleic Acids Res (2017) 45:W130–w137. doi: 10.1093/nar/
gkx356
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