
Phosphorylation by Casein Kinase 2 Facilitates Psh1 Protein-
assisted Degradation of Cse4 Protein*□S

Received for publication, May 12, 2014, and in revised form, August 18, 2014 Published, JBC Papers in Press, September 2, 2014, DOI 10.1074/jbc.M114.580589

Geetha S. Hewawasam‡, Mark Mattingly‡, Swaminathan Venkatesh‡, Ying Zhang‡, Laurence Florens‡,
Jerry L. Workman‡, and Jennifer L. Gerton‡§1

From the ‡Stowers Institute for Medical Research, Kansas City, Missouri 64110 and §Department of Biochemistry and Molecular
Biology, University of Kansas Medical Center, Kansas City, Kansas 66160

Background: Psh1 is an E3 ubiquitin ligase that controls CenH3/Cse4 levels through proteolysis in budding yeast.
Results: Psh1 is phosphorylated in vivo by CK2, and its E3 ligase activity is promoted.
Conclusion: Phosphorylation is crucial in Psh1-assisted control of Cse4 levels, and the Psh1-Cse4 association itself functions to
prevent Cse4 misincorporation.
Significance: This work reports a previously unknown function of CK2 in CenH3/Cse4 regulation.

Cse4 is the centromeric histone H3 variant in budding yeast.
Psh1 is an E3 ubiquitin ligase that controls Cse4 levels through
proteolysis. Here we report that Psh1 is phosphorylated by the
Cka2 subunit of casein kinase 2 (CK2) to promote its E3 activity
for Cse4. Deletion of CKA2 significantly stabilized Cse4. Con-
sistent with phosphorylation promoting the activity of Psh1,
Cse4 was stabilized in a Psh1 phosphodepleted mutant strain in
which the major phosphorylation sites were changed to ala-
nines. Phosphorylation of Psh1 did not control Psh1-Cse4 or
Psh1-Ubc3(E2) interactions. Although Cse4 was highly stabi-
lized in a cka2� strain, mislocalization of Cse4 was mild, sug-
gesting that Cse4 misincorporation was prevented by the intact
Psh1-Cse4 association. Supporting this idea, Psh1 was also sta-
bilized in a cka2� strain. Collectively our data suggest that phos-
phorylation is crucial in Psh1-assisted control of Cse4 levels and
that the Psh1-Cse4 association itself functions to prevent Cse4
misincorporation.

Faithful chromosome segregation during cell division is cru-
cial for the equal distribution of genetic material. Centromeric
chromatin specifies the site of assembly of the kinetochore,
a massive, evolutionarily conserved protein complex that
attaches chromosomes to microtubules for segregation. In con-
trast to the complex regional centromeres found in higher
eukaryotic organisms, budding yeast has a simple point centro-
mere (1) containing a centromeric DNA (CEN)2 sequence of
125 bp (2, 3). A centromeric histone H3 variant, collectively
known as CenH3 and in budding yeast as Cse4, replaces histone

H3 in centromeric nucleosomes. Exclusive incorporation of
CenH3 (or Cse4 in budding yeast) at the centromere is the
foundation for proper kinetochore assembly, microtubule
attachment, and chromosome segregation. Therefore, regulat-
ing Cse4 levels and deposition is a critical process. An increased
dosage of Cse4 leads to mislocalization, kinetochore defects,
and chromosome loss in budding yeast (4, 5). High levels of the
human CenH3, CENP-A, result in misincorporation at non-
centromeric sites (6). Overexpression of CENP-A leads to chro-
mosomal instability in pRb-depleted human cells (7) and also
causes CENP-A mistargeting and aneuploidy in colorectal can-
cer cells (8). Therefore, levels of CenH3 need to be carefully
regulated.

Several factors regulate CenH3 proteins. Ubiquitin-medi-
ated proteolysis controls Cse4 protein levels in budding yeast
(9) and centromere identifier (CID), the CenH3 in Drosophila
(10). Psh1 is an E3 ubiquitin ligase for Cse4 in budding yeast (11,
12). Psh1 controls Cse4 levels via ubiquitylation and proteoly-
sis, preventing mislocalization of Cse4. In Drosophila, a multi-
subunit RING type E3 ubiquitin ligase, SCFPpa, regulates cen-
tromere identifier (CID) proteolysis (13). Scm3, a centromeric
nucleosome assembly factor, protects Cse4 from degradation
possibly through binding to the CENP-A targeting domain of
Cse4. However, additional mechanisms may contribute to
Cse4 stability and deposition. Post-translational modifications
(PTMs) of the enzymes involved in the ubiquitin-proteasome
pathway for Cse4 could play a role in Cse4 regulation.

Phosphorylation can regulate ubiquitylation-coupled prote-
olysis at several levels. Both E3 ubiquitin ligase activity and E2
ubiquitin conjugating activity can be regulated via phosphory-
lation (14 –16). In this study, we report the first evidence that
phosphorylation regulates Psh1-assisted degradation of Cse4.
Psh1 was phosphorylated primarily by the Cka2 subunit of
casein kinase 2 (CK2). Our results suggest that phosphorylation
of Psh1 by CK2 promotes its E3 activity toward Cse4. Although
deletion of CKA2 stabilized Cse4 more than deletion of PSH1,
ectopic incorporation of Cse4 occurred at a lower level, sug-
gesting that Psh1-Cse4 association itself prevents Cse4 misin-
corporation. Altogether, this study further advances our knowl-
edge of how Cse4 is regulated in budding yeast.
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EXPERIMENTAL PROCEDURES

Yeast Strains—All yeast strains are listed in supplemental
Table S1.

Psh1-TAP and Dsn1-FLAG Purifications—The Psh1-TAP
purification method was adopted from Puig et al. (17). The
protocol for kinetochore purification using Dsn1-FLAG was
adopted from Akiyoshi et al. (18).

Whole Cell Extract Co-immunoprecipitation (Co-IP)—Cell
lysates were prepared in lysis buffer (50 mM Tris (pH 7.5), 150
mM NaCl, 0.1% Nonidet P-40, 1 mM DTT, 10% glycerol, and
protease inhibitors). Protein concentration was determined
using the Bradford assay. Cell lysates were diluted with dilu-
tion/wash buffer (50 mM Tris (pH 7.5), 150 mM NaCl, and 0.1%
Nonidet P-40) and incubated with the antibody overnight at
4 °C. Prewashed Protein G Dynabeads were added and incu-
bated for 2h at 4 °C. The beads were washed three times with
dilution/wash buffer, and proteins were eluted with SDS buffer
(10 mM Tris (pH 7.5), 1 mM EDTA, and 1% SDS). Immunopre-
cipitates were subjected to SDS-PAGE and Western blotting.
Some co-IPs were performed using antibody-conjugated beads.

Proteasome Inhibition—Cultures grown to midlog phase in
appropriate media were treated with MG132 (100 �M) or
DMSO for 2–3 h. Cells were pelleted, washed with PBS, frozen
in liquid N2, and stored in �80 °C.

Polyubiquitylated Protein Pulldown—Cell lysates were pre-
pared in lysis buffer (same buffer used in co-IP with 15 mM

N-ethylmaleimide), and protein concentration was measured
using the Bradford assay. Polyubiquitin affinity resin (Thermo,
89899) (30 �l of a 25% slurry) was added to 2 mg of total pro-
teins diluted 1:1 with TBS and incubated for 3 h or overnight at
4 °C. The beads were washed three times with wash buffer (lysis
buffer:TBS, 1:9). Beads were boiled with 30 �l of SDS sample
buffer, and samples were subjected to SDS-PAGE and Western
blotting.

SDS-PAGE/Phos-tag-SDS-PAGE and Western Blotting—
SDS-PAGE was performed using 4 –12% precast gels (Invitro-
gen) or homemade 6% gels. For Phos-tag-SDS-PAGE, gels were
prepared including acrylamide-pendant Phos-tag ligand (AAL-
107). After running the gels, proteins were transferred onto
PVDF membrane (Millipore, Immobilon-P), and Western blot-
ting was performed according to a standard protocol.

Antibodies/Conjugated Beads—The antibodies used are as fol-
lows: anti-Myc (Covance, MMS150P), anti-Myc-HRP (Roche
Applied Science, 11814150001), anti-HA (Covance, PRB101P,
Roche Applied Science, 11867423001), anti-HA-HRP (Roche
Applied Science, 12013819001), anti-ubiquitin (Covance,
MMS257P), anti-Cse4 (polyclonal rabbit antibody against
recombinant Cse4), anti-Pgk1 (Invitrogen, 459250), anti-FLAG
(Sigma, F3165), anti-TAP (Open Biosystems, CAB1001), and
anti-FLAG beads (Sigma, F2426).

Protein Stability Assay—Cells were grown to midlog phase in
appropriate media. If Gal induction was needed, galactose was
added to a final concentration of 4%, and cells were incubated
for another 2 h. Cycloheximide (Sigma) was added to a final
concentration of 10 �g/ml, and culture fractions were har-
vested at different time points. Cell lysates were prepared in
lysis buffer, and protein concentration was determined using

the Bradford assay. Proteins were analyzed by SDS-PAGE and
Western blotting using the same amount of total proteins from
each time point.

In Vitro Kinase Assay—Purified FLAG-His6-Psh1 (1 �g) was
mixed with CK2 (1000 units) and 200 �M �-labeled ATP (600
�Ci/�mol) in a 50-�l final volume of CK2 reaction buffer (20
mM Tris-HCl, 50 mM KCl, and 10 mM MgCl2 (pH 7.5)). The
reaction mixture was incubated at 30 °C for 2.5 h and boiled
with SDS sample buffer. Proteins were separated using a 4 –12%
gel, and the gel was exposed to autoradiography film.

ChIP-Quantitative PCR—Cultures grown to an A600 of �0.7
were fixed in 1% formaldehyde for 15 min and then quenched
with glycine (final concentration, 0.125 M) for 5 min. Cells were
lysed for 1 h at 4 °C in FA-Lysis SDS buffer (50 mM Hepes (pH
7.5), 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium
deoxycholate, 0.2% SDS, and protease inhibitors). The lysate
was sonicated using a Biorupter for 20 min (30 s on/off) at
medium intensity. Protein concentration was determined, and
samples were normalized before proceeding with the ChIP. 20%
of total chromatin extract was used for IP using 2 �l of anti-
Cse4 antibody and incubated at 4 °C overnight. 25 �l of Protein
G Dynabeads (Invitrogen, 100-04D) prewashed in FA-Lysis
buffer (50 mM Hepes (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1%
Triton X-100, 0.1% sodium deoxycholate) were added and
incubated at 4 °C for 3 h. Beads were washed at room temper-
ature with the following sequence of buffers; FA-Lysis buffer,
FA-Lysis buffer with 1 M NaCl, FA-Lysis buffer with 500 mM

NaCl, TEL buffer (0.25 M LiCl, 10 mM Tris-HCl (pH 8.0), 1 mM

EDTA, 1% Nonidet P-40, and 1% sodium deoxycholate), and
twice with 1� Tris-EDTA. Chromatin fragments were eluted
twice using 200 �l of Elution Buffer (1% SDS, 250 mM NaCl, and
1� Tris-EDTA) at 65 °C with agitation. Two elutions were
combined, treated with Proteinase K for 1 h at 55 °C, and incu-
bated overnight at 65 °C. DNA was extracted with phenol-chlo-
roform and precipitated using 100% ethanol. 2% of the total
chromatin extract was processed for the input sample. Cse4
ChIPs were performed in triplicate with two no-antibody con-
trols for each strain. Quantitative PCR was performed in tripli-
cate for each sample using a Quanta Biosciences Perfecta SYBR
Green FastMix.

Recombinant Protein Expression and Purification—The
method for FLAG-His6-Psh1 expression and purification has
been published (11). Recombinant CK2 was purchased from
New England Biolabs (catalog number P6010L).

RESULTS

Psh1 Is Phosphorylated in Vivo—How Psh1 E3 ligase activity
is controlled is unknown, but we suspected that PTMs played a
role. To investigate whether PTMs could regulate Psh1 activity,
we affinity-purified Psh1-TAP and analyzed samples using
mass spectrometry (MS) for PTMs. We were able to identify
multiple phosphorylation sites in Psh1 (Fig. 1A). The Psh1-TAP
purification is enriched mainly for the soluble pool of Psh1. To
specifically examine centromere-associated Psh1, we purified
kinetochore proteins using Dsn1-FLAG, a subunit of the kinet-
ochore MIND complex (18), and analyzed PTMs of the Psh1 in
these samples by MS. We identified the same phosphorylation
sites in centromere-associated Psh1 as found in Psh1-TAP
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samples as well as two additional sites (Fig. 1A). Major phos-
phorylation sites with �20% of modified/total spectra are indi-
cated in Fig. 1B relative to the major protein domains in Psh1.
To further confirm the phosphorylation of Psh1, we used an
epitope-tagged Psh1-HA strain (Fig. 1C). Psh1-HA was immu-
noprecipitated from whole cell extracts, and eluates were sub-

jected to shrimp alkaline phosphatase treatment to remove
phosphate groups from phosphorylated proteins. Samples were
analyzed by Phos-tag-SDS-PAGE and Western blotting with
anti-HA antibodies. On a Phos-tag gel, phosphorylated pro-
teins migrate more slowly compared with lesser or non-phos-
phorylated counterparts. We detected a faster migrating
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FIGURE 1. Psh1 is phosphorylated in vivo by CK2. A, PTM analysis using MS after affinity purification of Psh1-TAP and Dsn1-FLAG reveals phosphorylation sites
of Psh1. The combined percentages of modified spectra/total spectra of the two purifications are graphed. The number of modified peptides/total peptides
detected in Psh1-TAP (*) and Dsn1-FLAG (‚) samples are indicated above each bar. CK2 sites predicted by NetPhosK are in black. B, the major phosphorylation
sites of Psh1 are shown relative to the three defined domains of a tripartite motif protein: RING finger motif, Cys4 zinc finger motif, and an acidic stretch. Lys-303
is the autoubiquitylation site of Psh1 identified by in vitro ubiquitylation and MS. C, Psh1-HA was immunoprecipitated from cell lysates using anti-HA, and
eluates were subjected to shrimp alkaline phosphatase (SAP) treatment. Samples were analyzed by Phos-tag-SDS-PAGE (12% gel with 10 �M Phos-tag) and
Western blotting with anti-HA antibodies. D, Psh1-TAP purification brings down all four subunits of CK2 as detected by MS. The normalized spectral abundance
factor (NSAF) shows the estimated relative protein abundance calculated as described previously (38). E, Psh1 can be phosphorylated in vitro using recombi-
nant CK2. Recombinant proteins and �-labeled ATP were used to carry out a kinase assay in vitro. An autoradiograph following SDS-PAGE is shown. The band
indicated by an asterisk could be a dimer of Psh1. F, the Cka2 catalytic subunit of CK2 is necessary for phosphorylation of Psh1. Strains expressing Psh1-HA were
constructed bearing deletions in CKA1 or CKA2. After Phos-tag-SDS-PAGE (7.5% gel with 10 �M Phos-tag) of cell lysates, Western blotting was carried out using
anti-HA antibodies. The differences in band intensities in C and F could be due to the inefficient transfer of phosphorylated proteins from the Phos-tag gel to
the membrane due to high affinity toward the Phos-tag. G, the CK2 regulatory subunits Ckb1 and Ckb2 pull down Psh1. Affinity-tagged strains (Psh1-HA/Ckb1-
FLAG and Psh1-HA/Ckb2-FLAG) were used in co-IP. A strain lacking the tag on Ckb1 and Ckb2 was used as the control. In anti-FLAG co-IP using cell lysates, both
Ckb1 and Ckb2 pull down Psh1. Ckb1 shows a much stronger interaction with Psh1 as revealed by a more intense band. H, Ckb1 binds to Psh1 via its RING finger
domain. Strains were constructed expressing the affinity-tagged proteins Psh1-HA and Ckb1-FLAG. A co-IP using anti-FLAG antibody from whole cell lysates
shows that the RING finger domain of Psh1 is necessary for Ckb1 interaction. A control IP was performed from a strain expressing Psh1-HA but lacking a FLAG
tag on Ckb1. P-Psh1, phosphorylated Psh1.
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Psh1-HA band in the shrimp alkaline phosphatase-treated
sample compared with the untreated sample, further confirm-
ing in vivo phosphorylation of Psh1.

CK2 Is a Kinase for Psh1—CK2 is a highly conserved serine/
threonine kinase in eukaryotic organisms. This versatile kinase
controls many important cellular processes such as signal
transduction, transcription, translation, metabolism, and cell
cycle progression. Hundreds of CK2 substrates have been iden-
tified so far (19). CK2 is a heterotetrameric enzyme composed
of two catalytic and two regulatory subunits. In budding yeast,
the catalytic subunits are Cka1 and Cka2, and the regulatory
subunits are Ckb1 and Ckb2. Most of the Psh1 phosphorylation
sites identified by MS are predicted to be CK2 sites by Net-
PhosK, a program for prediction of potential kinases. These
potential CK2 sites are depicted in black bars in Fig. 1A. In
addition, all four subunits of CK2 co-purified with Psh1-TAP
(Fig. 1D), further suggesting CK2 as a potential kinase for Psh1.

To determine whether CK2 is a kinase for Psh1, we per-
formed a kinase assay in vitro utilizing recombinant Psh1, CK2,
and radiolabeled ATP (Fig. 1E). The autoradiograph clearly
shows phosphorylated Psh1 in the presence of both CK2 and
ATP, suggesting that Psh1 is a substrate for CK2. Recombinant
Psh1 used in this assay was purified using a baculovirus expres-
sion system in insect cells. The lower intensity phosphorylated
Psh1 band observed with the control sample without CK2 (Fig.
1E, lane 4) is possibly due to some kinase activity that co-puri-
fied with Psh1.

To identify which subunit of CK2 is responsible for phosphor-
ylating Psh1, we deleted each catalytic subunit (cka1� or
cka2�) in the strain expressing Psh1-HA. Single deletions were
made because double deletion of the two catalytic subunits is
reported to be lethal (20). Cell lysates of the mutants were com-
pared with WT using Phos-tag-SDS-PAGE and Western blot-
ting with anti-HA antibodies (Fig. 1F). Psh1-HA in the cka1�
strain migrated similarly to WT, whereas in the cka2� strain
it showed a faster migrating, lesser or non-phosphorylated
band, suggesting that Cka2 is primarily responsible for Psh1
phosphorylation.

To identify the subunits of CK2 that are physically interact-
ing with Psh1, epitope-tagged strains with Psh1-HA/Ckb1-
FLAG and Psh1-HA/Ckb2-FLAG were used to perform co-IP
and Western blotting (Fig. 1G). We were able to detect both
Ckb1 and Ckb2 interacting with Psh1. However, the interaction
between Psh1 and Ckb1 was much stronger. These data dem-
onstrate that CK2 is a kinase for Psh1 with catalysis and inter-
action primarily mediated by Cka2 and Ckb1, respectively.

Psh1 contains a RING domain, a type of zinc finger that can
bind two zinc cations, and a zinc finger domain (Fig. 1B). The
RING domain is essential for the Psh1-Cse4 interaction, and a
mutation in the RING domain stabilizes Cse4 (11). We tested
the RING and zinc finger mutants for interaction with Ckb1 of
CK2 and Ubc3/Cdc34, the E2 ubiquitin-conjugating enzyme
for Psh1 (see comment in Hewawasam et al. (11)). Co-IP
showed that the Ckb1-Psh1 interaction required the RING fin-
ger domain of Psh1 (Fig. 1H). The RING domain appears to be
required for Psh1 to interact with both Cse4 and Ckb1. How-
ever, neither the RING nor zinc finger domain was required for
the Psh1-Ubc3 interaction (data not shown). This suggests that

the interaction between Psh1 and Ubc3 is facilitated by an
unidentified region of Psh1.

CK2 Is Important for Efficient Regulation of Cellular Cse4
Levels—PSH1 is not an essential gene, and a simple deletion of
PSH1 does not cause a defect in a minichromosome loss assay
(11). Deletion of PSH1 resulted in slow growth when Cse4 was
overexpressed from the GAL promoter on a 2-�m plasmid.
Cse4 overexpression in a psh1� strain alters kinetochore func-
tion as revealed by a delay in destruction of anaphase inhibitor
Pds1 (12). If CK2 is important for Psh1-mediated Cse4 regula-
tion, then overexpression of Cse4 in a CK2 mutant might be
expected to show a growth phenotype similar to PSH1 deletion,
and Cse4 protein levels should be subsequently stabilized. To
test this, we overexpressed Cse4 in catalytic subunit deletion
mutants cka1� and cka2� (Fig. 2A). We observed slow growth
with cka2� but not with cka1� (Fig. 2A, compare cka1��CSE4
and cka2��CSE4 with psh1��CSE4), consistent with our
observation that Cka2 was primarily responsible for phosphor-
ylation of Psh1. Cse4 overexpression in the double mutant
psh1�cka2� showed a growth phenotype similar to that of
either single mutant, suggesting the Psh1 and Cka2 function in
the same pathway to control Cse4 levels.

We then examined the Cse4 protein levels in these strains
using a protein stability assay (Fig. 2B). After Gal induction of
Cse4 overexpression, cycloheximide (CHX) was added to
inhibit protein translation, and the level of Cse4 in cell lysates
was determined at different time points using Western blotting
with anti-Cse4 antibody. We observed highly stabilized Cse4
levels in a cka2� mutant compared with a WT strain, and the
half-life of Cse4 (Cse4 t1⁄2) was about 3 times longer in a cka2�
strain (Fig. 2B, left panel). Cse4 was more stabilized by cka2�
than psh1�. We next measured the stability of endogenous lev-
els of Cse4-Myc (Fig. 2C). Cse4-Myc was also stabilized in a
cka2� strain compared with a WT strain. These results suggest
that phosphorylation of Psh1 by CK2 may promote its E3 activ-
ity for Cse4. Because the two stability assays in Fig. 2B were
performed separately, the difference in Cse4 stability in WT
strain between the left and right panels could be due to fluctu-
ations in the experimental conditions. However, the two stabil-
ity assays with Cse4 overexpression resulted in an average
Cse4 t1⁄2 of 12 min for WT strain, which is comparable with a
Cse4 t1⁄2 of WT strain (12.7 min) with endogenous Cse4 levels in
Fig. 2C. Conversely, in cka2� strain, Cse4 t1⁄2 was elevated with
Cse4 overexpression (Fig. 2, compare B, left panel, with C; 29.0
versus 18.2 min, respectively). Assuming that the experimental
conditions are comparable in Fig. 2, B, left panel, and C, a high
level of soluble Cse4 and inefficient Cse4 degradation in the
absence of Cka2 may elevate Cse4 t1⁄2 in the cka2� strain with
Cse4 overexpression.

We next examined ubiquitylated forms of Cse4 in WT and
cka2� strains with both endogenous Cse4 and overexpression
(Fig. 3). Cells expressing Cse4-Myc at endogenous levels were
grown to midlog phase and treated with MG132 for 2 h to
inhibit proteasome function. Pdr5, a plasma membrane trans-
porter, is deleted from these strains to improve MG132 uptake.
The efficiency of proteasome inhibition was confirmed by high
accumulation of polyubiquitylated proteins in MG132-treated
cells compared with DMSO control samples (Fig. 3A, left panel,
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anti-ubiquitin Western blot). Anti-Myc Western blotting
showed similar Cse4-Myc levels in the lysates (Fig. 3A, left
panel). Polyubiquitylated proteins were pulled down from
MG132-treated samples using polyubiquitin affinity resin, and
eluates were probed with anti-ubiquitin and anti-Myc antibod-
ies (Fig. 3A, right panel). Pulldown samples probed with anti-
ubiquitin showed that the efficiency of enrichment of polyubiq-
uitylated proteins was nearly the same. A psh1� strain was
included as a control. We did not observe an obvious difference
in polyubiquitylated Cse4-Myc (Ubn-Cse4-Myc) levels among

WT, cka2�, and psh1� strains when Cse4-Myc was expressed
at an endogenous level.

The Cse4 stability assay in Fig. 2B suggests that a reduction in
the Ubn-Cse4 levels between WT and cka2� might be more
obvious if Cse4 was overexpressed. Therefore, we examined
Ubn-Cse4 levels in the strains in Fig. 2B (Fig. 3B). After Gal
induction of Cse4, cells were treated with MG132. The method
described in Liu et al. (21) was used to inhibit proteasome func-
tion using MG132. The efficiency of proteasome inhibition was
confirmed by high accumulation of polyubiquitylated proteins
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FIGURE 2. The catalytic subunit Cka2 of CK2 is important for efficient regulation of Cse4 levels. A, Cse4 was overexpressed from the GAL promoter on a
2-�m plasmid in WT, psh1�, cka1�, cka2�, and psh1�cka2� strains. EV indicates an empty vector control as a point of comparison. 10-Fold serial dilutions of
overnight cultures were plated to either SD-His or Gal-His medium. All strains grow similarly on SD-His but psh1�, cka2�, and psh1�cka2� strains overexpress-
ing Cse4 grow poorly. B, deletion of CKA2 stabilizes Cse4. WT, psh1�, and cka2� strains from A were used to perform a Cse4 ubiquitylation assay. After Gal
induction of Cse4 overexpression, CHX was added, and cells were collected at the time points indicated for analysis by Western blotting using an anti-Cse4
antibody. C, Cka2 regulates endogenous levels of Cse4. Cse4-Myc was expressed from the native Cse4 promoter. Levels of Cse4-Myc were measured in cell
lysates at the time points indicated following CHX treatment in WT and cka2� strains. In B and C, Pgk1 was the loading control. The same amount of total protein
was loaded per lane. Graphs show quantifications of the Cse4 bands normalized to Pgk1. Cse4 t1⁄2 was calculated by fitting normalized Cse4 band intensity data
to a first-order decay function as explained in Belle et al. (39).
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in MG132-treated cells compared with DMSO control samples
(Fig. 3B, left panel, anti-ubiquitin Western blot). Anti-Cse4
Western blotting showed similar Cse4 levels in the lysates (Fig.
3B, left panel). Polyubiquitylated proteins were pulled down as
explained before, and samples were analyzed by Western blot-
ting (Fig. 3B, right panel). The efficiency of enrichment of
polyubiquitylated proteins in MG132-treated samples was very
similar, and the signal was reduced in DMSO control samples.
Ubn-Cse4 was detected only in MG132-treated samples, con-
firming that these bands are polyubiquitylated Cse4 normally
targeted for proteasomal degradation. Under our experimental
conditions, we could not observe an obvious difference in Ubn-
Cse4 levels between WT and psh1� strains, suggesting that
differences in ubiquitylation may be more difficult to detect
than differences in protein stability. As expected, however, we
detected a dramatic reduction in Ubn-Cse4 levels in a cka2�
strain compared with WT. These results further suggest that
CK2 promotes ubiquitylation and degradation of Cse4.

Cse4 is only partially stabilized in a psh1� strain, indicating
the presence of additional factors controlling Cse4 levels in vivo
(11, 12). Interestingly, Cse4 was more stabilized by cka2� than
psh1� (Fig. 2B), suggesting that CK2 may control factors in addi-
tion to Psh1. Ubc3/Cdc34, the E2 ubiquitin-conjugating enzyme
for Psh1, is regulated by CK2 phosphorylation (15, 16). CK2 phos-
phorylation within the N-terminal catalytic domain of Ubc3 up-
regulates its ubiquitin charging activity (16). Therefore, in a cka2�
mutant, ubiquitin charging of Ubc3 might be inefficient, causing
extra stabilization of Cse4 levels. Recently, Fpr3 has been reported
as another regulator of Cse4 stability (22). Fpr3 is also phosphory-
lated by CK2 (23). Moreover, there are several reports implicating
CK2 in regulation of 26 S proteasome subunits via phosphoryla-
tion (24, 25). These reports, along with data from our studies, sug-
gest that CK2 could regulate Cse4 levels via phosphorylation of
Psh1, E2/Ubc3, other regulators of Cse4, and the proteasome. We
continued to explore the role of CK2 phosphorylation in Psh1
activity in particular.
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Phosphorylation of Psh1 Promotes Destruction of Cse4 —
Because CK2 can potentially control ubiquitin-mediated pro-
teolysis of Cse4 at multiple levels, stabilization of Cse4 in a
cka2� strain may not directly reflect how Psh1 phosphorylation
by CK2 affects the stability of Cse4. Therefore, we wanted to
examine how Psh1 phosphorylation affects Cse4 using phos-
phomimic and phosphodepleted Psh1 mutants. We identified
10 major in vivo phosphorylation sites of Psh1 using MS (Fig. 1,
A and B). All these residues are predicted to be potential CK2
sites by NetPhosK. In the phosphomimic Psh1 mutant (Psh1-
S6D), six of these phosphorylation sites, identified using Psh1-
TAP purification, were changed to aspartic acids (S143D,
S191D, S229D, S230D, S275D, and S344D) to mimic phosphate
groups. In the phosphodepleted Psh1 mutant (Psh1-S8A/T2A),
all 10 identified phosphorylation sites were changed to alanine
(S143A, S191A, S229A, S230A, S275A, T310A, S341A, S344A,
T382A, and S403A) to prevent phosphorylation of Psh1. WT or
Psh1 mutants were ectopically expressed from a plasmid in a
psh1� background. Psh1 protein levels expressed from the plas-
mid were very similar as confirmed using an HA affinity-tagged
version of these plasmids (Fig. 4A). However, compared with
endogenous Psh1 levels, ectopic expression from the plasmid
gave about 3 times more Psh1 (Fig. 4B).

If phosphorylation of Psh1 is important for Cse4 regulation,
then overexpression of Cse4 in the phosphodepleted Psh1
mutant might be expected to show a growth phenotype similar
to that of PSH1 and CKA2 deletion, and Cse4 protein levels
should be stabilized. To test this, we overexpressed Cse4 in the
presence of either Psh1-S6D or Psh1-S8A/T2A mutant (Fig.
4C). As expected, we observed slow growth with the Psh1-S8A/
T2A strain. We next examined Cse4 stability in these strains.
Cse4 was destabilized in the Psh1-S6D strain (Fig. 4D) and was
dramatically stabilized in the Psh1-S8A/T2A strain (Fig. 4E).
We further performed a co-IP in the presence of affinity-tagged
Psh1-S6D-HA or Psh1-S8A/T2A-HA overexpressing Cse4
(Fig. 4F). Both Psh1-S6D-HA and Psh1-S8A/T2A-HA inter-
acted with Cse4. This confirms that the stabilization of Cse4 in
the presence of Psh1-S8A/T2A mutant is not the result of poor
association of Cse4 with the mutant but more likely due to
inefficient E3 ligase activity of the mutant. These results suggest
that phosphorylation of Psh1 by CK2 may promote the E3 ubiq-
uitin ligase activity of Psh1 for Cse4. Further confirming our
hypothesis, we did not observe substantial Cse4 stabilization in
a CKA2 deletion strain relative to WT in the presence of Psh1-
S6D (Fig. 4G). The phosphomimic mutant of Psh1 bypassed the
effect of CKA2 deletion, and Cse4 was efficiently targeted for
degradation (compare Fig. 4G with Fig. 2B, left panel). We did
not observe an obvious Cse4 stabilization in a strain expressing
the Psh1-S6A mutant, which is the phosphodepleted counter-
part of Psh1-S6D (data not shown). Because the Psh1-S6A
mutant still contains four major phosphorylation sites, lack of
Cse4 stabilization in Psh1-S6A may suggest that Thr-310, Ser-
344, Thr-382, and Ser-403 are some of the most important
phosphorylation sites for activation of Psh1. These phosphory-
lation sites were detected mainly in centromere/kinetochore-
bound Psh1 in the Dsn1-FLAG purification.

Next, we looked at Ubn-Cse4 levels in the strains in Fig. 4, D
and E, using the method explained earlier, polyubiquitylated

protein pulldown and Western blotting (Fig. 5). Although we
could not detect a difference in Ubn-Cse4 in the strain express-
ing Psh1-S6D compared with a strain with wild type Psh1, an
obvious reduction in Ubn-Cse4 levels was observed between
WT and the Psh1-S8A/T2A mutant (Fig. 5B). These results
further support the idea that CK2 phosphorylation of Psh1 acti-
vates its E3 ubiquitin ligase activity for Cse4.

Phosphorylation of Psh1 by CK2 May Control Ubiquitin
Transfer onto Cse4 —During Cse4 ubiquitylation, Psh1 should
act as an adaptor by recruiting Cse4, the substrate, and the
ubiquitin-charged E2, Ub�Ubc3, thereby facilitating ubiquitin
transfer from Ubc3 to Cse4. Phosphorylation may control
interactions of Psh1 with Cse4 and/or Ub�Ubc3, ubiquitin
transfer from Ub�Ubc3 to Cse4, or all of these steps. We have
reported previously that Psh1 interacts with Cse4 and localizes
to centromeres/kinetochores (11). In an affinity purification of
kinetochore-associated proteins using Dsn1-FLAG followed by
MS analysis, we detected Psh1 in both WT and cka2� strains
(Fig. 6A). Therefore, phosphorylation of Psh1 by CK2 may not
be important for Psh1 interaction with Cse4 and centromere
localization. Supporting this, we observed no change in Cse4
association with the Psh1-S6D-HA or Psh1-S8A/T2A-HA
mutants (Fig. 4F).

To further investigate how CK2 phosphorylation affects the
interaction of Psh1 with Cse4, we performed a co-IP (Fig. 6B).
Psh1-HA pulled Cse4-Myc down to a similar level in both WT
and cka2�, confirming that phosphorylation by CK2 is not nec-
essary for Psh1-Cse4 interaction. In another co-IP, we observed
comparable levels of Psh1-HA coming down with Ubc3-TAP in
both WT and cka2� backgrounds, demonstrating that phos-
phorylation by CK2 is not necessary for Psh1-Ubc3 interaction
(Fig. 6C). Therefore we reasoned that phosphorylation does not
control the physical interactions between Psh1 and Cse4 or
Psh1 and Ubc3 but rather that the ubiquitin transfer from
Ub�Ubc3 to Cse4 is controlled by phosphorylation. Support-
ing this idea, we detected reduced levels of Ubn-Cse4 in both a
cka2� strain and the strain expressing phosphodepleted Psh1-
S8A/T2A (Figs. 3B and 5). Ubiquitin charging of Ubc3 has been
reported to be positively regulated by CK2 phosphorylation of
Ubc3. Therefore, reduced levels of Ubn-Cse4 in the cka2�
strain could be due to the collective effect of poor ubiquitin
charging on Ubc3 and inefficient ubiquitin transfer from
Ub�Ubc3 to Cse4. Reduced levels of Ubn-Cse4 in the Psh1-
S8A/T2A strain could reflect inefficient ubiquitin transfer from
Ub�Ubc3 to Cse4.

Recent work suggests a role for protein subunits of the Skp1-
Cdc53/Cullin-F box (SCF) complex in centromere/kinetochore
regulation. For example, a subunit of the Mis18 complex, which
regulates CENP-A localization in human cells, is targeted for
proteolysis by SCF (26). SCF is an evolutionarily conserved
multisubunit E3 ubiquitin ligase (27). Interestingly, Ubc3, the
E2 ubiquitin-conjugating enzyme for Psh1, functions as the E2
for SCF E3 ligases (28). This raises the question whether Psh1
functions as a subunit of the SCF complex to facilitate Cse4
proteolysis. The stability of centromere identifier (CID), Dro-
sophila CenH3, is regulated by Ppa, which is an F box protein
subunit of the SCFPpa E3 ligase complex (13). We tested
whether Psh1 can interact with Cdc53, an invariant core sub-
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unit of SCF, using a co-IP. We did not observe any interaction
(data not shown), suggesting that Psh1/Ubc3 acts on Cse4 inde-
pendently of other SCF components.

We previously reported an autoubiquitylation site, Lys-303
(indicated in Fig. 1B), on Psh1 identified by in vitro ubiquityla-

tion followed by MS (11). This indicates that Psh1 levels could
also be controlled through proteolysis. In vivo, Psh1 ubiquity-
lation could be mediated by itself and by one or more other E3
ligases. Phosphorylation of Psh1 by CK2 may regulate ubiqui-
tylation and proteolysis of Psh1 as well. To test this, we per-
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formed a Psh1 stability assay using a strain expressing Psh1-HA
as the sole copy from the endogenous promoter (Fig. 7A). We
observed stabilized Psh1 levels with CKA2 deletion. We further

examined Ubn-Psh1 levels in vivo (Fig. 7B). If CK2 phosphory-
lation of Psh1 facilitates ubiquitylation of Psh1, then Ubn-
Psh1-HA should be diminished in a cka2� strain. Although
Psh1 was stabilized in cka2� strain, we did not see a reduction
in Ubn-Psh1-HA (Fig. 7B, lower panel). Therefore, phosphory-
lation of Psh1 by CK2 may not control ubiquitylation of Psh1, or
the difference may be beyond the detection limit of this assay
such as we observed with Cse4 ubiquitylation in the psh1�
strain. Supporting the idea that phosphorylation may not facil-
itate ubiquitylation and degradation of Psh1, we did not observe
a stabilization of Psh1-S8A/T2A-HA or destabilization of Psh1-
S6D-HA compared with Psh1 (Fig. 7, C and D). In fact, the
phosphodepleted mutant, Psh1-S8A/T2A-HA, was destabi-
lized compared with WT (Fig. 7C). Although this mutant could
associate with Cse4 to a similar level as wild type Psh1 (Fig. 4F),
it might be recognized as a defective protein due to compro-
mised E3 ligase function and targeted for faster degradation by
cellular mechanisms.

Cse4 Is Mislocalized in a cka2� Strain—Overexpression of
Cse4 in a psh1� strain was toxic, and Cse4 was significantly
mislocalized (Figs. 2A and 8A and Ref. 11). Because a cka2�
strain showed high Cse4 levels, we predicted that Cse4 mislo-
calization would increase. We used Cse4 strains from Fig. 2A to
examine Cse4 levels at non-centromeric regions. We followed
Cse4 at the ribosomal DNA and PHO5 promoter using ChIP
followed by quantitative PCR (Fig. 8A). Cse4 mislocalization to
these regions was elevated in a cka2� strain compared with a
WT strain. However, the mislocalization was significantly
lower compared with a psh1� strain, although the overall level
of Cse4 in the cka2� strain was higher than that observed in a
psh1� strain. Cse4 mislocalization was increased with the
psh1�cka2� double deletion compared with the cka2� single
deletion. Both Cse4 and Psh1 were significantly stabilized in a
cka2� strain (Figs. 2B and 7A), and Psh1-Cse4 interaction was
not disrupted by the deletion of CKA2 (Fig. 6B). Therefore, we
suggest that the association of Cse4 with Psh1 may reduce non-
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centromeric deposition of Cse4 in the cka2� strain. Psh1-Cse4
association could reduce the amount of Cse4 available to the
histone chaperones responsible for non-centromeric deposi-
tion. When Psh1 is removed in a cka2� strain, more Cse4
becomes available for chaperones, leading to increased misin-
corporation of Cse4.

Scm3 is a centromeric nucleosome assembly factor (29) and
is essential to recruit Cse4 to centromeres and to maintain a
functional kinetochore (30). Growth of a Scm3 deletion or shut-
off (Scm3off) strain can be rescued by overexpression of Cse4,
and deletion of PSH1 improves rescue (11, 30). Under these
conditions, some other histone chaperone must be responsible

for the assembly of Cse4 nucleosomes. (For instance, the H3.3
chaperone death domain associated protein (DAXX) was
reported to regulate ectopic localization of CENP-A in human
cells (31).) If Psh1-Cse4 association prevents Cse4 availability
for nucleosome assembly, then deletion of cka2� may not res-
cue the Scm3off strain. To test this, we performed a growth
assay using strains containing Gal-inducible endogenous Scm3
and copper-inducible Cse4 (Fig. 8B). The level of Cse4 can be
controlled with copper concentration. Growth of WT, psh1�,
and cka2� strains was compared under Scm3on and Scm3off

conditions. We observed no growth difference between the
strains when Scm3 was on. However, when Scm3 was off in the
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cka2� strain compared with the psh1� strain, rescue of growth
by Cse4 overexpression was poor (Fig. 8B, Scm3off). This result
is consistent with the notion that Cse4 availability for nucleo-
some assembly requires deletion of PSH1, and CKA2 deletion
does not suffice. Together, our data suggest that Psh1-Cse4
physical association itself functions to prevent mislocalization
of Cse4.

DISCUSSION

Here we report that phosphorylation by CK2 facilitates Psh1-
assisted Cse4 degradation. Lack of complete stabilization of
Cse4 following deletion of PSH1 suggested additional regula-
tion of Cse4 stability (11). We demonstrate that phosphoryla-
tion events by CK2 provide an additional mechanism for regu-
lating Cse4 stability. Based on our findings, we propose a model
for how Cse4 is controlled by Psh1 and CK2. In wild type cells
(Fig. 9A), CK2 phosphorylates Psh1, activating the E3 ubiquitin
ligase function of Psh1 toward Cse4. CK2 phosphorylation of
Ubc3 also improves ubiquitin transfer from Ub�Ubc3 to Cse4.
Activation of Psh1 promotes efficient removal of the soluble
pool of Cse4 and may also improve the removal of misincorpo-
rated Cse4. This regulation is especially important when
Cse4 is overexpressed. In a psh1� strain (Fig. 9B), lack of
Psh1-mediated proteolysis results in stabilization and mis-
incorporation of Cse4. The histone chaperones responsible
for the misincorporation of Cse4 remain to be identified. In
a cka2� strain (Fig. 9C), the lack of Psh1 and Ubc3 phosphor-
ylation dramatically stabilizes Cse4. However, the reduced
Psh1/Ubc3 activity is not problematic because Psh1 is also

stabilized and can act as an effective sink for excess Cse4,
preventing Cse4 misincorporation.

We suggest that Psh1/CK2 may help to control both the cen-
tromeric and non-centromeric pools of Cse4. Two recent stud-
ies show that Pat1 localizes to centromeres and maintains a
pool of Cse4 in the vicinity of the kinetochore cluster (32, 33).
Centromere/kinetochore-bound Psh1 and CK2 may help regu-
late this accessory Cse4 pool. Psh1 may also target non-centro-
meric Cse4 with the help of the facilitates chromatin transcrip-
tion (FACT) complex, a chromatin disassembly/reassembly
factor (12). Psh1 was first discovered associated with Spt16 and
Pob3, components of the budding yeast FACT complex. All
four subunits of CK2 co-purify with Spt16 along with Psh1 (34),
and the Cka2 subunit of CK2 associates with chromosome arms
as revealed by ChIP (35). This suggests that CK2 phosphoryla-
tion could regulate Psh1 targeting of misincorporated Cse4 as
well.

Regulation of kinetochore proteins by kinases/phosphatases
is well known. The evolutionarily conserved kinase Ipl1/Aurora
B regulates kinetochore function through phosphorylation of
kinetochore proteins (36). Opposing activities of Mps1 and PP1
regulate the phosphorylation level of kinetochore protein
Spc105 (37). Evidence from previous reports suggests that CK2
might regulate kinetochore function. Studies using a tempera-
ture-sensitive mutant cka1� cka2-8 demonstrate that Cka2
functions in cell cycle progression (35). cka1� CKA2 cells
showed DNA content similar to wild type and normal mitotic
spindle elongation and chromatid separation. However, cka1�
cka2-8 cells had abnormal DNA profiles, short spindles, and
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problems with sister chromatid separation at non-permissive
temperature, suggesting an important role of Cka2 in kineto-
chore function and chromosome segregation. Interestingly,
Mif2 and Ndc10 are targets of CK2 (35). Although Ipl1 and CK2
show an antagonistic effect on Mif2 stability, the two kinases
have a synergistic effect on Ndc10. By analogy, CK2 may play an
antagonistic/synergistic role with another kinase for Psh1. The
phosphorylation of Psh1 may be regulated by additional phos-
phatases or deubiquitylases. In any event, our results continue
to implicate CK2 as an important kinase regulating kineto-
chore-associated proteins.

Our work reported here identifies a previously unknown
function of CK2 in Cse4 regulation. Our study lays the founda-
tion for future work on the role of CK2 in proteolysis of Cse4 in
budding yeast and potentially of CenH3 variants or additional
kinetochore components in other eukaryotic organisms. Future
studies will help unravel more details regarding the proteolytic
surveillance mechanisms that regulate cellular Cse4 and facili-
tate faithful chromosome segregation.
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