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Abstract: Ball velocity is considered an important performance measure in baseball pitching. Proper
pitching mechanics play an important role in both maximising ball velocity and injury-free partici-
pation of baseball pitchers. However, an individual pitcher’s characteristics display individuality
and may contribute to velocity imparted to the ball. The aim of this study is to predict ball velocity
in baseball pitching, such that prediction is tailored to the individual pitcher, and to investigate the
added value of the individuality to predictive performance. Twenty-five youth baseball pitchers,
members of a national youth baseball team and six baseball academies in The Netherlands, per-
formed ten baseball pitches with maximal effort. The angular velocity of pelvis and trunk were
measured with IMU sensors placed on pelvis and sternum, while the ball velocity was measured
with a radar gun. We develop three Bayesian regression models with different predictors which
were subsequently evaluated based on predictive performance. We found that pitcher’s height adds
value to ball velocity prediction based on body segment rotation. The developed method provides a
feasible and affordable method for ball velocity prediction in baseball pitching.

Keywords: ball velocity; inertial measurement unit; multilevel modeling; pitching; baseball

1. Introduction

Proper pitching mechanics play an important role in both success and health of
baseball pitchers. In overhead pitching, the lower extremity and trunk generate and
transfer energy to the upper extremity. The optimal sequential activation of body parts
while pitching, known as the kinetic chain, can result in reduced elbow and shoulder
stress and maximise pitching performance [1,2]. On the other hand, poor mechanics can
lead to increased loading of the elbow or shoulder, and increase the injury risk. Injuries
of the throwing arm, such as the ones to the shoulder and elbow, are common in the
overhead pitching motion of baseball. Major League Baseball pitchers are especially
prone to injury because of the throwing velocities commonly seen approaching and even
exceeding 100 mph. To create such high ball velocities, high energy levels pass through the
components of the kinetic chain that affect the weakest links among them, especially the
elbow [3]. Therefore, there is a need for assessment of the throwing technique that enables
players to throw fast pitches in the strike zone without an overload.

Throwing velocity plays an important role in a success of a baseball game. Pitchers
increase their chances for success by throwing faster and diminishing the hitter’s decision
time of whether or not to strike the ball [4]. Furthermore, high ball velocities restrict the
offense’s ability to advance bases and score runs [5]. Among other parameters, ball velocity
is considered an important performance measure sought after by coaches and scouts. It
enables baseball players to improve their ability to play and to be noticed by coaches and
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scouts for higher levels of competition. Therefore, every pitcher aims to increase the ball
velocity [6,7].

The pitching biomechanics in baseball is studied to improve players’ performance
and prevent sport-related injuries. With development of the measurement and analytical
tools, pitching coaches and biomechanists can accurately analyse the rapid and complex
movements during the pitching motion [8]. Although professional baseball teams have
used biomechanical analysis for years already, recent advances in technology give amateur
players and clubs opportunities to measure their mechanics and improve performance.
Body worn sensors, such as inertial measurement units (IMUs), are a low-cost alternative
to motion capture systems with passive markers, with no space limitation or cumbersome
setup procedure. Portable, affordable, and easy-to-use, they monitor athlete’s performance
without obstructing it [9].

As the quality of the throw is mainly determined by the pitcher’s throwing me-
chanics, we can use IMUs to measure kinematic parameters shown to be linked to ball
velocity [7,8,10]. Enhancing pitching technique through the optimal position and timing of
proper pitching mechanics, can result in a fast and accurate throw. Estimating ball velocity
based on IMU recordings can be the first step towards assessment of the pitching technique
that results in fast throws with reduced injury risk.

Ball velocity is mostly measured in high level games and in training situations. Al-
though a radar gun gives an accurate reading of a ball velocity, a required strict protocol
and high price represent a big issue for baseball clubs, especially the smaller ones. On
the other hand, IMUs do not need a fixed location on the field for measuring ball velocity,
thus they can be used on many different occasions. The previous studies demonstrated the
potential use of IMUs for estimation of the ball velocity in different overhead-throwing
sports, including baseball [11–13].

The use of IMUs represent a potential for the estimation of the ball speed in different
on-field situations based on kinematic parameters measured by the same sensors. How-
ever, each pitcher is a unique individual and his individual characteristic may display
individuality contributing to imparted velocity to the ball [7,14]. With IMUs, every throw
of an individual pitcher can be recorded: during warm-up, training, before and during
the game, which contributes to the element of individualisation. Therefore, in this paper,
we present a method for predicting ball velocity in baseball pitching based on pitcher’s
kinematics measured by IMUs and individual characteristics. We investigate the added
value of the individuality to predictive performance of developed models.

2. Materials and Methods
2.1. Participants

Data were collected from 25 baseball pitchers with a mean age of 14.7 ± 1.5, mean
body height 176.91 ± 11.03 cm and mean body weight 65.6 ± 14.4 kg. Participants were
recruited from the national U18 baseball team, as well as all six baseball academies in The
Netherlands, at which the most talented baseball players of that region train. This research
was conducted in accordance with the Declaration of Helsinki and the Department of
Human Movement Sciences’ local ethical committee approved the measurement protocol
[ECB 2013-53]. Both participants and their parents were informed of the procedure and
study aims before the start of the measurements. Informed consent was obtained from the
parents of the participants before involvement in the study.

2.2. Methodology

The measurements were performed at the indoor facilities of the academies. After
performing several anthropometric measurements, pitchers were given unlimited amount
of time for their standard warm-up. They were instructed to prepare just as if they were
going to pitch in a game. Warm-up included a general warm-up, j-band exercises, and
longtoss, which is a standard warm-up for baseball pitchers before the game. The pitchers
wore sneakers, athletic shorts, and no shirt. They also wore their catching glove to mimic
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the game situation as much as possible. After warm-up, the pitcher was instructed to
perform 10 fastball pitches with maximal effort towards a catcher sitting behind home plate.

The pitching motion was recorded using two 9-DOF IMUs (MPU-9150, Invensense,
San Jose, CA, USA, Accelerometer ± 16 g, Gyroscope ± 2000 deg/s). Sensors were rigidly
attached to pelvis and sternum (Figure 1) using double-sided adhesive tape and used to
record body segment rotation. Every sensor was embedded in a protective casing together
with a battery and SD-card, onto which the data were logged at a sample frequency
of 500 Hz. IMU’s gyroscope recorded angular velocities continuously throughout the
participant’s session. Previous studies used peak values of kinematic measures to address
their effect on the ball velocity in baseball pitching [2,6,7,10]. Therefore, for the gyroscope
signal, we calculated the peak angular velocity as its Euclidean norm. Each recording
was manually segmented into parts containing only a single pitch. We performed the
segmentation by plotting the entire gyroscope signal and locating the 10 peaks each
corresponding to a pitch (see Figure 2). This was done in a similar way in [11] for ball
velocity data obtained in handball.

Figure 1. Placement of the sensors.

The ball velocity (mph) reached during the pitches was measured from behind the
home plate using a Stalker pro 2 radar gun (Stalker Radar, Plano, TX, USA). We coupled
recorded ball speed with corresponding peak angular velocities during single pitch.

2.3. Statistical Analysis

The repeated measurements of individual pitchers can be grouped into a hierarchical
structure. The differences between participants arise from differences in personal charac-
teristics, such as age, body weight, and height, that, next to the kinematic parameters of
pitching mechanics, may contribute to increased ball velocity [1,2,8]. Observations in this
study are ball throws nested within different participants and the link between individual-
and group-level is participant’s indicator (ID).

Statistical models that can deal with units grouped on different levels are known as
multilevel models. Multilevel models extend standard regression models to data which are
structured in groups and where coefficients are allowed to vary by groups. The feature
that distinguishes multilevel models from classical regression is the modeling of variation
between groups. This enables us to study the effects that vary by group. Therefore, in this
paper we introduce multilevel modeling as the main method for ball velocity prediction in
baseball pitching.
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Figure 2. Segmenting the baseball pitches using gyroscope peaks. For the gyroscope signal, we
calculated the peak angular velocity as its Euclidean norm. Each recording was manually segmented
into parts containing only a single pitch. We performed the segmentation by plotting the entire
gyroscope signal and locating the 10 peaks each corresponding to a pitch.

At the same time as including repeated measurements of segment rotation per partici-
pant, the multilevel approach enables us to examine the added value of the individuality
in ball velocity prediction. Group-level predictors were selected among personal character-
istics that were collected prior to the measurements. We addressed the high correlation
between pitcher’s height, weight and age. It is reasonable to expect that older pitchers
will be taller and therefore weigh more. To select group-level predictors and avoid poor
prediction performance due to correlation of predictors, we applied a random forest (see
for instance chapter 8 in [15]), as implemented in the caret package [16]. Based on variable
importance (Figure 3) calculated with varImp from a caret package, we selected pitcher’s
height as a group-predictor. We developed three multilevel Bayesian regression models for
ball velocity prediction using R 4.0.3 [17] and rstanarm [18,19].

In the following, yi denotes the ball speed for the observation indexed i.

1. Complete-pooling model (Observations)
The complete-pooling model is a single classical regression model completely ignoring
group information. In other words, the model treats all ball throws as different
observations of the same participant. The model is given by

yi = β0 + β1x1i + β2x2i + εi (1)

where {x1i, x2i} are individual-level predictors, namely peak angular velocity of pelvis
and trunk, respectively. The complete-pooling model does not make a distinction
between different pitchers and in that way neglects their personal characteristics.

2. Two-level varying-intercept model (Personal)
The two-level varying-intercept model is a regression that opposed to complete-
pooling includes indicators for groups. In this model an intercept is calculated for
every group and one joint slope is assumed for the entire sample. The model is
given by

yi = αj + εi (2)

αj = γ0 + γ1uj + ηj (3)
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where uj is a centered group-level predictor, namely pitcher’s height. The group
membership j[i] denotes pitcher j throwing a ball i. In this model pitching technique
is neglected and the outcome depends only on height of an individual pitcher.

3. Two-level varying-intercept, varying-slope model (Full)
The varying-intercept, varying-slope model represents the model in which both the
intercept and the slope vary by group. The model is given by

yi = αj[i] + β1x1i + β2x2i + εi (4)

αj = γ0 + γ1uj + ηj (5)

and includes both individual- and group-level predictors. In both (3) and (5), the
coefficient γ0 can be interpreted as the ball speed of a ball thrown without any pelvis
and trunk rotation by the pitcher of an average height. The εi in (1), (2) and (4) and ηj
in (3) and (5) represent independent error terms at each of the two levels.

Importance

Pelvis

Trunk

Age

Weight

Height

0 1000 2000 3000

Figure 3. Visual representation of the variable importance calculated by applying random forest. The
horizontal axis should be interpreted as a measure for relative importance of predictive variables. The
figure reveals Height to be the most important predictor for ball speed which is, therefore, selected as
group-level predictor.

All individual- and group-level predictors were rescaled to have sample variance 1.
The scaling is done by dividing the centered predictor u by its standard deviation. We used
scaling to transform the data to comparable values.

We used leave-one-out (LOO) cross-validation to select out of the three proposed
models the model with best predictive performance. LOO resulted in a total of 224 folds as
224 pitches from 25 pitchers were included in the analysis. Following the approach in [20],
the predictive performance of a model is defined as the expected log-predictive density
(elpd). Predictive performance is a useful quantity in assessing a single model. It can be
estimated by training the model on all observations except one and then predicting the
hold-out observation. This is then repeated for all n observations
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elpd =
n

∑
i=1

log p(yi | y−i) (6)

where

p(yi | y−i) =
∫

p(yi|θ)p(θ|y−i)dθ (7)

is the LOO predictive density upon leaving out the ith data point. If the posterior p(θ | y−i)
is summarised by B simulation from θi,b, then we can approximate log p(yi | yi=1) by

êlpdi =
1
B

B

∑
b=1

p(yi | θi,b)

leading to êlpd = ∑n
i=1 êlpdi as an estimate for êlpd.

Different models can be compared against each other according to their elpd-value.

Suppose we wish to compare modelsM1 andM2, with estimated elpd values êlpd
1

and

êlpd
2
, respectively.

Since the same set of n data points is being used to fit all models, we can use a paired
estimate to compute a standard error of their difference:

se
(

êlpd
1
− êlpd

2)
=

√
nVn

i=1

(
êlpd

1
i − êlpd

2
i

)
. (8)

Here, for numbers {ai}n
i=1 we define Vn

i=1ai =
1

n−1 ∑n
i=1(ai − ān)2.

3. Results

We included in the analysis 224 pitches from 25 pitchers for which the ball velocity
was recorded and sensor clipping did not occur. Characteristics of the measured ball and
peak angular velocities of pelvis and trunk are summarised in Table 1.

Table 1. Summary of measured ball and peak angular velocities.

Mean ± Standard Deviation

Peak pelvis angular velocity (deg/s) 690.2 ± 90.9
Peak trunk angular velocity (deg/s) 1172.4 ± 239.5

Ball velocity (mph) 68.3 ± 6.5

We consider the model called Observations model as base model. The other two
proposed models, Personal and Full, are extensions since they have two instead of one level
and they introduce the group participation that makes a distinction between pitchers of a
different height. Therefore, comparing the developed models determines the contribution
of the kinematic parameters related to pitching mechanics and body height of a pitcher to
accuracy of ball speed prediction. The graphical representations (Figures 4–6) show that
both the models Personal and Full provide a good fit to the observed data, while the fit of
Observations is unsatisfactory.
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Model: Observations

Figure 4. Ball velocity observations (dots) vs. average simulated value of the ball speed (line) from
the posterior predictive distribution of the Observations model. This graphical representation suggests
that Observations model leaves a large amount of variation in the data unexplained.
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Model: Personal

Figure 5. Ball velocity observations (dots) vs. average simulated value of the ball velocity (line) from
the posterior predictive distribution of the Personal model. This graphical representation suggests
that Personal model is a good fit to collected data.
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Figure 6. Ball velocity observations (dots) vs. average simulated value of the ball velocity (line) from
the posterior predictive distribution of the Full model. This graphical representation suggests that
Full model is a good fit to collected data.

The Full model is a preferable model, followed by the Personal and Observations model
(see Tables 2 and 3).

Table 2. Comparison of fitted models. The rows show the difference in êlpd, with estimated standard
error in brackets, between the Full model and remaining models (Personal and Observations).

êlpd
Full
− êlpd

Personal
−5.5 (3.3)

êlpd
Full
− êlpd

Observations
−308.3 (13.5)

Table 3. Comparison of fitted models.

R2 RMSE

Full 0.975 0.014
Personal 0.973 0.014

Observations 0.137 0.089

4. Discussion

The aim of this study was to predict a ball velocity in baseball pitching such that
prediction is tailored to the individual pitcher. The proposed method included pitcher’s
body segment rotation, which determines his technique, and pitcher’s height that displays
individuality in imparted velocity to a ball. We used multilevel modeling to develop
three models with different predictors and examined their predictive performance. By
comparing developed models, we investigated the added value of individuality to ball
velocity prediction.

Ball velocities presented in this study are similar to the ones reported in the previous
studies. Pitchers with a mean age of 14.7 ± 1.5 years threw balls with average velocity
30.6 ± 2.9 m/s, while Dun [21] reported average ball velocity of 26.3 ± 3.8 m/s measured
in a population of youth pitchers throwing fastballs.

In the overhead pitching, the lower extremity and trunk generate and transfer energy
to the upper extremity. To examine the relationship between ball velocity and variations in
pitching biomechanics on individual level, previous studies identified maximum pelvis
and trunk angular velocity as kinematic parameters linked to ball velocity [7,8,10]. Recent
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technological developments brought IMUs to a spotlight as an alternative to marker-based
systems used in a laboratory setting. Since IMU’s gyroscope enables measuring body
segment rotation, we assessed pitching technique by positioning IMU sensors on pelvis
and trunk. Measured peak angular velocity of pelvis of 690.2 ± 90.9 deg/s and trunk of
1172.4 ± 239.5 deg/s supports the findings in previous studies [2,21]. As the gyroscopes
recorded angular velocities continuously throughout the participant’s session, manual
segmentation was required. In future work, we wish to develop a method for automatic
detection of single throws and segmentation of the continuous-time gyroscope signal when
the boundaries between different throws are unclear. This will automatise the use of
predictive models for predicting ball velocity. Filtering methods from signal processing
may prove to be useful for this purpose.

Among the compared models, model Full shows the best predictive performance
(Table 3). Model Observations is worse than model Full by 308.3 of log predictive probability
values. The difference in estimated elpd-values is big compared to estimated standard
error of 13.5. Hence, adding pitcher’s height to the Observations model improves predictive
accuracy. Model Personal includes only the pitcher’s height as a predictor and ignores the
pitching technique. The model shows that taller pitchers throw faster and it is possible to
already estimate ball velocity only by knowing the pitcher’s height. This information can
be useful for scouts in search for baseball talents. A pitcher’s height compared to other
personal characteristics, such as age and weight, is the most important predictor for ball
velocity in baseball pitching. On the other hand, of course neither pitchers nor coaches can
influence height. The outcome of this paper demonstrates the added value of a pitcher’s
height to predictive accuracy.

The proposed method can potentially be adopted in baseball practice. IMUs are
easy-to-wear low cost sensors that do not influence a pitcher’s performance and can be
a valuable source of data. It can provide information on pitching performance in every
situation and with a method proposed in this paper, gain ball velocity without use of a
radar gun. Ball velocity prediction can give a better insight into pitcher’s performance and
represents a potential for predictions of future throwing speed when pitchers grow taller.

For future studies, we suggest also to include separation time and pitch types in
the presented model. Following the concept of a kinetic chain, the relative timing of the
moments of pelvis and trunk peak angular velocity, when throwing fastballs, is associated
with ball velocity in skilled pitchers [22]. Furthermore, to the best of our knowledge, no
study has classified pitch types based on IMU data solely. Classification of pitch types
outside the laboratory or game environment provides benefits in designing and outlining
training routines and represents a potential research direction in the future. Following the
segmentation of continuous gyroscope signals, we suggest extracting additional features
next to the peak angular velocities, such as skewness, mean, and difference between
minimum and maximum. This would result in more parameters that may be included
in the model and improve the classification of different pitch types and the prediction of
ball velocity.
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