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Abstract: Sex biases in the genome-wide distribution of DNA methylation and gene expression levels
are some of the manifestations of sexual dimorphism in mammals. To advance our understanding of
the mechanisms that contribute to sex biases in DNA methylation and gene expression, we conducted
whole genome bisulfite sequencing (WGBS) as well as RNA-seq on liver samples from mice with
different combinations of sex phenotype and sex-chromosome complement. We compared groups of
animals with different sex phenotypes, but the same genetic sexes, and vice versa, same sex phenotypes,
but different sex-chromosome complements. We also compared sex-biased DNA methylation in
mouse and human livers. Our data show that sex phenotype, X-chromosome dosage, and the
presence of Y chromosome shape the differences in DNA methylation between males and females.
We also demonstrate that sex bias in autosomal methylation is associated with sex bias in gene
expression, whereas X-chromosome dosage-dependent methylation differences are not, as expected
for a dosage-compensation mechanism. Furthermore, we find partial conservation between the
repertoires of mouse and human genes that are associated with sex-biased methylation, an indication
that gene function is likely to be an important factor in this phenomenon.

Keywords: ]sexual dimorphism; DNA methylation; gene expression; mouse liver; sex-chromosome
complement; whole genome bisulfite sequencing

1. Introduction

Mammalian males and females carry different sex-chromosome complements (XX in females
and XY in males); produce different levels of sex hormones; have different anatomy and physiology;
and, in humans, have different risks for developing certain diseases. Gene expression is a major
player in defining cell phenotype and is regulated by epigenetic factors, such as DNA methylation
and chromatin organization. Hence, it is logical to hypothesize that the difference between the male
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and female cells results from differences in gene expression, which are accompanied by differences
between the male and female cell epigenomes.

In both mice and humans, the expression levels of a subset of genes vary between males and
females in somatic cells [1–5]. The gonadal sex of the mouse has a major effect on gene expression levels
in mouse liver [1,6]. In contrast, the sex-chromosome complement drives sex-biased gene expression
in mouse embryonic stem cells, adult mouse thymus or heart, as well as human peripheral blood
cells [2–4,7]. Thus, data from both mouse and human studies suggest a complex regulation of sexually
dimorphic gene expression where the roles of gonadal sex hormones and sex chromosomes vary
between different tissues and developmental stages.

DNA methylation or chromatin modifications are essential regulatory layers involved in the
orchestration of gene expression. They also contribute to the sex-biased gene expression and,
thereby, sexual dimorphism in phenotypes. Indeed, in humans, global levels of DNA methylation
and methylation of repetitive elements, in particular, are higher in males [8–10]. In contrast,
most differentially methylated regions (DMRs) located within autosomal genes show higher methylation
levels in females [8,11–13]. Comparison of DNA methylation patterns in individuals with numerical
sex-chromosome aberrations (45,X females with Turner syndrome and 47,XXY males with Klinefelter
syndrome) suggest a strong effect of sex-chromosome dosage on the human methylome [14–17]. In mice,
DNA methylation levels tend to be higher in females, with about twice as many hypermethylated
DMRs found in females than in males [18]. Furthermore, combined data from the ENCODE and
Roadmap Epigenomics projects suggest that sex differences in epigenetic marks are more likely to
occur at enhancer regions and “bivalent” regions that carry both active and repressive epigenetic
marks [6,19]. Thus, DNA methylation and chromatin modification data from the two best studied
mammalian species support the notion of a sexually dimorphic epigenome. However, the exact
genetic and molecular mechanisms responsible for these sex biases and the distinct contributions of
sex-chromosome linked genes versus gonadal sex hormones have only recently begun to be elucidated.

To better understand how sex-biased DNA methylation patterns arise and whether they are
associated with sex-biased expression, we undertook a survey of DNA methylation and gene expression
in the liver of adult mice with different combinations of sex-chromosome complement and phenotypic
sex: XY males (XY.M), XX females (XX.F), females with monosomy X (XO.F), and sex reversed XY
females (XY.F) (Figure S1, Table S1). We generated catalogues of those DMRs that depended on the sex
phenotype and those that depended on the sex-chromosome complement. For simplicity, both types of
DMR are referred to as sex-associated DMRs (sDMRs) from this point on. We present evidence that the
sex phenotype and sex-chromosome complement are both major contributors to sexual dimorphism in
DNA methylation. We also compared our mouse data with a human liver methylation dataset and
found overlaps in the sex-biased methylation patterns.

2. Materials and Methods

2.1. Mouse Strains and Crosses

B6.C3H/HeSn-Paf mice (referred to as Paf from this point on) were generated by backcrossing
C3H/HeSn-Paf/J carriers of the patchy fur (Paf ) mutation purchased from the Jackson Laboratory to
C57BL/6J mice (Jackson Laboratory, Bar Harbor, Maine, USA). Males that carry the Paf mutation were
identified based on their hair loss phenotype and crossed to C57BL/6J females. Female offspring from
these crosses were genotyped using reverse transcription followed by PCR (RT-PCR) for the Xist gene,
which is expressed in XX females, but not in XO females [20,21]. Liver samples from 8-week-old N6
and N7 XO females and their XXPaf littermates were collected and used for DNA methylation and
expression analyses (Figure S1).

The B6.YTIR mouse (referred to as TIR from this point on) was established by placing the
Y chromosome from a variant of Mus musculus domesticus caught in Tirano, Italy (TIR) onto the C57BL/6J
genetic background [22,23]. TIR males (N69-72) were crossed to C57BL/6J females to produce XY
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and XX females and XY males. Females were genotyped using PCR for the Y-linked Zfy gene [23,24].
For whole genome bisulfite sequencing (WGBS), liver samples from 8-week-old animals (three mice
in each of the sex/genotype groups and two mice for the XXPaf.F group) were used. For validation
experiments, between four and eight liver samples from each sex/genotype group were collected.
For expression analysis, 4 XX.F, 4 XY.F, 4 XY.M, 5 XXPaf.F, and 4 XO.F liver samples from 8-week-old
mice were collected (Table S1).

All procedures were conducted in accordance with the guidelines set by the Canadian Council on
Animal Care (Ottawa, Ontario, Canada) and were approved by the Animal Care Committee of the
McGill University Health Center (Montreal, Quebec, Canada).

2.2. DNA Extraction and Sequencing

DNA from mouse livers was extracted using a standard proteinase K phenol/chloroform procedure
or by QIAamp Fast DNA Tissue Kit (Qiagen, Venlo, Netherlands). Library preparation and WGBS were
performed at the McGill University and Genome Quebec Innovation Centre. Paired-end sequencing
using an Illumina HiSeqX sequencer was distributed across 17 lanes in three sequencing runs. Each lane
had a mix of sequencing libraries, to avoid batch effects. Once demultiplexed, each sample had a
minimum of 400 million raw paired reads of 150 bp each.

2.3. Methylation Calling and Single Nucleotide Polymorphism (SNP) Filtering

Methylation calling was performed with the GenPipes (v3.1.4) “Methyl Seq” pipeline [25]. Briefly,
raw reads were trimmed for quality (quality score ≥30) using trimmomatic (v 0.36) [26], and then
aligned to the Mus musculus GRCm38 (mm10) reference genome using the bisulfate read aligner
Bismark (v 0.18.1) [27]. All samples had a mean coverage of at least 20×, across the genome. Duplicate
reads were then removed using Picard (v 2.9.0) [28] and methylation calls were extracted using the
methylation caller included as part of Bismark. Finally, called CpGs were filtered to remove any sites
that overlapped with loci from the NCBI reference SNP database for GRCm38 (dbSNP version 142) [29],
to reduce potential bias introduced by genetic variation between samples. On average, this meant the
removal of 4.4 million CpGs from each sample.

2.4. Detection of Differentially Methylated CpG Sites (DMC) or Sex-Associated Differentially Methylated CpG
Sites (sDMC)

Differential methylation was detected using DSS (v2.32.0) [30] and methylKit (v1.10.0) [31].
The quality control (QC) step was done by checking the distributions of CpG methylation levels and the
CpG coverages. The methylation calls were preprocessed by removing CpG sites with coverage >500×
to account for PCR bias. A principal component analysis (PCA) was performed on the methylation
levels of the top 2500 most variable CpG sites. A heatmap on the top 2500 most variable CpG sites was
generated with ComplexHeatmap (v3.10) [32], using Spearman correlation to cluster loci based on
methylation levels. Methylation level was in the range of 0% to 100%, where 0% meant no methylation
and 100% represented full methylation.

DSS applied a 500-bp (default) smoothing window to estimate and compare methylation of CpG
sites across conditions. The smoothing process was done by the function DMLtest, implemented in the
DSS package. After the smoothing step, Wald tests were used for testing differential methylation at
each CpG site. The function callDML then took the result from DMLtest as input to extract differentially
methylated CpG sites (DMC) or sex-associated differentially methylated CpG sites (sDMC) by applying
a default threshold p-value < 1 × 10−5. Subsets of DMC or sDMC were then tailored based on
methylation differences. The intersections among DMC or sDMC in different comparisons were
illustrated by UpSet Plots using the R package UpSetR (v1.4.0) [33,34].
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2.5. Detection of Sex-Associated Differentially Methylated Regions (sDMRs)

Sex-associated differentially methylated regions (sDMRs) were estimated to leverage the spatial
correlation of methylation levels among consecutive CpG sites. With the DSS tool, similar to callDML,
the core function callDMR took the result from DMLtest as input. Multiple restrictions were applied,
including a requirement that each sDMR had a minimum length of 50 bp and spanned at least three
CpG sites. Any two sDMRs within 100 bp from each other were merged into one bigger sDMR.
Only sDMRs with methylation differences >20% were kept as the output of DSS.

We also identified sDMR using methylKit, where the boundaries were identified by tiling the
genome with 300 bp length and 300 bp step-size windows. Only CpGs with sequencing depth in the
range [10X, 500X] were considered and only tiles with at least one CpG site were used. Differentially
methylated tiles were detected with q-value <0.05, where q-values were adjusted p-values using
the Success Likelihood Index Method (SLIM) method [35], and with a methylation difference >20%.
Over-dispersion correction (correction method “MN” in methylKit) was applied to further limit false
positives. If not specified, default values were used for all other parameters implemented in DSS and
methylKit. The final sDMR list used in downstream analyses was a union from the results of DSS
and methylKit. Only the sDMRs from DSS were kept in the case of overlap.

2.6. Pyrosequencing Assays

One thousand nanograms of DNA per sample was treated with sodium bisulfite using EpiTect
Bisulfite Kit (Qiagen, NL, USA). Primers for sex-associated differentially methylated regions (sDMRs)
(50–70 bp) were designed using the PyroMark Assay Design 2.0 Software (Qiagen, NL, USA). The list
of primers is provided in Table S2. Pyrosequencing was carried out using the PyroMark Q24 Advanced
platform and PyroMark Q24 Advanced CpG Reagents (Qiagen, NL, USA). The results were analyzed
using the PyroMark Q24 Advanced software (Qiagen, NL, USA).

2.7. Basic Annotation of sDMR/CpG Sites

Basic annotations, including CpG island (CGI) annotation, genic annotation, and chromatin
state estimation, of sDMR or CpG sites were performed for sDMRs from the four comparisons and
one background group containing all CpG sites (sequencing depth in the range 10×, 500×) with the
R package annotatr (v1.12.1) [36]. The CpG island (CGI) annotation was done using a reference
retrieved from the R package AnnotationHub (v2.18.0) [37], where the CpG shores were defined as 2 Kb
upstream/downstream from the end of CpG islands and CpG shelves were defined as another 2 Kb
upstream/downstream from the farthest limit of CpG shores, while the remaining genomic regions
were noted as inter CGI. The genic annotation was performed using R package GenomicFeatures
(v1.38.2) [38] and data from TxDb.Mmusculus.UCSC.mm10.knownGene (v3.10.0) [39]. Specifically,
the genic annotations included 1–5 Kb upstream of the transcription start site (TSS) (1–5 kb), the promoter
(<1 Kb upstream of the TSS), 5′UTR, exons, introns, and 3′UTR. The chromatin state was annotated with
a chromatin state estimation dataset [40–42] (https://www.encodeproject.org/files/ENCFF580WIS) that
had predicted 15 chromatin states of liver genome of male mice (strain C57BL/6J) with chromHMM [43].
The 15 chromatin states included the following: enhancer (Enh), weak enhancer (EnhLo1 and EnhLo2),
poised enhancer (EnhPois1 and EnhPois2), heterochromatin (HetCons), heterochromatin repressed by
PolyComb (HetFac), quiescent regions (Quies, QuiesG), active TSS (TssA), flanking TSS (TssAFlnk1
and TssFlnk2), bivalent TSS (TssBiv), and strong trancription (Tx1 and Tx2).

2.8. Enrichment Analysis of Repetitive Elements

sDMRs were annotated with UCSC track RepeatMasker [44–46] for the analysis of repetitive
elements (or repeats). We calculated the number of times each repeat family/subfamily overlapped our
list of sDMRs. As done before [47], in order to have a random baseline to compare against, for each
comparison, we simulated a library of 300 bp random regions, with the same distribution of distance

https://www.encodeproject.org/files/ENCFF580WIS
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to nearest genes as the sDMRs. For each comparison, the simulation was repeated 1000 times and
we counted the incidence of observed count being higher than the random baseline for each repeat
family/subfamily. A repeat family/subfamily was identified as over-represented (enriched) when the
over-represented incidence >995/1000 (p < 5 × 10−3).

2.9. Motif Enrichment Analysis with Homer

The genomic coordinates of all sDMRs were then used to detect enrichments of previously known
transcription factor binding sites with Homer (v.4.9.1) [48], applying the option “-len 8,10” in defining
the target motif lengths (targeting motifs with length 8 bp and 10 bp). The top five enriched motifs in
each of the four comparisons were presented in the form of heatmaps with the color intensity denoting
the enrichment level (in %) of motifs.

2.10. RNA Extraction and Sequencing

Total RNA was isolated using TRIzol Reagent (Thermo Fisher Scientific, MA, US) according to
the manufacturer’s instructions and followed by purification using the RNeasy MinElute Cleanup
Kit (Qiagen, NL). Library preparation and RNA-sequencing (RNA-seq) were performed at the McGill
University and Genome Quebec Innovation Centre. Paired-end sequencing using an Illumina NovaSeq
6000S4 sequencer was distributed across two lanes in two sequencing runs. Each lane had a mix of
sequencing libraries to avoid batch effects. Once demultiplexed, each sample had a minimum of 100
million raw paired reads of 100 bp each.

2.11. Differential Expression Analysis

Differential gene expression analysis was performed using the GenPipes “RNA-seq” pipeline [25].
Briefly, reads were trimmed and filtered for quality, then they were aligned to the mouse reference
genome (GRCm38) using STAR [49]. The abundance of each transcript was estimated using HT-Seq
Count (v.0.6.0) [50]. PC analysis and hierarchical clustering were performed on the abundance
data, after doing variance stabilizing transformation with DESeq. Differential gene expression was
determined with both the DESeq (v. 1.32.0) [51] and EdgeR (v. 3.22.5) [52] packages.

Additionally, differential transcript expression was estimated using the Kallisto–Sleuth pipeline [53,54].
Briefly, Kallisto (v. 0.44.0) was used to perform pseudo-alignment of trimmed and filtered reads to the
mouse reference genome (GRCm38). The results of the pseudo-alignment were then imported to Sleuth
(v. 0.30.0) to estimate transcript abundance and perform pairwise comparisons between experimental
groups. The TSS of differentially expressed transcripts (adjusted p-value below 0.05) was used to calculate
the distance to the closest sDMR, using BEDtools (v. 2.26.0) [55].

2.12. Analysis of sDMC- or sDMR-Proximal Genes

The proximal genes of genomic loci/regions (sDMC or sDMR) were identified by annotatr
(v1.12.1) [36], where the genic annotations included 1–5 Kb upstream of the TSS (1–5 kb), the promoter
(<1 Kb upstream of the TSS), 5′UTR, exons, introns, 3′UTR, and intergenic regions. Genomic regions
annotated as non-intergenic got assigned with related genes, which were named as sDMC-proximal or
sDMR-proximal genes for inputs as genomic loci or regions, respectively.

Associated genes for intergenic sDMR were not included because the confidence level of identifying
true sDMR-associated genes was low and inconsistent with that used for identifying sDMC-proximal
or sDMR-proximal genes for sDMC or sDMR overlapping with genic regions.

2.13. Enrichment of sDMR Near Differentially Expressed Genes (DEG)

sDMR-proximal genes were identified for each sDMR using a distance cutoff of up to 5 Kb upstream
of TSS (genic region + 5 kb upstream of TSS). For each comparison (XX.F vs. XY.M and XY.F vs. XY.M),
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we evaluated the enrichment of DEG in the sDMR-proximal genes using a hypergeometric test with
phyper function in the R package stats (v.3.6.1) [56,57].

For the overlaps between sDMR-proximal genes and DEG, we also tested the association between
the methylation level of sDMR (higher/lower methylations in males) and expression levels of DEG
(lower/higher expressions in males) for both XX.F versus XY.M and XY.F versus XY.M comparisons.
Chi-square test was applied in testing the significance of higher/lower expression levels of DEG being
associated with enrichments of sDMRs with lower/higher methylation.

2.14. Orthologous Gene of Human and Mouse

The list of 15,779 orthologous genes (15,212 autosomal genes and 567 genes on the X chromosome)
of human and mouse was retrieved from the vertebrate homology section on the Mouse Genome
Informatics (MGI) (The Jackson Laboratory, Bar Harbor, MA, USA) (http://www.informatics.jax.org).

2.15. Human Datasets

The human high-density lipoprotein (HDL) dataset [58] was generated for studying the impact of
sex on DNA methylation. DNA methylation was measured with the Infinium HumanMethylation450
BeadChip. Liver biopsies were collected from an adult (average age of 49 years) obese cohort,
consisting of 34 males and 61 females. CpG sites with significant methylation differences (>5%)
between sexes (q < 0.05), 2582 on the X chromosome and 4192 on autosomes, were used for our analysis
of sDMC-proximal genes.

The Turner dataset [14] focused on DNA methylation differences between females with a normal
46,XX karyotype and females with Turner (45,X) syndrome. Peripheral blood mononuclear cells
(PBMC) from three 45,XO individuals (aged 11, 13, and 15 years) and three 46,XX individuals (aged 18,
18, and 19 years) were used for DNA methylation analysis. DNA methylation was measured with
the Infinium humanmethylation27 beadchip. CpG sites with significant methylation differences
(methylation differences >10% and a false discovery rate <5%) were identified. A total of 1194 genes
were associated with the 592 DMC between Turner and control females, although the list of differentially
methylated CpG sites was not provided in the original paper. We used this list of 1194 sDMC-proximal
genes for our comparison of methylation in human and mouse.

2.16. Comparison of Sex-Biased Methylation in Human and Mouse Liver

We identified sDMR-proximal genes for sDMR identified in the XX.F versus XY.M comparison of
our mouse dataset and sDMC-proximal genes for sDMC from the human HDL dataset. For the Turner
dataset, we extracted genes associated with sDMC. We focused on the orthologous genes between
humans and mice for all three datasets. We inspected the overlaps of genes between human and mouse
datasets. The significance of overlaps was tested with the hypergeometric test with phyper function in
the R package stats (v.3.6.1) [56,57].

3. Results

3.1. Sex Phenotype, Sex-Chromosome Complement, and Genetic Background Influence Global DNA
Methylation Profiles in Mouse Liver

To dissect the impacts of sex phenotype and sex-chromosome complement on DNA methylation,
we used crosses from two strains of mice that show high rates of sex reversal (TIR) or X chromosome
monosomy (Paf ) (Methods). TIR mice carry a sex determining region of Chr Y (Sry) gene variant,
which is, on the C57BL/6J genetic background, inefficient to upregulate its target Sry-box transcription
factor 9 (Sox9) gene that is necessary for initiating testicular differentiation [59,60]. This results in about
50% of XYTIR mice developing bilateral ovaries with female phenotype, and the rest developing bilateral
testes with male phenotype or unilateral ovary and contralateral testis with intersex external genitalia
(true hermaphrodites) [23,61]. The latter group was excluded from our experiments (Figure S1).

http://www.informatics.jax.org
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Paf mice carry a Paf mutation on the X chromosome. The mutation is located within the boundary
of the pseudoautosomal region and interferes with segregation of the X and Y chromosomes [62–64].
Therefore, about 20% of the female progeny of the XPafY males are XO females (Figure S1). In our
study, N5 and N6 XPafY males were used for the generation of XO females as further backcross onto
the C57BL/6J strain lowered the frequency of XO female production among some XPafY progeny (TT,
unpublished data).

Liver samples were obtained from XX females (XX.F), XY males (XY.M), and sex-reversed XY females
(XY.F) from the TIR cross and XO females (XO.F) and XXPaf females (XXPaf.F) from the Paf cross (Figure S1,
Table S1, Methods). We measured DNA methylation in a total of 14 samples using WGBS. Mice from
the Paf cross still harbored portions of the genome derived from the C3H strain on a C57BL/6J genetic
background and their genetic heterogeneity led to variance in DNA methylation levels. We observed
methylation differences between the two groups of XX females, where XX.F had C57BL/6J and XXPaf.F had
mixed genetic background (Figure S2). To minimize the impact of genetic variation, we filtered out CGs
overlapping with SNPs (Methods). After CpG methylation calling and SNP filtering, the quality of the
WGBS data was assessed for all samples (Methods). Methylation levels were comparable across samples,
with around 20% of CpG sites having methylation levels <50% (Figure S3a). Extremely high coverage CpG
sites (coverage >500×) were excluded to avoid likely artifacts (Figure S3b).

Next, we performed PCA of the methylation levels of the top 2500 most variable CpGs across
autosomes and X chromosome separately (Methods). When plotting the top two principal components
(PCs) for autosomes, explaining 76.3% of the variance, samples clustered into three main groups: (i) females
from the Paf cross (XO.F and XXPaf.F), (ii) females from the TIR cross (XX.F and XY.F), and (iii) males
(XY.M) (Figure 1a). The females from the Paf cross clustered separately from the females from the TIR cross,
which is consistent with what was seen in Figure S2. They also showed higher inter-individual variation.
The effects of sex phenotype and genetic background were also visible in a heatmap of the same 2500 CpG
loci (Figure 1b). Males (XY.M) differed from the females from both crosses with clusters of CpG sites with
lower methylation levels. Females from the Paf cross showed relatively lower methylation levels than
the females from the TIR cross. When plotting the top two PCs based on CpGs on the X-chromosome,
explaining 57% of the variance, samples clustered into two main groups: females with two X chromosomes
(XX.F and XXPaf.F) and mice with one X (XY.F, XY.M and XO.F). It is worth noting that males (XY.M) tend
to cluster separately from females with one X (Figure 1c). The effect of genetic background was not as
pronounced in the methylation of CpGs on the X chromosome (Figure 1c,d).

3.2. Identification of Sex-Associated Differentially Methylated CpGs (sDMC)

To identify the CpGs with methylation levels that depended on sex phenotype and/or sex-chromosome
complement (referred to as sex-associated differentially methylated CpG (sDMC)), we compared CpG
methylation levels in four comparisons: XX.F versus XY.M, XX.F versus XY.F, XY.F versus XY.M, and XXPaf.F
versus XO.F. To minimize the impact of the genetic background on our ability to detect sex-biased DNA
methylation, we used the three experimental groups from the TIR cross as the main discovery set and
conducted comparisons between XXPaf.F and XO.F separately. For each comparison, we detected sDMC
using the DSS tool (difference >20%, p-value < 1 × 10−5, Methods) [30]. The comparison between groups
with different sex phenotypes, but the same sex-chromosome complement, XY.F versus XY.M, identified
more sDMC on autosomes than on the X chromosome (5266 sDMC on autosomes, 465 sDMC on the
X chromosome, and 125 sDMC on the Y chromosome) (Figure 2a). In contrast, comparisons between
groups with the same sex phenotype, but different sex-chromosome complements, XX.F versus XY.F and
XXPaf.F versus XO.F, identified fewer sDMC on autosomes, but more on the X chromosome (1452 and 2007
on autosomes, 12,650 and 6856 on the X chromosome, and 6 and 4 on the Y chromosome, respectively).
The highest number of sDMC was identified in the comparison between groups with both different sex
phenotypes and sex-chromosome complements, XX.F versus XY.M (4900 on autosomes, 15,992 on the
X chromosome, and 6 on the Y chromosome).
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To isolate the effects of sex phenotype and sex-chromosome complement on sex-biased DNA
methylation levels, we identified overlaps between sDMC across comparisons for all chromosomes as well
as for autosomes only (Figure 2b). The expectation was that sDMC that were common in comparisons
with different sex phenotypes (overlap between XX.F vs. XY.M and XY.F vs. XY.M) represented the
sex-phenotype dependent sDMC. The overlapping sDMC found in the comparisons with different
X-chromosome dosage (XX.F vs. XY.M, XX.F vs. XY.F, and XXPaf.F vs. XO.F) are controlled by the number
of X chromosomes. The comparison XX.F versus XY.M had 7595 unique sDMC (2123 on autosomes, 5469
on the X chromosome, and 3 on the Y chromosome) not found in other comparisons. Further, 2737 of the
XX.F versus XY.M sDMC (2644 on autosomes, 92 on the X chromosome, and 1 on the Y chromosome)
were also found in the XY.F versus XY.M comparison (different sex phenotypes), whereas 6756 (111 on
autosomes, 6643 on the X chromosome, and 2 the Y chromosome) of the sDMC from the XX.F versus XY.M
were found in the XX.F versus XY.F comparison (different sex-chromosome complement). A total of 816
sDMC (15 on autosomes and 801 on the X chromosome) overlapped between the XX.F versus XY.M and
XXPaf.F versus XO.F comparisons. A total of 2984 sDMC (2 on autosomes and 2982 on the X chromosome)
were shared across the three comparisons with different X-chromosome dosage (XX.F vs. XY.M, XX.F vs.
XY.F, and XXPaf.F vs. XO.F).

X-chromosome dosage is associated with X-inactivation and different methylation levels on the
active and inactive X chromosomes. To separate the effect of X-inactivation on X-linked loci from
other mechanisms, we analyzed autosomal and X-linked sDMC separately (blue and black bars in
Figure 2b). The largest overlap among autosomal sDMC was observed between the two comparisons
of groups with different sex phenotypes (XX.F vs. XY.M and XY.F vs. XY.M), while the largest overlaps
among X-linked sDMC were found across the three comparisons with different X-chromosome dosage,
as expected. In summary, in mouse liver, the impact of the sex phenotype on methylation is more
pronounced on autosomes, while the sex-chromosome complement mostly, albeit not exclusively,
influences methylation of X-linked loci.

Figure 1. Sex phenotype, sex-chromosome complement, and genetic background influence methylation
levels. (a,b) Principal component analysis (PCA) plot and heatmap show differential methylation across
2500 autosomal CpG sites with the largest variance in methylation. (a) Samples form clusters by phenotypic
sex and genetic backgrounds of strain crosses. (b) Heatmap shows methylation levels of CpG sites for
samples from theTIR and Paf crosses separately. The generated clustering dendrogram is then used to
guide plotting the heatmap for the Paf cross. (c,d) PCA plot and heatmap show differential methylation
across 2500 X-linked CpG sites with the largest variance in methylation. (c) Samples form clusters by
number of X chromosomes and phenotypic sex. (d) Heatmap shows methylation levels of CpG sites for
samples from the TIR and Paf crosses separately. Higher color intensity represents higher methylation level.
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Figure 2. Phenotypic sex and sex-chromosome complement contribute to sex bias in DNA methylation.
(a) Counts of sex-associated differentially methylated CpG sites (sDMC) per chromosome in each
comparison. Top row shows the distribution of sDMC across all chromosomes. Bottom row shows the
autosomal sDMC. The x-axis represents chromosome ID, and the y-axis represents the number of sDMC.
Orange portion of the bar corresponds to sDMC with lower methylation compared with baseline. Blue
corresponds to sDMC with higher methylation level compared with baseline. Baseline samples are XX.F
(XX.F vs. XY.M), XY.F (XY.F vs. XY.M), XX.F (XX.F vs. XY.F), and XXPaf.F (XX.Paf.F vs. XO.F). (b) UpSet
Plot shows the overlap of sDMC detected across comparisons. Each horizontal bar on the left represents
the total number of sDMC identified in each comparison. Each vertical bar shows the size of a subset,
while the blue and black portions represent sDMC on autosomes and sex-chromosomes, respectively.
Different vertical bars are mutually exclusive, and bars with intersection size <50 are not shown.
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3.3. Sex Phenotype and Sex-Chromosome Complement are Responsible for Sex-Associated Differentially
Methylated Regions (sDMR)

The specificity of sDMC identification and the functional significance of individual DMC is a
subject of debate; however, it is well established that DMRs encompassing multiple CpG sites may be
associated with changes in gene expression and chromatin reorganization [65,66]. Hence, we applied
DSS [30] and methylKit [31] to characterize sDMRs for the same four pairwise comparisons (Methods).
To validate the sDMR detection results, we selected 10 autosomal sDMRs that were identified in at
least one comparison and did not reside within CpG islands or repetitive elements (Table S2). Eight
sDMRs with methylation levels depending on the sex phenotype were selected: seven with higher
methylation in females (Bcl6, Comt, Cyp7b1, Ergic1, Esr1, Gstp1, and Hsd3b5) (Figure 3a) and one
with higher methylation in males (Aldh3b3) (Figure 3b). We also tested two autosomal sDMRs with
methylation levels depending on the sex-chromosome complement (Caprin1 and Ch6qA1) (Figure 3c)
and two X-linked sDMRs that are known to be differentially methylated on the active and inactive X
chromosomes, and hence depending on X-chromosome dosage (Figure 3d). Finally, a parental-origin
dependent DMR in the promoter of imprinted gene small nuclear ribonucleoprotein N (Snrpn) was
used as a control, where 50% methylation independent of the sex or sex-chromosome complement was
expected (Figure 3e). We performed pyrosequencing methylation assays using additional DNA samples
from the same five groups of mice (n = 4–8 per group). We observed the expected hypermethylation
of the Xist and hypomethylation of the Pgk1 promoters in mice with a single X, and the opposite
patterns in mice with two X chromosomes. Interestingly, several autosomal sDMRs identified by one
of the packages (Comt and Bcl6) or only one of the comparisons (Ergic1 and Esr1) were confirmed by
pyrosequencing as belonging to the sex-phenotype associated category (Figure 3a). In the cases of
Caprin1 and Ch6qA1 sDMRs, lower methylation levels were associated with the presence of the Y
chromosome and not X-chromosome dosage as XO females had higher methylation levels compared
with XY females (Figure 3c).

The overall distribution of sDMRs across chromosomes (Figure S4) resembled that of the previously
identified sDMC (Figure 2a). Specifically, the comparison XY.F versus XY.M, involving only different
sex phenotypes, identified 3847 sDMRs on autosomes, but only 146 sDMRs on the X chromosome.
In comparisons between groups with different sex-chromosome complements and same sex phenotype
(XX.F vs. XY.F and XXPaf.F vs. XO.F), fewer sDMR were detected on autosomes in total (803 and 650,
respectively) than on the X chromosome (1563 and 1472, respectively). The comparison XX.F versus
XY.M, with both different sex phenotypes and sex-chromosome complements, identified multiple
sDMRs on both autosomes and X chromosome (2853 and 2483, respectively). Similar to the trends
observed in sDMC, males showed lower methylation levels in the majority of autosomal sDMRs in
comparisons between groups with different sex phenotypes (2521/2853 in XX.F vs. XY.M and 3414/3847
XY.F vs. XY.M), while nearly half of the autosomal sDMR showed lower methylation in mice with a
single X in comparisons between groups with the same sex phenotype, but different sex-chromosome
complements (784/1563 in XX.F vs. XY.F and 379/650 in XXPaf.F vs. XO.F).
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Figure 3. Validation of sex-associated differentially methylated regions (sDMRs) using pyrosequencing
assays. (a) Autosomal sDMRs with higher methylation in females (Bcl6, Comt, Cyp7b1, Ergic1, Esr1,
Gstp1, and Hsd3b5). (b) Higher methylation in males (Aldh3d3). (c) Lower methylation in carriers of an
Y chromosome (Caprin1 and Ch6qA1). (d) X-linked sDMRs (Xist and Pgk1) where methylation levels
depend on X-chromosome dosage. (e) Methylation levels at the imprinted Snrpn DMR are similar
across all groups. Each point corresponds to one DNA sample. Error bars show standard deviation,
asterisks denote statistically significant differences in methylation levels between groups (one-way
analysis of variance (ANOVA)): ****p < 0.0001, ns—not significant.

3.4. Enrichment of Repeat Families and Transcription Binding Motifs in sDMRs Differ between Autosomes
and the X Chromosome

To characterize sDMRs, we annotated them with respect to (1) the distributions of CpG islands
(CGI), genic regions, and chromatin states; (2) repetitive elements; and (3) DNA motifs (Methods).
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To measure enrichment in any category, we contrasted our findings to a set of random regions extracted
from all CpG sites referred to as the background group. More than 70% of autosomal sDMRs were found
to overlap with intergenic (inter-CpG) regions in all four comparisons, as well as in the background
group (Figure S5a). The XXPaf.F versus XO.F comparison showed higher percentages of autosomal
sDMR in CpG islands, but lower percentage in CpG shelves compared with all other groups. While on
the X chromosome, all four comparisons showed higher percentages of sDMR in CpG islands and CpG
shelves compared with the background group, with the XXPaf.F versus XO.F and XY.F versus XY.M
comparisons having the highest and lowest percentage, respectively (Figure S5b). When inspecting
genic annotations, sDMRs overlapped with exons and promoters more frequently than the background
group for both autosomes and the X chromosome (Figure S5c,d). To estimate the chromatin states
associated with sDMR, we used a public annotation reference of 15 chromatin states across the liver
genome of male mice [40–42]. Autosomal sDMRs showed higher frequencies of overlaps with enhancer
regions in all four comparisons and with TSS in comparisons with different X-dosage, XX.F versus XY.F
and XXPaf.F versus XO.F, when compared with the background set (Figure S5e). On the X chromosome,
higher enrichment of sDMR overlapping with enhancer regions and TSS was observed in all four
comparisons compared with the background set (Figure S5f).

Next, we examined the relationship between sDMR and repetitive elements. Repetitive
elements are often suppressed via DNA methylation and may contribute to gene regulation [67–69].
Therefore, we inspected the distribution of repeats within sDMRs and identified statistically enriched
families/subfamilies by comparing them with expected frequencies (Methods). At the repeat family
level, long interspersed element-1 (LINE-1/L1) was underrepresented, whereas endogenous retrovirus 1
(ERV1), endogenous retrovirus K (ERVK), and Alu repeats were overrepresented at autosomal sDMR in
comparisons between groups with different sex phenotype (XX.F vs. XY.M and XY.F vs. XY.M) (Figure 4a).
Two specific subfamilies of repeats (L1Md_T and L1Md_A) in the L1 family were under-represented in the
XY.F versus XY.M comparison, but over-represented in comparisons between groups with the same sex
phenotype and different X chromosome dosage (XX.F vs. XY.F and XXPaf.F vs. XO.F) (Figure 4a, bottom
panel). The XX.F versus XY.M and XY.F versus XY.M comparisons showed over-representation of multiple
subfamilies of Alu repeats among sDMRs, while these repeat families were not over-represented in the XX.F
versus XY.F and XXPaf.F versus XO.F comparisons. One specific subfamily (IAPEz-int) of ERVK showed
over-representation in all comparisons between groups with different sex-chromosome complements.
In contrast to autosomal sDMRs, sDMRs on the X chromosome showed less repeat enrichment (Figure 4b),
even at the level of subfamilies (Figure 4b, bottom panel).

To identify candidate transcription factors potentially associated with sDMR, we conducted motif
enrichment analysis with HOMER [48] and plotted the top five most enriched DNA sequence motifs
for each comparison (Figure 4c,d). On autosomes, the transcription factor binding motifs for THRB,
FOXA2, and CG simple repeats were enriched in all four comparisons (Figure 4c). HNF6, CUX2,
FOXA1, FOXM1, ATHB5, and NF1 (half-site) were enriched in comparisons XX.F versus XY.M, XY.F
versus XY.M, and XX.F versus XY.F, but not in XXPaf.F versus XO.F. The XXPaf.F versus XO.F comparison
showed enrichment of GABPA, NKX6.1, CBF1, and CBF4 binding motifs. In contrast, sDMR on the X
chromosome showed more uniform motif enrichments, but with lower frequencies, except for motifs
for MAZ, KLF14, and SPL15, which were enriched among XXPaf.F versus XO.F sDMR, and motifs for
SPL15, CUX2, ERRA, HNF6, PHA-4, AT2G15740, and RKD2, which were enriched only in XY.F versus
XY.M (Figure 4d).
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Figure 4. Enrichments of repeat families and transcription factor binding motifs at sDMRs differ
between autosomes and the X chromosome. (a,b) Enrichment of repeats at family and subfamily
levels. Each row represents one repeat family/subfamily and the color intensity represents the increased
frequency of repeat family/subfamily overlapped with sDMRs (obs) compared with background (exp),
the average of 1000 randomly generated sets of 300 bp regions. (a) Enrichment of repeats for autosomal
sDMR at family (top) and subfamily (bottom) levels. The three selected repeat families from the top to
bottom split portions are L1, Alu, and endogenous retrovirus K (ERVK). (b) Enrichment of X-linked
sDMR with repeats at family (top) and subfamily (bottom) levels, where the two selected repeat families
are Alu and L1. (c,d) Motif enrichment analysis of sDMRs on autosomes (c) and on the X chromosome
(d) using HOMER. The color intensity represents the difference in percentages of sequences with
the motif between sDMR and the randomly generated background. The top five motifs from each
of the four comparisons are presented and clustered based on the Euclidean distance between the
enrichment levels.
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3.5. Association between Sex-Associated Methylation and the Transcriptome

To study the association between sex-biased methylation and gene expression, we generated
RNA-seq data from the liver of 21 mice from the same five groups (Table S1). After trimming low-quality
reads, the quality of the RNA-seq data was assessed. The first two PCs explained a total of 70% of
variance and formed four clusters by the groups XO.F, XY.F, XY.M, and XX.F (both from the Paf and TIR
crosses) with a clear separate cluster of phenotypic males (Figure S6a). A similar result was observed
with hierarchical clustering using Euclidean distance between gene expression levels (Figure S6b).
To more directly investigate the sex-biased transcriptomes, we performed a differential expression
analysis for each pairwise comparison (Methods). Using a cutoff of 1.5 log fold change and 0.05
adjusted p-value, we identified 290 differentially expressed genes (DEGs) in the comparison XX.F
versus XY.M, 207 DEGs in XY.F versus XY.M, 14 DEGs in XX.F versus XY.F, and 2 DEGs in XXPaf.F
versus XO.F (Figure 5a, Figures S7 and S8 and Table S3). In general, more DEGs were detected in
comparisons between groups with different phenotypic sex (XX.F vs. XY.M and XY.F vs. XY.M) than
between groups with the same phenotypic sex, but different sex-chromosome complements (XXPaf.F
vs. XO.F and XX.F vs. XY.F), which is consistent with the relative numbers of sDMR detected. Larger
portions of DEGs showed lower expression levels on chromosome 5, 7, 10, 12, 15, 19, and X in males in
the XX.F versus XY.M and XY.F versus XY.M comparisons, while DEGs on Y chromosomes all were
detected only in Y chromosome carriers in both XX.F versus XY.M and XX.F versus XY.F comparisons
(Figure 5a). Out of the 290 DEGs in the XX.F versus XY.M comparison, 172 overlapped with DEGs in
the XY.F versus XY.M, 14 with the XX.F versus XY.F, and 2 with the XXPaf.F versus XO.F (Figure 5b).
On average, the ratio of numbers of DEGs per sDMR (DEG/sDMR) per chromosome was between
0.01 and 0.30 on autosomes, while the ratio was near 0 on the X chromosome in the comparisons with
different X-chromosome dosage (Figure S9).

For the two comparisons that had a sufficient number of DEGs (XX.F vs. XY.M and XY.F vs.
XY.M), we checked the cumulative distribution of distances between their TSS and the nearest sDMR
(Methods). We found that sDMRs were particularly enriched around the TSS of transcripts that
were significantly over-expressed in phenotypic males (XY.M) (Figure S10). The XX.F vs. XY.M
comparison also presented an enrichment of sDMRs around the TSS of transcripts that were both over
and under-expressed in phenotypic males. To further investigate the association between sex-biased
methylation and expression, we used a distance cut-off of up to 5 Kb upstream of TSS (Methods) and
identified 1870 sDMR-proximal genes in the XX.F versus XY.M comparison and 1996 sDMR-proximal
genes in the XY.F versus XY.M comparison and compared them to the list of DEGs to evaluate the
enrichment of DEGs in sDMR-proximal genes (Methods). For the XX.F versus XY.M comparison,
we found that 70 (out of 290) DEG overlapped with sDMR-proximal genes (hypergeometric test,
expected number: 10.86, p < 2.2 × 10−16). For the XY.F versus XY.M comparison, 51 (out of 207)
DEGs overlapped with sDMR-proximal genes (hypergeometric test, expected number: 5.29, p <

2.2 × 10−16) (Table S4). Specifically, in XY.M of the XX.F versus XY.M comparison, 42 genes showed
lower methylation and higher expression, 21 genes showed higher methylation and lower expression,
4 genes showed lower methylation and lower expression, and 1 gene showed higher methylation and
higher expression (Chi-square test, p < 2.511 × 10−11). In XY.M of the XY.F versus XY.M comparison, 37
genes showed lower methylation and higher expression, 9 genes showed higher methylation and lower
expressions, 2 genes showed lower methylation and lower expression, and no gene showed higher
methylation and higher expression (Chi-square test, p < 1.478 × 10−8). While intergenic and distant
regulatory DNA elements have a significant impact on transcriptional regulation, the confidence
of identifying proximal genes for intergenic sDMR was low. Therefore, the association between
intergenic sDMR and sex-biased transcription was not investigated using the hypergeometric test or
the Chi-square test.
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Figure 5. Distribution of differentially expressed genes (DEGs) across chromosomes and overlap of DEG
across comparisons. (a) Counts of DEG per chromosome in each of the four comparisons. The x-axis
represents chromosome ID, and the y-axis represents the number of DEG on each chromosome. Red
portions of the bars correspond to DEG that had higher expression (absolute log2 fold change >1.5;
adjusted p-value <0.05) in the sample compared with baseline, where baseline samples were XX.F (XX.F
vs. XY.M), XY.F (XY.F vs. XY.M), XX.F (XX.F vs. XY.F), and XXPaf.F (XXPaf.F vs. XO.F). The blue portion
represents DEGs that had lower expression in the sample compared with the baseline. (b) UpSet Plot
shows overlap of DEG detected across comparisons. Each horizontal bar on the left represents the total
number of DEGs identified in each comparison. Each vertical bar shows the size of a subset identified
in one or multiple comparisons.

3.6. Partial Conservation of Sex-Associated Methylation in Proximity of Mouse and Human Orthologous Genes

To determine the functionality of sex-biased DNA methylation found in our crosses, we compared
our mouse liver dataset with two publicly available human DNA methylation datasets. The expectation
was that functionally important sex bias in DNA methylation would be conserved in humans and
associated with orthologous genic regions in a tissue-specific fashion. Therefore, we used genes
as an anchor point in our analyses. The human HDL dataset explored sex differences in the liver
methylome [58]. The human Turner dataset included a comparison of DNA methylation levels in
PBMC in females with monosomy X and females with a 46,XX karyotype [14]. The differences of
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methylation profiling platforms (WGBS in our mouse dataset and Infinium Human Methylation 450K
or 27K BeadChip in the human datasets) were another reason for using a gene-centered approach in the
analyses. For that purpose, a repertoire of 15,779 mouse–human orthologous genes was retrieved from
the Mouse Genome Informatics (MGI) database. We also identified sDMR-proximal genes (in mouse)
and sDMC-proximal genes (in human) (Methods) [70]. In total, we retrieved 2678 human genes from
the HDL dataset (2128 on autosomes and 550 on the X chromosome) and 648 genes from the Turner
dataset (361 on autosomes and 287 on the X chromosome). Among the mouse datasets, we selected
the XX.F versus XY.M comparison (1490 genes, 1087 on autosomes and 403 on the X chromosome),
and the XXPaf.F versus XO.F comparison (706 genes, 313 on autosomes, and 393 on the X chromosome)
as biologically the most relevant for comparing to the human HDL and Turner datasets, respectively.

Next, we compared the list of genes from the mouse to those identified in the human datasets.
XX.F versus XY.M genes were compared to the HDL dataset (Figure 6a) and XXPaf.F versus XO.F genes
were compared to the Turner dataset (Figure 6b). Notably, among the 706 autosomal sDMR-proximal
genes in the XX.F versus XY.M comparison of the mouse dataset, 266 genes overlapped with those
found in the HDL dataset (hypergeometric test, expected number 152.06, p < 2.2 × 10−16, Methods)
(Figure 6a). Among the 403 X-linked mouse genes, 399 overlapped with orthologs found in the HDL
dataset (hypergeometric test, expected number 390.92, p < 5.18 × 10−5) (Figure 6a). Among the 313
autosomal sDMR-proximal genes from the XXPaf.F versus XO.F comparison, only 10 genes overlapped
with orthologs identified in the Turner dataset (hypergeometric test, expected number 7.43, p < 0.21)
(Figure 6b). Among the 393 sDMR-proximal genes on the X chromosome, 226 overlapped with orthologs
in the Turner dataset (hypergeometric test, expected number 198.93, p < 5.74 × 10−7) (Figure 6b). Taken
together, the mouse and human liver samples showed significant overlaps of sDMC-proximal genes on
both autosomes and X chromosome, while the datasets with different X-chromosome dosage and from
different cell types (mouse liver and human PBMC) showed significant overlaps on the X chromosome,
but not autosomes.

Figure 6. Mouse and human datasets show significant overlap of orthologous genes associated with
differential methylated cytosines. UpSet Plot shows the overlap of sDMR-proximal orthologous genes
across comparisons. Each horizontal bar on the left represents the total number of sDMR-proximal
orthologous genes identified in each comparison. (a) Overlaps of sDMR-proximal orthologous genes
between the mouse and the human HDL datasets. The top two rows represent genes on autosomes
and the bottom two rows represented genes on the X chromosome. (b) Overlap of sDMR-proximal
orthologous genes between the XXPaf.F versus XO.F comparison and the human Turner dataset. The top
two rows represent genes on autosomes and the bottom two rows represent genes on the X chromosome.
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4. Discussion

4.1. Methodology for Identifying sDMC and sDMR and Its Impact on Results

In this study, we used two tools to identify regions with different methylation levels: DSS
for identifying sDMC and both methylkit and DSS for identifying sDMR. Here, we discuss some
caveats that require caution in interpreting the sDMC and sDMR results. To estimate DMC, statistical
significances of millions of CpG sites having different methylation levels between groups were assessed
independently. In contrast to the large number of statistical tests needed, the sequencing coverage
and numbers of samples sequenced for each group is limited by the cost of WGBS. One common
practice in response to such a challenge is to leverage the strong spatial correlation of methylation
levels among CpG sites nearby. By default, DSS applied a 500 bp smoothing window to allow CpG
sites with insufficient sequencing coverage (depth), borrowing information from nearby CpG sites
with higher coverages. By nature, the choice of the smoothing window size is one source of selection
bias. Estimation of sDMR is a better compromise by reducing the degrees of freedom (i.e., the number
of statistical tests required). DSS and methylKit have distinct approaches in defining the boundaries of
DMR. DSS uses CpG sites as candidate boundaries and merges nearby sDMC/sDMR, while methylKit
uses pre-defined tiles for grouping spatially close CpG. The selection of a sweet spot for merging
nearby sDMC/sDMR in DSS and the size of tiles applied in methylKit are hence also sources of potential
selection bias for sDMR identification. For instance, the selection of the size of pre-defined tiles can
dramatically influence the number of resulting sDMR. The threshold of methylation differences is
another parameter that can be tweaked in detecting sDMR. Therefore, we used a 20% threshold for
methylation differences, which has been used by other groups in their studies of sex-biased methylation
in mice [18,71].

In our study, validation experiments conducted on a small subset of sDMR found no false positive
results. However, several results were false negative. Indeed, a number of sDMRs identified in one of
the comparisons were validated by pyrosequencing in other comparisons despite the negative result of
the WGBS analysis (Figure 3). This has significant implications for the interpretation of results from
genome-wide methylation analyses and suggests that, while positive identification of sDMR is robust
and may be used as a basis for follow-up studies, negative results are less conclusive and have to be
taken with a grain of salt. A generalized scheme for the ensemble of multiple sDMR tools, such as DSS
and methylKit, is valuable and warrants further investigation.

4.2. Sex Phenotype and Sex-Chromosome Complement Shape Sex-Biased DNA Methylation Patterns

Sexual dimorphism in mammalian phenotypes and gene expression levels are often attributed to the
action of gonadal sex hormones [72]. However, in the last decade, several studies demonstrated that sex
chromosomes also contribute to sex-biased gene expression or sexual dimorphism in phenotypes [3,72–75].
To better delineate the distinct influences of the sex phenotype and sex chromosomes on genome-wide
patterns of DNA methylation and gene expression in mouse liver, we used a set of mice with different
combinations of phenotypic and genetic sexes. We then conducted binary comparisons of methylation
levels, as this approach was best suited for our dataset with small numbers of samples per sex/genotype
group. Our dataset includes females and males with the same genetic composition, but different
gonadal sexes, which allows separating the effects of the sex-chromosome complement (presence of the Y
chromosome or X-chromosome dosage) from that of gonadal sex. It also includes females with monosomy
X (XO.F), which allows distinguishing the effects of X-chromosome dosage from the impact of the Y
chromosome among sex-chromosome complement-dependent sDMRs. Using this experimental design,
we demonstrate that differences in DNA methylation levels between XX female and XY male mice are the
result of action of at least three factors rather than a single one: the sex phenotype, the X-chromosome
dosage, and the presence of the Y chromosome. All three contribute to the sexual dimorphism in the
epigenome, with each of them having their own repertoire of target loci.
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We find thousands of autosomal and only 146 X-linked sDMR whose methylation depends
on the sex phenotype of the mouse. These findings are consistent with other studies of sex-biased
DNA methylation in mouse liver implicating testosterone as the strongest influence on autosomal
DNA methylation and X-chromosome inactivation as the major influence on the methylation patterns
of X-linked loci [6,18,71,76]. Furthermore, our data show that autosomal gene expression patterns
mirror the sex-biased DNA methylation patterns in comparisons between phenotypic females and
males. However, comparisons of females with different genetic sex (XX.F vs. XY.F) yield very few
DEGs (Figure 5a). This rather limited the influence of the sex-chromosome complement on the
liver transcriptome is in striking contrast to its prominent effects on intestinal lipid metabolism [75],
the transcriptomes of the mouse thymus [2] and heart [7], or the methylation and expression patterns
in human blood cells [4,15]. There is also a remarkable difference between autosomal and X-linked
sDMR with respect to their relationship with DEGs. For autosomes, we find association between sex
bias in expression and methylation; however, the abundance of X-linked sDMR does not translate into
sex bias in the expression of X-linked genes (Figure 5b and Figures S7−S9). Our data suggest that the
sex-phenotype dependent sDMRs promote sex differences in gene expression for autosomal genes represented
by equal number of alleles in both sexes, whereas most X-linked sDMR reflect dosage compensation for
X-linked genes that attenuates rather than amplifies sex differences in expression, an observation consistent
with current understanding of the function of X-inactivation [77,78].

The Y-chromosome dependent DMC group consisted of 6643 X-linked, 113 autosomal,
and 2 Y-linked sDMC. The caveat here is that the tools used to detect DMC have a number of
limitations, as discussed above, and further analyses and validation are necessary to better understand
the underlying mechanism. Indeed, the mouse Y chromosome harbors several interesting gene
candidates encoding proteins involved in transcriptional regulation or chromatin remodeling that are
also expressed in the mouse liver.

Thus, the ensemble of our data and data from other studies shows that, in liver, the sex phenotype
is the strongest influence on sex differences in autosomal gene expression and DNA methylation levels
with the largest repertoire of target genes on autosomes. Moreover, our data for mouse liver provide
little support for the role of epigenetic memory of the embryonic states as a major contributor to the
sex bias in autosomal DNA methylation [73]. In contrast, X-chromosome inactivation that takes place
early in embryonic development is indeed responsible for the X-dosage dependent DNA methylation
of X-linked loci in mouse liver.

4.3. Genetic Variation Influences DNA Methylation

Genetic variation has a major impact on DNA methylation in humans [79–82]. Mouse studies
that have assessed the impacts of both genetic variation and sex using different inbred mouse strains
show that genetic background also influences methylation levels in mice [18,83]. Our data suggest that,
in our mice from the Paf cross, portions of the C3H genome that were present on a largely C57BL/6J
background led to increase in inter-individual variation in DNA methylation that was most pronounced
in large regions of chromosomes 1, 5, and 10. Moreover, filtering of SNPs has not completely alleviated
genetic influences on methylation, which suggests, as expected, that there is more to genetic variation
than SNPs (Figure 1 and Figure S2). Although less is known about genetic effects on sex-biased
methylation in other species of vertebrates, one example from studies on chicken supports genetic
influence on sex-biased methylation: two different breeds have their own sex-biased autosomal DNA
methylation patterns, but no sex differences that would be common in both breeds [84].

4.4. Sex-Biased DNA Methylation of Repetitive Elements

About 60% of all mouse liver sDMR overlap with repetitive elements. We find enrichment of
the Alu-repeat family and depletion of L1-Md-T and L1-Md-A families among autosomal sDMRs
associated with sex phenotype (Figure 4). This suggests non-random targeting of genomic regions for
sex-biased methylation that likely involves gonadal sex steroid signaling. It would be interesting to
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explore specific DNA motifs associated with these elements to further try to unravel these mechanisms.
Moreover, studying the location of these elements in the genome could also help reveal regions that
have sex-biased methylation that differs from the primate lineage given that some of the enriched
elements are rodent specific. Similarly, the fact that some ERVK subfamilies were found to be enriched
on autosomes (Figure 4) is an indication that strain-specific sex-biased methylation could also be
present given the rate of retrotransposon insertions in rodents [85].

4.5. Insights into the Molecular Mechanisms Underlying Sex Bias in DNA Methylation

DNA methyltransferases (DNMTs) and methylcytosine dioxygenase ten-eleven translocation
(TET) proteins are critical for the establishment, maintenance, or erasure of DNA methylation in
different cell types and different developmental stages [86,87]. Higher DNMT3B/Dnmt3b RNA levels
have been found in the livers of human and mouse females compared with males [88,89]. Moreover,
lower expression of Dnmt1 and Tet2 was reported in male mice [89]. However, we did not detect
significant differences in the levels of Dnmt1, Dnmt3a, Dnmt3b, Tet1, Tet2, or Tet3 transcripts in our
comparisons, suggesting a mechanism of methylation bias that was independent of the levels of DNA
methylation machinery.

Transcription factor motif analysis of sex-phenotype dependent autosomal sDMRs found
enrichment of binding sites for transcription factors CUX2 and HNF6 that have sex-biased expression
in the mouse liver, in agreement with findings reported by other groups [6,71]. However, on the
basis of function, most intriguing is the enrichment for pioneer factors of the forkhead box domain
family FOXA1/2 and FOXM1 (Figure 4c). Orthologs of forkhead box domain transcription factors
are conserved across all metazoan species and play a role in sexual differentiation in vertebrates [90].
FOXA1 is implicated in active DNA demethylation of its target sites in a lineage-specific fashion [91,92].
As a pioneer factor, it opens condensed chromatin and facilitates recruitment of other transcription
factors, including receptors for gonadal sex hormones, to enhancers [91–93]. Moreover, FOXA1 binding
leads to deposition of H3K4me1/2 at enhancer regions [94–96]. Hence, we speculate that enrichment
of histone H3K4me1 that has been reported in several other studies [6,19,58] and enrichment of
sDMR at enhancer regions that we observe in our data (Figure S5e) may be associated with FOXA1
binding. We speculate that FOXA1 is part of the mechanism leading to sex bias in DNA methylation.
Experiments directly testing the sequence of events and roles of other factors in the establishment of
sex-biased DNA methylation patterns are necessary to confirm or refute this hypothesis.

Motif analysis of X-dosage dependent X-linked sDMR shows little motif enrichment. The one
comparison with same genotype, but different sex phenotypes and no X-inactivation, XY.F versus
XY.M, shows enrichment for the same factors that are detected in sex-phenotype dependent autosomal
sDMR. The caveat here is that only 146 sex-phenotype dependent sDMRs were identified on the X
compared with ~1500 X-dosage dependent sDMRs. Therefore, the striking difference between XY.F
versus XY.M and the three other comparisons should be taken with caution.

4.6. Sex-Biased Methylation in Different Species

Sex bias in gene expression or DNA methylation in somatic cells has been reported in different
vertebrate species, including fish, reptiles, birds, and mammals. In mammals, with most data coming
from mouse and human studies, sex bias in methylation is usually associated with sex-biased gene
expression [6,15], and this study. Interestingly, this is not the case in the chicken brain, which shows
genome-wide sex differences in expression levels that do not align with DNA methylation, except for
the male hypermethylated region of the Z chromosome [84].

Here, we compared sex-biased DNA methylation in mouse and human livers and found a
significant overlap between sDMR-proximal orthologous genes. This suggests that the mechanisms
underlying sex-biased DNA methylation are likely associated with gene function and cell type and are
at least partially conserved between humans and mice. The enrichment of X-linked sDMR-proximal
genes overlapping in mice and humans is an expected outcome as both mammalian species have
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X-chromosome inactivation. The lack of significant overlap between autosomal genes identified in
the Turner dataset and those identified in the mouse XXPaf.F versus XO.F comparison may be the
result of cell-type specificity of sex-biased methylation as different cell types were analyzed in humans
and mice.

The relationship between sex-biased methylation, sex chromosome evolution, sex-biased
expression, and sexually dimorphic phenotypes becomes more complex in species that are evolutionarily
more distant or where sex determination is modulated by environmental conditions, such as certain
species of fish and reptiles [97–100]. Nevertheless, interesting parallels are found between mammals
and certain fish species with respect to sex-biased DNA methylation [101]. For example, females
of the threespine stickleback, a species with evolutionarily “young” X and Y chromosomes, have
higher methylation levels across the genome compared with males and the largest number of DMC on
chromosome 19, which is the sex chromosome in the stickleback [101]. Such a distribution of DMC is
reminiscent of those reported in humans and mice, including the current report (Figure 2), with higher
methylation on autosomes and abundance of sDMC/DMR on the X chromosome in females. These
parallels support the idea that DNA methylation has a role in the evolution of sex chromosomes and
dosage compensation mechanisms [101,102].
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