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A B S T R A C T   

Intuitionistic fuzzy hypersoft sets (IFHSSs) are a novel model that is projected to address the 
limitations of Intuitionistic fuzzy soft sets (IFSSs) regarding the entitlement of a multi-argument 
domain for the approximation of parameters under consideration. It is more flexible and reliable 
as it considers the further classification of parameters into their relevant parametric valued sets. 
In this paper, we proposed some trigonometric (cosine and cotangent) similarity measures and 
their weighted trigonometric similarity measures (SMs). Trigonometric Similarity measures (SMs) 
for intuitionistic fuzzy hypersoft sets (IFHSSs) are significantly implied to check the similarity 
measures and help to determine the similarity between different factors. Also, in order to evaluate 
the validity of the significant study and apply the results to a daily life problem. We use them to 
solve problems involving the selection of renewable energy sources. According to several tech-
nical contributing factors, the analysis identifies the ideal location for the implementation of the 
energy production units. Future case studies with many features and additional bifurcation along 
with multiple decision-makers can use the suggested methodologies. Also, several existing 
structures, such as fuzzy, Pythagorean fuzzy, Neutrosophic theories, etc., can be utilized with the 
suggested method.   

1. Introduction 

Comprehending the interconnections and patterns present in datasets is crucial in the domain of data analysis. Many applications, 
including as categorizing text, clustering similar objects in recommendation systems, and identifying similarities in biological se-
quences, are based on quantifying the similarity or dissimilarity between data points. We would like to introduce you to the concepts of 
Distance Measures and Similarity Measures, which are fundamental to many analytical techniques and algorithms. The two compasses 
that direct an inquiry of a data landscape are similarity measures and distance measures. They let us to quantify the distances between 
objects, which aids in the discovery of undiscovered links and patterns in vast volumes of data. These measurements are essential in 
many fields, such as pattern recognition, machine learning, and information retrieval. They make it possible for us to analyze vast, 
complex databases and derive insightful conclusions and decisions. In this study, we explore the intricate world of Similarity and 
Distance Measures. We’ll break down the core concepts, explore various measuring techniques, look at how they’re used in a variety of 
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settings, and emphasize how significant an impact they have had on the development of modern data analysis. Join us as we examine 
the nuances and intricacies of these foundational concepts and demonstrate how they contribute to our comprehension of the un-
derlying trends that influence our data-driven world (see Table 6). 

Humanity has been perplexed by the relationship between accuracy and uncertainty for generations. When making decisions, it can 
be difficult to handle imprecise and unclear information. We must have to prefer the best multiple choices in our life to sort out which is 
suitable for us. In this way, MADM helps us to give information in a formulated manner and give results of contributing factors 
sequentially. To overcome obstacles in real life, decisions that contained uncertainty had to be addressed at various stages of life. Data 
uncertainty, ambiguity, and unreliability are the most important factors in resolving these issues. Many mathematical problems, such 
as Fuzzy Set theory (FST) [1]. interval probability theory [2], fuzzy groups [3,4] represents fuzzy sets and theory for possibilities and 
probability distribution. Afterward, the comparison of the interval value fuzzy set (IVFS) with others was discussed in above mentioned 
articles. The fuzzy set theory provided a specialized converter for analyzing the provided data and preferences in accordance with 
probability theory during group decision-making. It is a logistical technique for discussing problems including ambiguity, consistency, 
and inaccurate assessment. Atanassov presented the intuitionistic fuzzy set (IFS) theory in 1983 [5], which is an extension of the fuzzy 
set. Although it characterized the degree of satisfiability and non-satisfiability and offered an alternate method for addressing these 
ambiguities, vagueness, and fuzziness, it’s important to note that single membership and non-membership degrees didn’t adequately 
address these circumstances. Then, Liu et al. [6] introduced a vague set theory. This idea was similar to IFS, which is an extension of FS. 
Interval-based membership, which better captures the fuzziness of the data, is utilized in VS rather than point-based membership. Both 
IFS and VS are regarded as being equal in the literature. IFS is hence isomorphic to VS in this regard. Thus, Smarandache [7] first 
suggested the concept of the neutrosophic set (NS), which, from a philosophical perspective, deals with imprecise, ambiguous, and 
inconsistent information more adequately than the usual fuzzy set model and the IFS model. The neutrosophic set is defined by the 
truth function, the indeterminacy function, and the falsity functions which are all independent of each other. A Russian scientist, 
Molodtsov first formulated the notion of soft set theory (SST) [8] in 1999 which is an extended mathematical tool for handling 
unpredictability entities that are free from the foregoing complications 

then define soft groups and determine some of their fundamental properties using Molodtsov’s description of softsets. Soft set 
theory modifies the previous approaches, such as Probability theory, fuzzy set theory, and rough set theory (RST). In this regard, it is 
unaffected by the limitations of the parameterization methods of these theories. He effectively applied the soft set theory to a wide 
range of topics, including game theory, smoothness of functions, and many more. In recent years it has been seen a lot of interest in the 
algebraic structure of soft set theory, Aktas, and Cagman presented soft matrices [9], of which soft sets are characterized. Chen et al. 
[10] describe the parametrization of soft sets and new operations for soft set theory developed by Ali and Feng et al. [11]. Acar and 
Koyuncu [12] discussed some basic concepts of soft rings. Zou and Xiao [13,14] provided the data analysis approach of soft sets for 
incomplete information and compared the results with other approaches which are dealing with incomplete information. The idea of a 
Fuzzy soft set (FSS) the extended formulation of soft sets that gives more accurate information of data, was presented by Maji et al., in 
2001 [14]. Further, fuzzy soft set in the generalized form presented by Majumdar et al. [15] by attached degree with fuzzy sets while 
dealing with a Fuzzy soft set. 

Intuitionistic and soft sets combine and indicate the idea of an intuitionistic fuzzy soft set (IFSS) [16]. It includes the parameters 
that measure the accuracy of the supplied data and guide us toward the finest option. Many ideas have also been put forth utilizing an 
intuitionistic set, such as similarity measure, pattern recognition, medical diagnosis, entropy measure, career prediction, and distance 
measure. By using IFS, Liang et al. [17] introduced the similarity measure with application in pattern recognition, ZS Xu et al. [18] 
given an overview of similarity and distance measures for intuitionistic fuzzy set and apply to medical diagnostics, by De. S. K. et al. 
[19]. Ejegwa et al. [20] developed an intuitionistic set for application in career determination, and Dengfeng et al. [21] presented the 
new similarity measures and applied them in pattern recognition for intuitionistic Fuzzy soft sets. Szmidt et al. [22,23] provided an 
approach to IFS in group decision-making and Wei C.P. et al. [24] presented entropy similarity measures using an Interval-valued 
Fuzzy set and its application. Jafar et al. [25] discussed IFSM and its application for the selection of a Laptop. Mitchell. H.B. et al. 
[26] defined the similarity measure for application in pattern recognition. The similarity index helps to determine the similarity 
between two constituents and the foundation for the similarity measurements is the direct operation of hesitation, membership, 
non-membership, and the upper bound of membership function. The measure of similarities is employed to extend the theories and 
recommend several practical applications, such as multi-attribute decision-making, pattern identification, physics teaching, and 
medical diagnosis. The improvement of similarity measure and application was proposed by Khorshidi et al. [27] and the suggested 
approach is also used for fuzzy risk analysis on similarity measures. The eigenvalue-based similarity measure and its application are 

Table 1 
The IFHSM of the IFHSS (Ќ,Ջa

1 × Ջb
2 × …×Ջz

β)
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Table 2 
Relationship between Geo-graphical region and Factors.  

Geological regions (G) 4.1h − 6h 2001 m3 − 4001m3 251mm − 501mm 10 KM or Below 9% − 19%,

G
1 (0.6,0.7) (0.2,0.3) (0.2,0.4) (0.8,0.8) (0.7,0.8) 

G
2 (0.9,0.2) (0.6,0.4) (0.6,0.3) (0.4,0.3) (0.3,0.4) 

G
3 (0.2,0.1) (0.6,0) (0.2,0.2) (0.4,0.5) (0.2,0.5) 

G
4 (0.4,0.7) (0.3,0.2) (0.2,0.5) (0.4,0.7) (0,0.2) 

G
5 (0.6,0.4) (0,0.7) (0.3,0.4) (0,0.5) (0.2,0.6)  

Table 3 
Relationship between systems and factors.  

Systems 4.1h − 6h 2001 m3 − 4001m3 251mm − 501mm 10 KM or Below 9% − 19%,

Solar (0.4,0.1) (0.0,0.3) (0.1,0.7) (0.8,0.1) (0.2,0.2) 
Wind (0.3,0.9) (0.1,0.4) (0.1,0.4) (0.5,0.0) (0.1,0.3) 
Hydro-electric (0.0,0.2) (0.1,0.5) (0.7,0.6) (0.3,0.7) (0.3,0.7) 
Geo-Thermal (0.1,0.4) (0.4,0.6) (0.1,0.2) (0.6,0.2) (0.1,0.2)  

Table 4 
SMs using definition. 4.1 of S1

IFHSS(M ,H ):  

Similarity measures Geographical regions Geo-Thermal Solar power Wind power Hydro-electric Power 

S1
IFHSS G

1 0.8767 0.8590 0.8970 0.8410 

G
2 0.7963 0.7564 0.7589 0.8097 

G
3 0.6824 0.6860 0.7208 0.7981 

G
4 0.7051 0.8312 0.8148 0.8044 

G
5 0.7674 0.7362 0.8854 0.7724  

Table 5 
SMs using definition. 4.2 S2

IFHSS(M ,H ):  

Similarity measures Geographical regions Geo-Thermal Solar power Wind power Hydro-electric Power 

S2
IFHSS G

1 0.6946 0.7763 0.7777 0.7452 

G
2 0.7527 0.7423 0.6912 0.7838 

G
3 0.7894 0.7253 0.8436 0.8498 

G
4 0.7939 0.8787 0.8489 0.8741 

G
5 0.7421 0.8389 0.8455 0.7730  

Table 6 
SMs using definition. 4.3 S3

IFHSS(M ,H ):  

Similarity measures Geographical regions Geo-Thermal Solar power Wind power Hydro-electric Power 

S3
IFHSS G

1 0.9499 0.9590 0.9711 0.9700 

G
2 0.97111 0.9695 0.9620 0.9726 

G
3 0.9754 0.9618 0.9810 0.9825 

G
4 0.9757 0.9839 0.9768 0.9735 

G
5 0.9690 0.9803 0.9826 0.9735  

Table 7 
SMs using definition. 4.4 S4

IFHSS(M ,H ):  

Similarity measures Geographical regions Geo-Thermal Solar power Wind power Hydro-electric Power 

S4
IFHSS G

1 0.4458 0.5786 0.5888 0.4806 

G
2 0.4778 0.4815 0.4456 0.6051 

G
3 0.5175 0.4879 0.6015 0.6034 

G
4 0.5431 0.7641 0.6043 0.6781 

G
5 0.4805 0.6043 0.6056 0.4969  
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presented by Tsai, D.M. et al. [28], and Strelkov, V.V. Strelkovet al. [29] presented the similarity measure for time series analysis and 
determining how similar two histograms are. The application of similarity metrics for IFS in medical diagnostic reasoning is covered by 
Szmidt et al. [23]. The similarity measures and their different operators for IFS were discussed by Baccour et al. in their article [30]. 

Then, Smarandache [31] proposed the notion of the hypersoft set (HSS) in 2018, as an extension of the soft set. It is helpful for 
tackling problems involving multiple objectives and multiple attributes with varied attribute values. Compared to the soft set, it is the 
theory with the most applicability that tackles ambiguity and helps us to obtain the best choice. Zulqarnain et al. [32] given a detailed 
analysis of the implications of intuitionistic hypersoft sets which are based on coefficients for correlation. Yolcu and Ozturk proposed 
fuzzy hypersoft sets and how to use them for decision-making [33]. Debnath [34] presented the fuzzy hypersoft sets and associated 
weighting operators for decision-making. Saeed et al. presented intuitionistic fuzzy hypersoft sets (IFHSS) [35]. Jafar et al. [36] 
proposed the aggregate operators of FHSS and Saeed et al. [35,37] developed the similarity measures for complex fuzzy Hypersoft set 
and discussed its basic operators with mathematical applications. N-soft sets, image fuzzy, interval-valued picture fuzzy, and picture 
fuzzy are a few additional definitions and operators for the set structures. Graphics on single-valued neutrosophic graphs and 
interval-valued Fermatean neutrosophic graphs have been proposed by Ref. [38]. 

IFHSSs are the result of combining the concepts of IFSs and HSSs. Let’s first grasp each of these concepts separately before 
attempting to understand how they function collectively.  

1. The IFSs extend conventional fuzzy sets by permitting multiple membership degrees. Rather than using a single membership value 
between 0 and 1, IFSs use two membership values: the degree of membership and the degree of non-membership, both of which run 
from 0 to 1. If the sum of these two values is greater than 1, it suggests that the membership assignment was made with hesitation or 
uncertainty.  

2. HSSs generalize fuzzy sets by permitting greater latitude in membership assignments. Membership degrees in HSSs are not specified 
by a precise numerical value, but rather by linguistic phrases or gradations. This allows for a more complex representation of 
ambiguity or imprecision.  

3. IFSs and HSSs are combined in IFSs to enhance the way uncertainty and ambiguity are represented in a given domain. By providing 
a structure for managing membership degrees that can be expressed in both verbal and numerical terms, they enable more precise 
and flexible modeling of fuzzy data.  

4. The membership degrees in IFHSMs are represented by intuitionistic fuzzy numbers, which are composed of two membership 
values and a degree of hesitation. The degree of hesitancy is indicative of how unclear or questionable the membership catego-
rization is. 

1.1. Motivation of the proposed study 

A new model called intuitionistic fuzzy hypersoft sets (IFHSSs) is proposed to overcome the drawbacks of intuitionistic fuzzy soft 
sets (IFSSs) with respect to the entitlement of a multi-argument domain for the approximation of parameters that are being considered. 
Because it takes into account the additional classification of parameters into their pertinent parametric valued sets, it is more 
dependable and versatile. 

To evaluate strategies for dealing with the issue of uncertainty, intuitionistic fuzzy set theory and hypersoft set theory are inte-
grated into this study. It aims to create a new terminology termed the "Intuitionistic fuzzy hypersoft set" by unifying these two theories. 

1.2. Novelty of the study 

In December 2018, Florence Samrandace unveiled the Hypersoft Set, a framework that works with multi-objective and multi- 
attributive decision-making structures. In the IFHSS structure due to the new structure a lot of work to do, so we developed some 
cosine and cotangent similarity measures that are missing in the literature. These definitions of SMs enable us to address multi- 
attributive, multi-objective, and issues involving both membership and non-membership and disjoint attributive value in the 
context of IFHSS. 

The arrangement of the study is as in Sec-01 we reviewed some fundamental ideas about soft sets, HSSs, and IFHSSs in Sec-2. In Sec- 
3, we discussed the definition and example of Intuitionistic fuzzy hypersoft matrices with an example. In Sec.4 we provide five 
trigonometric similarity measurements for IFHSSs using the cosine and cotangent trigonometric functions. When it comes to these 

Table 8 
SMs using definition. 4.5 S5

IHSS(M ,H ):  

Similarity measures Geographical regions Geo-Thermal Solar power Wind power Hydro-electric Power 

S5
IFHSS G

1 0.7789 0.8337 0.8942 0.7949 

G
2 0.7942 0.7952 0.7795 0.8442 

G
3 0.8115 0.7969 0.8471 0.8474 

G
4 0.8215 0.9073 0.8475 0.8759 

G
5 0.7953 0.8475 0.8479 0.8027  
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trigonometric similarity measurements, we provide operators, theorems, and assertions. Moreover, we provide weighted variations of 
these. In Sec-5, we apply them to the problem of choosing a renewable energy source to demonstrate how well the suggested similarity 
measurements work. The concluding section and plans for further research are covered in Section 6. 

2. Preliminaries 

We briefly describe SS, HSS and IFHS’s in this section. 

2.1. Definition 

Molodtsov first formulated the idea of a SS in 1999 to overcome the problems of uncertain decision makings and defined as a family 
of parameterized subsets, where every element is contemplated as a collection of approximately similar elements. Let J = {τ1, τ2, τ3,

…τs}, be a universal set and ℘ indicates a set of attributes corresponding to J . Let ℘(J ) indicate the collection of all subsets (Power 
Set) of J and S′⊂℘. A pair (S , S′) is called a SS over J , where the mapp S is defined by 

S : S′→P( J ).

2.2. Definition 

In December 2018 Florentine coined the emerging idea of HSS as an extension of SS to discuss multi-attributive disjoint problems. 
Suppose J = {τ1, τ2, τ3,…τs} is a set of alternatives and ℘ signifies a set of parameters. Let the collection of all subsets of J repre-
senting by P(J ). Suppose L 1

, L
2
, L

3
,…L

m for m ≥ 1 be distinct characteristics, and the sets N 1,N 2,N 3,…N m of feature values 
that correlate to them with N a ∩ N b = ∅ for a ∕= b,where a, b = 1,2, 3,4,…m, with respect to the features. So, the order pair (S ,N 1,

N 2,N 3,…N m) is called HHS on J , where 

S : N 1 ×N 2 ×N 3 ×…×N m → ℘(J )

2.3. Definition 

Suppose ℘ denotes a set of parameters and J = {τ1, τ2, τ3,…τs} is a set of alternatives. Let the collection of all subsets of J is 
indicated by P(J ). Suppose L 1

, L
2
,L

3
,… L

m for m ≥ 1 be m distinct and well-defined characteristics, and the feature values 
corresponding to them are sets N 1,N 2,N 3,…N m with N a ∩ N b = ∅ for a ∕= b, where a, b = 1, 2 … m, respectively. Then the pair is 
called IFHSS over J , where T = N 1 × N 2 × N 3 × …×N n → ℘(J ): 

S
(
N 1 ×N 2 ×N 3 ×…×N n)=S (T )

= {< τ,Tr (S (T )),Fr (S (T )), τ Є J > }

Where F denotes the falsity and T stands for the truthiness of respective values. Tr ,Fr : J →[0, 1] with 0 ≤ Tr (S (T ))+ Fr (S (T )) ≤ 2.: 

3. Intuitionistic fuzzy hypersoft matrices (IFHSMs) 

Decision-making in many different fields and industries depends heavily on matrices. They provide a rigorous, methodical 
approach to evaluating many choices according to various standards or features. We will expand on the idea of IFHSSs to IFHSMs in 
this part and go on to describe how they work. While PFHSSs provide more precise scenarios for decision-making, IFHSMs’ matrix 
shape provides faster solutions. Next, we describe IFHSMs. 

3.1. Definition 

let S = {S1, S2,…,Sα} be an universal set with α options, and let Ջ = {Ջ1,Ջ2,…,Ջβ } be a set of disjoint β attributes with their 
corresponding attributive values of Ջa

1,Ջ
b
2,…,Ջz

β where a,b,c,…z = 1,2,3,…,n. Let P (S) denote the collection of all power sets of S. An 

IFHSS over S is defined as (Ќ,Ջa
1 ×Ջb

2 ×…×Ջz
β) such that Ќ, : Ջa

1 × Ջb
2 × …×Ջz

β→P (S) defined by 

Ќ(Ջa
1 ×Ջb

2 ×…×Ջz
β) = {〈Քj

, (էՔ(Քj
, Sτ), ηՔ(Ք

j
,Sτ)) 〉,Sτ ∈ S,Ք∈ Ջa

1 ×Ջb
2 ×Ջc

3 ×…×Ջz
β} where 0 ≤ է2

Ք(Sτ)+ η2
Ք(Sτ) ≤ 1. Thus, a IFHSM 

is defined in Table 1 with a matrix form as follows: 
If ζij = X ǷՔ (S

i,Ջk
j ), where i = 1,2,3…α, j = 1,2,3,…β,k = a, b , c ,…z , then a matrix is defined as 

[
ζij
]

α×β =

⎛

⎜
⎜
⎝

ζ11
ζ21
⋮

ζα1

ζ12
ζ22
⋮

ζα2

…
…
⋱
…

ζ1β
ζ2β
⋮

ζαβ

⎞

⎟
⎟
⎠
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where 

ζij =

⎛

⎜
⎝

(
էՋk

j
(Si), ηՋk

j
(Si)

)
,Si ∈ S

,Ջk
j ∈

(
Ջa

1 × Ջb

2 × … × Ջz

β

)

⎞

⎟
⎠=

(
էՋk

j
(Si), ηՋk

j
(Si)

)
.

For simplicity, we may assume that էՋk
j
(Si) = էij and ηՋk

j
(Si) = ηij, where i represents the position of alternatives, j tells us about the 

attributes, hidden k tells us about sub-attributive value of the corresponding attribute, and Ջ is the subset of the IFHSS. Thus, the 
matrix representation is as 

Mα×β =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(է11, η11) (է12, η12) …
(
է1β, η1β

)

(է21, η21) (է22, η22) …
(
է2β, η2β

)

⋮

(էα1, ηα1)

⋮

(էα2, ηα2)

⋮ ⋮

⋯
(
էαβ, ηαβ

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

which is called a IFHSM of order α × β over S.: 

Example 1. Let S = {S1,S2, S3, S4,S5} be the set of five alternatives (mobiles) and Ջ = {Ջ1,Ջ2,Ջ3} be the set of attributes with Ջ1 =

Battery = {4000 mah, 5000 mah}, Ջ2 = Ram = {6 GB,8 GB,10 GB}, Ջ3 = Display Size = {5,6″,7″}. Then, Ք(4000mah,8GB,6″) =

{S1, S2, S3}, where {(S1,4000mah(0.5,0.6)),8GB(0.4,0.5),6″(0.8,0.6)}, {(S2,4000mah(0.3,0.7)),8GB(0.4, 0.4),6″(0.6,0.7)}, and 
{(S3,4000mah(0.7,0.4)),8GB(0.6,0.5),6″(0.6,0.6)}. Thus, we have that 

M =

4000mah 8GB 6″

S1

S2

S3

⎡

⎢
⎢
⎣

(0.5, 0.6) (0.4, 0.5) (0.8, 0.6)

(0.3, 0.7) (0.4, 0.4) (0.6, 0.7)

(0.7, 0.4) (0.6, 0.5) (0.6, 0.6)

⎤

⎥
⎥
⎦

Each sum of square of the order pair of truthiness and falseness is always lying in the unit interval [0, 1]. The above-mentioned 
example showing the result of IFHSSs. 

4. Cosine and cotangent SM of IFHSS’s 

In many domains, trigonometric similarity measures are significant because they offer vital instruments for resolving geometrical 
issues, traversing real-world environments, deciphering physical occurrences, and advancing science and technology. We are going to 
propose the SM’s (Cosine and Cotangent) of IFHSS’s. 

4.1. Definition 

Let J be a set of alternatives and M = {< τ,TM (S (T )), FM (S (T )), τ Є J > } and H =

{< τ,TH (S (T )), FH (S (T )), τ Є J > } be the two IFHSSs for S (T ). The cosine SMs between two sets M and H by using an 
arithmetic mean is given as 

S1
IFHSS(M ,H )=

1
n

∑n

r=1

(TM (S (T )))r

(
TH (S (T )))r + (FM (S (T )))r, (FH (S (T )))r̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

T2
M (S (T ))

)

r +
(
F2

H (S (T ))
)

r

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
T2

M (S (T ))
)

r +
(
F2

H (S (T ))
)

r

√ (4.1)  

Proposition 1. The cosine SMs S1
IFHSS must holds the properties (P1) − (P3)

(P1) 0≤ S1
IFHSS

(
M ,H

)
≤ 1  

(P2) S1
IFHSS

(
M ,H

)
= S1

IFHSS(H ,M )

(P3) if M =H then S1
IFHSS

(
M ,H

)
= 1  

Proof. (P1), as given below 

Property-1 (P1). 1
n
∑n

r=1
(TM (S (T )))r(TH (S (T )))r+(FM (S (T )))r(FH (S (T )))r̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(T2

M
(S (T )))r+(F2

M
(S (T )))r

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(T2

H
(S (T )))r+(F2

H
(S (T )))r

√ = cos θ 

Remember that all the values must lying in closed interval [0, 1], therefore 
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0≤ S1
IFHSS

(
M ,H

)
≤ 1.

Property-2 (P2). Proof of (P2) is very simple and easy. 

Property-3 (P3). If M =H , then TM (S (T ))r = TH (S (T ))r and FM (S (T ))r = FH (S (T ))r for r = 1,2, 3,…n. consequently, we 
attained S1

IFHSS(M ,H ) = 1.

4.2. Definition 

Suppose, J is a set of alternatives and M = {< γ,TM (S (T )),FM (S (T )), γ Є J > } and H =

{ < γ,TH (S (T )),FH (S (T )), γ Є J > } are two IFHSSs for S (T ). A cosine SMs between M and H based on the function of cosine 
is given by 

S2
IFHSS

(
M ,H

)
=

1
m
∑m

r=1
cos

[π
2
( ⃒
⃒TM (S (T ))r− TH (S (T ))r

⃒
⃒ ∨

⃒
⃒FM (S (T ))r − FH (S (T ))r

⃒
⃒
)]

(4.2)  

S3
IFHSS

(
M ,H

)
=

1
m
∑m

r=1
cos

[π
6
( ⃒
⃒TM (S (T ))r− TH (S (T ))r

⃒
⃒ ∨

⃒
⃒FM (S (T ))r − FH (S (T ))r

⃒
⃒
)]

(4.3)  

Proposition 2. The SMs cosine St
IFHSS(M ,H ), (t = 2 and 3) accomplish P1, P2 and the following properties: 

(
P’

3
)
: M =H iff St

IFHSS

(
M ,H

)
= 1, (t= 2 and 3).

(P4) : If F is a IFHSSs and M ⊂ H ⊂ F then St
IFHSS

(
M ,F

)
≤ St

IFHSS

(
M ,H

)
and St

IFHSS

(
M ,F

)
≤ St

IFHSS

(
H ,F

)
.

Property-1 (P1). The SMs S2
IFHSS and S3

IFHSS are depending upon the cosine function’s value and the membership and non- 
membership in the unit interval [0, 1] of IFHSSs. Therefore, 0 ≤ St

IFHSS(M ,H ) ≤ 1 for t = 2 and 3. 

Property-2 (P2). Proof of (P2) is very simple and easy. 

Propert-3 (P3). In J suppose two IFHSSs M ,H , when M =H , then TM (S (T ))r = TH (S (T ))r and FM (S (T ))r = FH (S (T ))r for 
r = 1, 2,3, 4,…m. so we get 

⃒
⃒TM (S (T ))r − TH (S (T ))r

⃒
⃒= 0,

⃒
⃒FM (S (T ))r − FH (S (T ))r

⃒
⃒= 0.

Thus, the cosine SMs Sk
IFHSS(M ,H ) = 1, for t = 2 and 3 conversely, let St

IFHSS(M ,H ) = 1, for t = 2 and 3 because cos 0 = 1, hence, 
⃒
⃒TM (S (T ))r − TH (S (T ))r

⃒
⃒= 0,

⃒
⃒FM (S (T ))r − FH (S (T ))r

⃒
⃒= 0.

Hence, we have TM (S (T ))r = TH (S (T ))r and FM (S (T ))r = FH (S (T ))r for r = 1,2, 3,4…m. Hence M =H .: 

(P4) : If M ⊂ H ⊂ F, then TM (S (T ))r ≤ TH (S (T ))r ≤ TF(S (T ))r and FM (S (T ))r

≥ FH (S (T ))r ≥FF(S (T ))r for r= 1, 2, 3, 4…m.

Therefore, we have 
⃒
⃒TM (S (T ))r − TH (S (T ))r

⃒
⃒ ≤

⃒
⃒TM (S (T ))r −

(
TF(S (T ))r

⃒
⃒,

⃒
⃒TH (S (T ))r − TF(S (T ))r

⃒
⃒ ≤

⃒
⃒TM (S (T ))r −

(
TF(S (T ))r

⃒
⃒,

⃒
⃒FM S (T ))r − FH (S (T ))r

⃒
⃒ ≥

⃒
⃒FM (S (T ))r − FF(S (T ))r

⃒
⃒,

⃒
⃒FH (S (T ))r − FF(S (T ))r

⃒
⃒ ≥

⃒
⃒FM (S (T ))r − FF(S (T ))r

⃒
⃒.

Hence, M ⊂H ⊂F, then, St
IFHSS(M ,F) ≤ St

IFHSS(M ,H ) and St
IFHSS(M ,F) ≤ St

IFHSS(H ,F). For t = 2, 3, and we know that the cosine 
function is non-increasing in the interval 

[
0, π

2

]
so the proof is completed. 

4.3. Definition 

Let J be the set of alternatives and assume M = {< γ,TM (S (T )), FM (S (T )), γ Є J > } and H =

{ < γ,TH (S (T )), FH (S (T )), γ Є J > } are two IFHSSs of S (T ). Then Cotangent SM’s between M and D are defined as 
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S4
IFHSS

(
M ,H

)
=

1
n
∑n

r=1
cot

[π
4
+

π
4
( ⃒
⃒TM (S (T ))r− TH (S (T ))r

⃒
⃒ ∨

⃒
⃒FM (S (T ))r − FH (S (T ))r

⃒
⃒
)]
, (4.4)  

S5
IFHSS

(
M ,H

)
=

1
n
∑n

r=1
cot

[π
4
+

π
12

( ⃒
⃒TM (S (T ))r − TH (S (T ))r

⃒
⃒ ∨

⃒
⃒FM (S (T ))r − FH (S (T ))r

⃒
⃒
)]
. (4.5) 

Where ˅ is a max-operator 
. Proposition- 3. Cotangent SM’s St

IFHSS, (t= 4 and 5) satisfies P1,P2,P3and P4. 

Proof. By applying prop-2 we can prove it easily. 

Weighted SM’s of equations SMs (4.1) − (4.5) are given as following, Remember that the weights should follow the inequality 
relation 

0≤Q 1,Q 2,Q 3,…Q n ≤ 1 with
∑n

r
Q r = 1.

wS1
IFHSS(M ,H )=

1
n
∑n

r=1
Q r

(TM (S (T )))r

(
TH (S (T )))r + (FM (S (T )))r(FH (S (T )))r̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

T2
M (S (T ))

)

r +
(
F2

M (S (T ))
)

r

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
T2

H (S (T ))
)

r +
(
F2

H (S (T ))
)

r

√

wS2
IFHSS

(
M ,H

)
=

1
n

∑n

r=1
Q r cos

[π
2
( ⃒
⃒TM (S (T ))r− TH (S (T ))r

⃒
⃒ ∨

⃒
⃒FM (S (T ))r − FH (S (T ))r

⃒
⃒
)]

wS3
IFHSS

(
M ,H

)
=

1
n

∑n

r=1
Q r cos

[π
6
( ⃒
⃒TM (S (T ))r− TH (S (T ))r

⃒
⃒ ∨

⃒
⃒FM (S (T ))r − FH (S (T ))r

⃒
⃒
)]

wS4
IFHSS

(
M ,H

)
=

1
n
∑n

r=1
Q r cot

[π
4
+

π
4
[(

〈
⃒
⃒TM (S (T ))r − TH (S (T ))r

⃒
⃒ ∨

⃒
⃒FM (S (T ))r − FH (S (T ))r

⃒
⃒〉
)]

wS5
IFHSS

(
M ,H

)
=

1
n

∑n

r=1
Q r cot

[π
4
+

π
12

( ⃒
⃒TM (S (T ))r − TH (S (T ))r

⃒
⃒ ∨

⃒
⃒FM (S (T ))r − FH (S (T ))r

⃒
⃒
)]

5. Algorithm with application 

In problem-solving and decision-making processes, similarity measurements and Multiple Attributive Decision Making (MADM) 
are related concepts. The study of decision-making when several, frequently conflicting variables need to be taken into account is the 
main emphasis of MADM. In the MADM framework, similarity measures play a critical role in assessing options or alternatives in light 
of these numerous criteria. Using similarity measurements, decision-makers can assess how close or similar alternatives are to one 
another, which facilitates assessing how well each option satisfies the necessary criteria. The selection of renewable energy sources 
involves assessing and comparing different options based on various criteria. Distance similarity measures can be linked to this 
problem by providing a quantitative way to compare the similarity or dissimilarity between different renewable energy sources. 

This section is intended to address a methodology based on the proposed work then we will apply the proposed algorithm in 
Renewable Energy Source Selection. 

5.1. Proposed algorithm 

Let G1
,G

2
,G

3…G
n be the disjoint set of strategical regions of a country, �1,�2,�3…�n by the set of parameters for strategical 

regions and þ1, þ2, þ3…þn be the power set of different systems for each strategical region. The decision makers can evaluate þ power 
types and G regions and under � norms by using a proposed algorithm. This analysis makes it possible to decide which environ-
mentally friendly energy source should be used in which area. As a result, it can decide which geographic locations and sources of 
renewable energy are the best match. 

Now, we give the implementation steps of the proposed cosine and cotangent SM’s of IFHSS. 

Step-1. It is essential to first choose which kind of renewable energy sources are appropriate for the various regions that will be 
evaluated. Consequently, it’s important to establish the criteria and sources of energy for these regions. The relationship between 
geographical locations and parameters should be provided using a decision matrix of IFHSS (see, e.g., below Table 2). 

Step-2. By using intuitionistic fuzzy hypersoft sets in decision matrix form, it is possible to figure out how standards and different 
types of renewable energy options relate to one another. (See, e.g., below Table 3). 

Step-3. Using the proposed cosine and cotangent SM’s for IFHSS, equations (4.1)-(4.5) in table 5 to table 8 are applied to figure out 
the connection between geographic locations and the alternatives. The highest value is chosen because it represents the finest option 
for the particular area, making it the best decision. 

The proposed algorithm flowchart is shown below. in Fig. 1. 
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5.2. Application 

Global warming has a negative impact on the environment, but countries are working to mitigate these effects. One of these ini-
tiatives is a development strategy that takes into account the government policy for renewable energy. The need for renewable energy 
sources has increased, and countries are starting to recognize the kinds and amounts of these resources they own. As a result, we try to 
design a mathematical technique for the problem of renewable energy sources, which is a problem of the environment. We emphasize 
appealing to all countries by keeping a high standard scale and broad lower standard ranges. 

G=
{

G
1
,G

2
,G

3
,…,G

10}

Second, we determined the most extensively employed and recommended renewable energy sources globally, and we displayed 
them using the set E with. 

þ = {Geothermal Power, Wind Power, Hydroelectric Power, Solar Power}. 
We just choose most often used criteria and sub-criteria in order to assess these energy resources and geographic areas. 

�=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�1 (average annual daily bath time in (h/day))

�2( Intensity average flow of streams
(
m3/sec

))

�3(Annually rainfall (average) in (mm))

�4(Annually Average daily Wind Speed in (km/h))

�5 (Geothermal Water Density (underground) (%))

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Here little illustration of the above mentioned parameters 

�1 =

⎧
⎨

⎩

below 1h, 1h − 4h, 4.1h − 6h
6.1h − 8h, 8.1h − 10h, 10.1h − 14h

above 14 h

⎫
⎬

⎭

�2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

below 501 m3, 501 m3 − 2001m3

2001 m3 − 4001m3, 4001 − 6001m3

6001m3 − 8001m3, 8001m3 − 10, 001m3

10, 001m3 − 20001m3, 20, 001m3 − 40, 001m3

Above 40, 001m3

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 1. Flow Chart of proposed Algorithm.  
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�3 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

below 251mm, 251mm − 501mm

501mm − 1001mm, 1001mm − 2001mm

2001mm − 4001mm, 4001mm − 6001mm

6001mm − 8001mm, 8001mm − 10, 001mm

above 10, 000mm

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

�4 =

⎧
⎨

⎩

10km or below, 11km − 20km, 21km − 35km
36km − 55km, 56km − 70km, 71km − 100km

above 100 km

⎫
⎬

⎭

�5 =

⎧
⎨

⎩

below 5%, 5% − 9%, 9% − 19%
19% − 29%, 29% − 39%, 39% − 50%

above 50%

⎫
⎬

⎭

The IFSSs are given as N : ( �1 ×�2 ×…×�5)→P(G) and U : ( �1 × �2 × ...×�5)→P(þ). Let us assume that 

℘(I )=

{
6.1h − 8h, 501m3 − 2001m3, 501mm − 1001mm

11km − 20km, 29% − 39%

}

We evaluate {G
1
,G

2
,G

3
,G

4
,G

5
} and {Geothermal Power, Wind Power, Hydroelectric Power, Solar Power} (see Table 7). We 

construct the IFHSS to build the relation in {G
1
,G

2
,G

3
,G

4
,G

5
} and {6.1h − 8h,501m3 − 2001m3, 501mm − 1001mm,11km − 20km,

29% − 39%} . Now we construct the second association, as shown in Table 1. Then, we determine the association between þ =

{Geothermal Power, Wind Power, Hydroelectric Power, and Solar Power} and {6.1h − 8h, 501m3 − 2001m3,501mm − 1001mm,

11km − 20km, 29% − 39%} According to Step 2, the association is given by IFHSSs decision matrix shown in Table 2. Now, we 
developed the relation between G = {G

1
,G

2
,G

3
,G

4
,G

5
} and þ = {Geothermal Power, Wind Power, Hydroelectric Power, Solar 

Power} using Step 3, the association is determined with the proposed cosine and cotangent SM’s for IFHSSs by using equations (4.1)- 
(4.5), as shown in tables Table 4 and Table 8 (see Table 5). 

6. Result discussion 

Decision-making in a vague and imprecise environment is a crucial issue, we developed an IFHSS structure for such vague envi-
ronments. In this article, we proposed three versions of cosine similarity and two versions of cotangent SMs. The results of all the 
definitions coincide which shows the accuracy of the definitions. In results G1 and G5 are selected for wind power, G2 and G3 are 
selected for Hydroelectric power and G4 is selected for solar power according to the stability of the parameters with systems and 
geographical regions. Here we presented the 

7. Comparison with existing techniques 

Hypersoft sets offer a robust logical foundation for addressing the challenges inherent in multi-criteria decision-making. Their 
ability to represent granularity, flexibility in handling uncertainty, consideration of multiple criteria, and adaptability to decision- 
maker preferences make them a strong choice for modeling the complexities of real-world decision problems. The application of 
hypersoft sets in MCDM contributes to a more realistic and comprehensive approach to decision-making in the face of uncertainty and 
imprecision. Some of existing theories are shown in table below, due to sub-attributions of multiple attributes the decision making is 
more refined. We proposed IFHSS, IFHSM and their trigonometric SM’s and compare it with existing techniques with the shortcomings 
and limitations of existing techniques which shows the novelity of the proposed study. Table 9. 

8. Future directions and limitations 

The suggested IFHSS-Similarity measures offer enormous potential for MADM difficulties in various fields, including supplier 
selection, manufacturing frameworks, and a variety of other management frameworks. There are many MADM techniques, such as 
TOPSIS, SAW, AHP, VIKOR, etc. In future works, we will re-construct these algorithms and apply them to these MCDM techniques of 
TOPSIS, SAW, AHP, VIKOR, etc. under the PFHSSs structure. The limitations of the proposed study is firstly it is dealing with only with 
disjoint attributes which is the first limitation of the proposed study. Secondly the trigonometric similarity measures have some 
limitations as dependency on the domain, trigonometric similarity measures may or may not be successful. Since they might work 
effectively in some situations but not others, they might not be as adaptive as they could be. 
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9. Conclusion 

A novel model called the Intuitionistic Fuzzy Hypersoft Set (IFHSS) attempts to overcome the constraints of IFHSS regarding the use 
of a multi-argument domain for estimating the pertinent parameters. Because it accounts for the additional classification of parameters 
into their proper parametric valued sets, it is more dependable and versatile. For this investigation, we explored a number of other 
avenues. Several axiomatic findings, operational outcomes, and aggregation strategies were first presented. In this article we devel-
oped ten new similarity measures based on cosine and cotangent functions, in IFHSS environments. Several theorems, propositions, 
and results have been presented in this study using all proposed definitions. We developed algorithm to using proposed similarity 
measures to solve multi-attributive problems. Finally, we solved multi-attributive, multi-criteria decision-making problem of 
renewable energy source selection by using proposed technique. The suggested IFHSS-Similarity measures offer enormous potential for 
MADM difficulties in various fields, including supplier selection, manufacturing frameworks, and a variety of other management 
frameworks. There are many MADM techniques, such as TOPSIS, SAW, AHP, VIKOR, etc. In future works, we will re-construct these 
algorithms and apply them to these MCDM techniques of TOPSIS, SAW, AHP, VIKOR, etc. under the PFHSSs structure. 

Data availability statement 

No data was used for the research describle in the article. 

CRediT authorship contribution statement 

Muhammad Naveed Jafar: Writing – original draft, Conceptualization. Muhammad Saeed: Supervision. Ayesha Saeed: 
Methodology, Investigation, Formal analysis. Aleen Ijaz: Methodology. Mobeen Ashraf: Writing – review & editing, Visualization. 
Fahd Jarad: Funding acquisition. 

Declaration of competing interest 

The authors whose names are listed immediately below certify that they have NO affiliations with or involvement in any orga-
nization or entity with any financial interest (such as honoraria; educational grants; participation in speakers’ bureaus; membership, 
employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non- 
financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials 
discussed in this manuscript. 

References 

[1] L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Set Syst. 100 (1999) 9–34. 
[2] W. Cui, D.I. Blockley, Interval probability theory for evidential support, Int. J. Intell. Syst. 5 (2) (1990) 183–192, https://doi.org/10.1002/int.4550050204. 
[3] J.A. Goguen, LA Zadeh, Fuzzy sets. Information and control 8 (1965) 338–353. 
[4] L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Set Syst. 1 (1) (1978) 3–28. 
[5] K.T. Atanassov, S. Stoeva, Intuitionistic fuzzy sets, Fuzzy Set Syst. 20 (1) (1986) 87–96. 
[6] Y. Liu, G. Wang, L. Feng, A general model for Transforming vague sets into fuzzy sets, Transactions on Computational Science II (2008) 133–144, https://doi. 

org/10.1007/978-3-540-87563-5_8. M. L. Gavrilova, C. J. K. Tan, Y. Wang, Y. Yao, and G. Wang, Eds., in Lecture Notes in Computer Science. , Berlin, 
Heidelberg: Springer. 

[7] F. Smarandache, Neutrosophic set – a GENERALIZATION OF the intuitionistic fuzzy set, Journal of Defense Resources Management (JoDRM) 1 (1) (2010) 
107–116. 

[8] D. Molodtsov, Soft set theory—first results, Comput. Math. Appl. 37 (4–5) (1999) 19–31. 
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