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The reintroduction is an important conservation tool to restore a species in its historically 
distribution area, but the rate of reintroduction success varies across species or regions 
due to different reasons. Genetic evaluation is important to the conservation management 
of reintroduced species. Conservation concerns relate to genetic threats for species with 
a small population size or severely historically bottle-necked species, such as negative 
consequences associated with loss of genetic diversity and inbreeding. The last 40 years 
have seen a rapid increasing of population size for Père David’s deer (Elaphurus davidianus), 
which originated from a limited founder population. However, the genetic structure of 
reintroduced Père David’s deer has not been investigated in terms of population genomics, 
and it is still not clear about the evolutionary history of Père David’s deer and to what 
extent the inbreeding level is. Conservation genomics methods were used to reconstruct 
the demographic history of Père David’s deer, evaluate genetic diversity, and characterize 
genetic structure among 18 individuals from the captive, free-ranging and wild populations. 
The results showed that 1,456,457 single nucleotide polymorphisms (SNPs) were obtained 
for Père David’s deer, and low levels of genome-wide genetic diversity were observed in 
Père David’s deer compared with Red deer (Cervus elaphus) and Sika deer (Cervus 
nippon). A moderate population genetic differentiation was detected among three 
populations of Père David’s deer, especially between the captive population in Beijing 
Père David’s deer park and the free-ranging population in Jiangsu Dafeng National Nature 
Reserve. The effective population size of Père David’s deer started to decline ~25.8 ka, 
and the similar levels of three populations’ LD reflected the genetic impacts of long-term 
population bottlenecks in the Père David’s deer. The findings of this study could highlight 
the necessity of individual exchange between different facilities, and genetic management 
should generally be  integrated into conservation planning with other 
management considerations.
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INTRODUCTION

The reintroduction has been increasingly used as an important 
and effective conservation tool to recover locally extirpated 
species, and a common tool for restoring lost biodiversity 
(Earnhardt, 1999; Armstrong and Seddon, 2008; Stewart et al., 
2017). The rate of reintroduction success varies across species 
and differs from regions, and generally poor performance 
of reintroduction is reported due to different factors (Robert, 
2009; Mowry et  al., 2015; Robert et  al., 2015; Thévenin, 
2019). Genetic diversity is important to the viability and 
long term persistence of reintroduced species (Frankham, 
2005; Steiner et  al., 2012; Wirtz et  al., 2018). In theory, the 
source of reintroduced populations is limited because of a 
small population size of founder individuals, which would 
result in a low level of genetic diversity and limited gene 
flow (Stewart et  al., 2017; Ovenden et  al., 2019). This means 
it is necessary to conduct population genetics after 
reintroduction, however, such post-reintroduction evaluation 
is unfortunately inadequate (Moseby et al., 2020), and genetic 
consequences following wild release still remain unknown 
for many cases (La Haye et  al., 2017).

A key challenge of reintroduction efforts is to translocate 
individuals in a way that prevents loss of genetic variation, 
and avoids genetic differentiation relative to source populations 
(Barbanti et al., 2019). Such a challenge would have intensified, 
especially for a species that has recovered from a remnant 
population with historically low levels of genetic variation 
(Malone et al., 2018). Genetic diversity available for reintroduced 
populations is determined by the genetic background of the 
source population, which in turn is heavily impacted by the 
demographic history (Aspi et al., 2006). Conservation concerns 
relate to genetic threats for species with a small population 
size or severely historically bottle-necked species, such as 
negative consequences associated with loss of genetic diversity 
and inbreeding (Haig et  al., 1990; Ewen et  al., 2012). Genetic 
management plays an important role in improving the 
performance of reintroduction actions (Theodorou and Couvet, 
2010). Several studies have evaluated genetic consequences 
induced by reintroduction events for some ungulates using 
traditional molecular markers, for example, Przewalskii’s wild 
horse (Equus ferus; Liu et  al., 2014), European bison (Bison 
bonasus; Olech and Perzanowski, 2002), and Arabian oryx 
(Oryx leucoryx; El Alqamy et  al., 2012), but only very few 
studies use genomics data to evaluate post-reintroduction genetic 
consequences (Flesch et  al., 2020).

The unbiased genome-wide estimates generally reflect more 
accurately levels of genetic diversity and inbreeding (Kardos 
et al., 2016). The recent advances of next-generation sequencing 
(NGS) makes it feasible to detect genomic variations in many 
nonmodel species, and a new discipline, conservation genomics, 
is spawned in the new era, and is now expanding among 
conservation biologists (Angeloni et  al., 2012; Xue et  al., 
2015; Wright et  al., 2020; Hohenlohe et  al., 2021). By taking 
a conservation genomics approach, genome-wide genetic 
diversity can be estimated in terms of neutral and non-neutral 
variation (Angeloni et al., 2012; Liu et al., 2020). In addition, 

genetic structure can be  distinguished at a fine scale, even 
though the population differentiation is subtle (Lucek et  al., 
2019). Genomics data are useful for reintroduction projects 
by offering action guidance, including selecting source 
populations to maximize overall genomic variation, and 
valuable information for effective post-reintroduction 
monitoring (Latch, 2020). Meanwhile, the genomics data 
obtained also are important resources with the power to 
generate novel insights into the evolution of the focused 
species (Hohenlohe et  al., 2021).

Père David’s deer (Elaphurus davidianus), called “Milu” 
in China, went extinct in the wild as a result of over-hunting 
and habitat degradation in the late 19th century, but a few 
remnants were introduced into Europe and preserved safely 
in captivity in several European zoos. The remaining 18 
individuals distributed in Berlin, Paris, and Antwerp were 
collected by the 11th Duke of Bedford, forming a breeding 
herd at the Woburn Abbey, England, where only 11 individuals 
were reported to have the ability to reproduce. By 1945, the 
global population size of Père David’s deer reached 250. 
Three reintroduction attempts were made in China. The first 
20 deer were reintroduced to Beijing, China from Woburn 
Abbey in 1985, and then 18 in 1987. The second reintroduction 
population was established in Dafeng, Jiangsu Province, 
through trans-locating 39 deer from seven British zoos in 
August 1986. The third trans-located program included 94 
deer from Beijing to Shishou, Hubei Province by three batches 
in 1993, 1994, and 2002. As of 2020, the population size 
of worldwide Père David’s deer is around 10,000, and exceeds 
8,000  in China, suggesting a dramatic recovery over the last 
40 years although after a severe bottleneck in the history 
(Figure  1). Père David’s deer in the reintroduction sites 
serves as a multi-species conservation umbrella, and plays 
a key functional role in wetland ecosystems.

In recent years, wildlife protection laws and regulations 
have been gradually improved in China, and more suitable 
habitats are significantly provided. Efforts to rescue and 
protect endangered species have achieved remarkable results, 
with Père David’s deer as a successful icon in wildlife 
reintroduction. Père David’s deer provides an ideal system 
to evaluate the genetic consequences of reintroduction. Previous 
studies using mitochondrial DNA and microsatellites indicated 
that Père David’s deer had extremely low genetic diversity 
(Zeng et  al., 2007, 2013). A comparative genomics study 
revealed that Père David’s deer was characterized with extensive 
genetic diversity (Zhu et al., 2018). However, genetic diversity 
and genetic structure have so far not been detected for the 
reintroduced populations of Père David’s deer at the genome-
wide scale, and it is still not clear to what extent the inbreeding 
level is.

We used the genomics approach to reconstruct the 
demographic history of Père David’s deer, and to evaluate 
genetic diversity, and to characterize genetic structure among 
captive, free-ranging, and wild populations. We  also tested the 
hypothesis that the captive population in Beijing Père David’s 
deer park is differentiated from the populations in Jiangsu 
Dafeng National Nature Reserve.
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MATERIALS AND METHODS

Sample Collection
Blood samples from 10 Père David’s deer individuals (four 
males and six females), classified as the captive population 
(MC), were collected from Beijing Père David’s deer Park, and 
four samples (two males and two females) as the free-ranging 
population (MF) in Dafeng National Nature Reserve, Jiangsu 
Province, and another four samples (two males and two females) 
as the wild population (MW) in Dafeng National Nature Reserve, 
Jiangsu Province. Here, the free-ranging population indicates 
the animals live in a quite large fence, but can feed and breed 
naturally there. In contrast, the wild population survives and 
reproduces in the wild absolutely. The free-ranging and wild 
population was separated physically despite being in Dafeng 
National Nature Reserve. Blood samples were collected from 
two individuals of Red deer (Cervus elaphus) and two individuals 
of Sika deer (Cervus nippon) in Beijing Père David’s deer Park. 
Blood samples were stored in vacuum blood collection tube 
(Heparin anticoagulation). All samples were collected in 2018 
and 2019 (Supplementary Table  1).

Sequencing and Single Nucleotide 
Polymorphism Calling
Genomic DNA was extracted using QIAamp DNA Blood Mini 
Kit (Qiagen, Germany). The libraries were prepared as described 
in stLRF kit, and whole-genome resequencing was performed 
based on the BGISEQ-500 platform (BGI). The adapter and 
low quality reads were removed by SOAPnuke (Chen et al., 2017). 

Clean reads were aligned against the reference genome of Père 
David’s deer (Project ID: PRJNA391565, downloaded from 
NCBI; Zhang et  al., 2017) using Burrows-Wheeler Aligner 
(BWA; Li and Durbin, 2010), and then read alignments were 
sorted using SAMTools with the following parameters: “-q 1 
-C 50 -g -t DP, SP, DP4 -I -d 250 -L 250 -m 2 -p,” and 
duplicate reads were marked by Picard.

Multisample single nucleotide polymorphism (SNP) genotyping 
were carried out as follows. Variants calling was conducted using 
HaplotypeCaller and GenotypeGVCFs in GATK4 (Van der Auwera 
et  al., 2013), and in order to ensure the identification 
accuracy, SNPs were removed if any of the following parameter 
was met: QD < 2, MQ < 30, MQRankSum < −12.5, FS > 200, 
ReadPosRankSum < 20, QUAL < 30.0, and AN < 40. The GVCF file 
from each sample was generated using HaplotypeCaller, and then 
GenotypeGVCFs were used to merge separate GVCF files with 
the aim to improve the sensitivity of mutation detection.

Genetic Diversity Estimation
In order to estimate the genetic diversity of reintroduced 
populations of Père David’s deer, VCFtools (Danecek et  al., 
2011) was used to calculate the nucleotide diversity π at the 
whole-genome scale for each population. The Watterson’s 
estimator (w) of each population was calculated using VariScan 
v2.0.3 (Hutter et  al., 2006). Genome-wide Tajima’s D values 
for each population were calculated using VCFtools. A widely 
used approach for detecting selection is to apply a neutrality 
test statistic based on allele frequencies, with Tajima’s D being 
the most frequently one (Korneliussen et  al., 2013).

FIGURE 1 | Population size trend of Père David’s deer in Beijing Père David’s deer Park and Jiangsu Dafeng National Nature Reserve (including both the free-
ranging and wild populations).
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Population Structure Analysis
The population structure was mainly revealed through three 
different methods, including principal component analysis (PCA), 
phylogenetic tree (NJ tree), and ancestral component analysis 
(fastSTRUCTURE). Based on the filtered set of 1,456,457 SNPs, 
we  used Genome-wide Complex Trait Analysis (GCTA; Yang 
et  al., 2011) to perform principal component analysis (PCA), 
filter a few principal components through a dimensionality 
reduction algorithm, and use these principal components. 
Components can be  used to explain the differences between 
individuals to the greatest extent, and at the same time, the 
clustering relationship of each sample based on the distribution 
of PCs can be  estimated. A phylogenetic tree was constructed 
using Neighbor-joining (NJ) in Tree Building guided by Species 
Tree (TreeBeST; Price et al., 2010) in order to study the genetic 
distance relationship between individuals, with a bootstrap 
value of 1,000. The population genetic structure was inferred 
from genomics data using STRUCTURE with default settings 
(Raj et  al., 2014). The most likely value of K was identified 
from 20 independent runs for each value of K ranging from 
2 to 8, with 100 bootstraps. The posterior probability K was 
estimated, and the log likelihood was used to choose the 
optimal K (Evanno et  al., 2005). The web-based Structure 
Harvester (Earl and vonHoldt, 2012) was used to assess and 
visualize likelihood values across multiple values of K. The 
genetic differentiation index, FST was usually used to detect 
the genetic composition variance between all populations, and 
we used VCFtools to calculate these values. The level of genetic 
differentiation can be  defined as low (FST < 0.05), moderate 
(0.05 < FST < 0.15), high (0.15 < FST < 0.25), and extremely high 
(FST > 0.25; Wright, 1978).

Demographic History and Inbreeding 
Pattern
Multiple sequential Markovian coalescence (MSMC) model 
(Schiffels and Durbin, 2014) can be  used to reconstruct each 
population’s demographic history based on genomic information. 
MSMC breaks through the limitation that PSMC can only 
analyze one sample at a time. In addition, MSMC can integrate 
and analyze the nearest common ancestor time between multiple 
allele sequences at the same time, thereby improving the accuracy 
and efficiency of effective population size (Ne) prediction 
(Schiffels and Durbin, 2014). The parameters used were as 
follows: “-t 6 -p  1*2 + 15*1 + 1*2.” A mutation rate (μ) of 
1.5 × 10−8 mutations per site per generation for the three Cervidae 
species in this study was according to the reference (Chen 
et  al., 2019). The generation time was estimated to be  6 years 
based on the report of mammal generation length (Pacifici 
et  al., 2013). Detection of linkage disequilibrium (LD) patterns 
is necessary to infer population historical changes as well as 
inbreeding events in the species evolutionary history (Karimi 
et al., 2020). To assess the genomic extent of inbreeding inPère 
David’s deer, genome-wide LD was estimated for the three 
populations using PopLDdecay (Zhang et  al., 2019). To assess 
the LD of Père David’s deer, the correlation coefficient (R2) 
between any two loci from each population was calculated 

using vcftools v0.1.14, with following parameters: “--ld –window 
-bp  500,000 –geno -r2,” and average R2 values were calculated 
for pairwise SNPs by keeping the same distance.

RESULTS

Genetic Diversity and Genetic Drift
A total of 12,744 G clean reads were obtained among 22 
samples from Père David’s deer, Red deer, and Sika deer 
(Supplementary Table 1). The results showed that the average 
genome coverage rate was 98.77%, and the average sequencing 
depth was 19.93X, with an average mismatch rate of 0.90% 
(Supplementary Table 2). After filtering, an average of 485.76 
million clean reads remained for each Père David’s deer 
sample, with a clean data ratio of 99.31%, of which 99.12% 
reads (98.18–99.67%) were mapped to the Père David’s deer 
reference genome, and the mean GC content was 43.33%. 
Totally, 1,456,457 SNPs were obtained for all the datasets 
for further analysis, which had 33.92% homozygotes and 
66.08% heterozygotes, meaning a heterozygosity rate of 0.38 
per kilobase pair in the Père David’s deer 
(Supplementary Figure  1). The heterozygote percentage of 
the free-ranging and wild populations of Père David’s deer 
(70.47 ± 0.81%) was significantly higher than the captive 
population (64.21 ± 0.76%; p < 0.01). Across all 18 samples 
from Père David’s deer, 367.266 indels were identified, with 
54.61% insertions and 45.39% deletions, but neither the 
percentage of insertion nor deletion showed significant 
difference across Père David’s deer populations (p > 0.05).

Whole genome variation based on re-sequencing revealed that 
free-ranging Père David’s deer (MF) had the highest genomic 
diversity (π = 4.03 × 10−5, w = 3.58 × 10−5), whereas captive individuals 
(MC) had the lowest genetic diversity (π = 4.03 × 10−5, 
w = 2.99 × 10−5). Père David’s deer had lower genetic diversity than 
Red deer (π = 1.04 × 10−4, w = 1.04 × 10−4) and Sika deer 
(π = 1.47 × 10−4, w = 1.45 × 10−4; Table 1). The genome-wide Tajima’s 
D values were positive in three populations of Père David’s deerr 
(Table 1), indicating that Père David’s deer experienced balancing 
selection and population contraction in the history.

Population Genetic Structure
The captive population of Père David’s deer from Beijing 
Milu Park showed moderate population genomic differentiation 

TABLE 1 | The genetic diversity index for three populations of Père David’s deer 
and its related species.

π w Tajima’s D

MC 0.0000403 0.0000299 0.4908771
MF 0.0000409 0.0000358 0.2367667
MW 0.00004 0.0000351 0.2300057
RD 0.0001041 0.0001037 0.0074172
SK 0.0001466 0.0001452 0.0213304

MC, captive Père David’s deer; MF, free-ranging Père David’s deer; MW, wild Père 
David’s deer; RD, Red deer; and SK, Sika deer.
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from free-ranging and wild populations from Jiangsu based 
on both STRUCTURE and PCA analysis. Within the populations 
from Jiangsu, free-ranging and wild populations were further 
divided into two genetic subgroups, but population admixture 
also existed (Figure  2). The individuals from MF population 
admixed with MW population, and the individuals from MW 
population also clustered into MF population. This genetic 
assignment implied relatively frequent gene flow between 
individuals within the reintroduced population in Jiangsu. 
At a cluster value of two (K = 2; Supplementary Figure  2), 
STRUCTURE performed well to distinguish among three 
populations of Père David’s deer, suggesting the reintroduced 
populations had separated into two genetic structures 
(Figure  2A). The NJ phylogenetic tree based on pairwise 
SNP differences also revealed separate genetic clusters among 
captive, free-ranging, and wild populations of the reintroduced 

populations (Figure  2A). The average FST value between the 
captive and free-ranging was 0.073906, and 0.07302 between 
the captive and wild populations, suggesting a moderate genetic 
differentiation (Table  2). The average FST value was negative 
between the free-ranging and wild population, indicating no 
genetic differentiation, which was consistent with the results 
generated by PCA (Figure  2B) and phylogenetic tree.

Demographic History
The results from the MSMC analysis showed that the effective 
population size of Père David’s deer started to decline ~25.8 ka. 
The three populations of Père David’s deer had a similar long-
term demographic history. About 2.58 × 104 years ago, the effective 
population sizes for Père David’s deer were always larger than 
those for Red deer and Sika deer, but over the past 1.25 × 104 years, 
it showed an opposite trend (Figure  3).

A

B

FIGURE 2 | Population genetic structure among the captive population (MC), the free-ranging population (MF), and the wild population of reintroduced Père David’s 
deer. (A) Neighbor-joining (NJ) phylogenetic tree (left) and subgroups represented by the STRUCTURE analysis (K = 2, 3, 4, 5, 6, 7, and 8 shown; right). (B) Principle 
Component Analysis (PCA) plot.
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FIGURE 3 | Demographic history of Père David’s deer populations (MC, MF, and MW), Red deer (RD) and Sika deer (SK). Effective population size by time was 
estimated using MSMC2.

Inbreeding Pattern
Genome-wide LD analysis demonstrated that the average pairwise 
distance for the LD to decay until R2 = 0.4 was >900 kb for 
Père David’s deer (Figure  4). The three populations of Père 
David’s deer had similar levels of LD, to some extent reflecting 
the genetic impacts of long-term population bottlenecks in 
the Père David’s deer.

DISCUSSION

This is, to our knowledge, the first study to evaluate the genomic 
consequences of reintroduced Père David’s deer using the 
approach of population genomics, covering captive, free-ranging, 
and wild populations. The genome-wide genetic diversity of 
Père David’s deer was lower than that of Red deer and Sika 
deer. This result was consistent with other earlier studies using 
mitochondrial DNA and nuclear DNA (Zeng et  al., 2007), and 
microsatellite (Wu et al., 2008; Zhang et al., 2010). In addition, 

the captive population had the lowest genomic diversity, while 
the highest was revealed in the free-ranging population. Although 
18 individuals were considered as the founder source of all 
current populations of Père David’s deer around the world, 
13 of them contributed to the breeding from the start at the 
Woburn Abbey, England. Père David’s deer underwent drastic 
declines in population size, during which population decline 
is always accompanied by loss of genomic diversity due to 

TABLE 2 | The genetic differentiation index between populations base on FST.

SK RD MW MF MC

MC 0.910565 0.91975 0.07302 0.073906 0
MF 0.888112 0.904536 −0.00976 0
MW 0.889444 0.905702 0
RD 0.586584 0
SK 0

MC, the captive population; MF, the free-ranging population; MW, the wild population; 
RD, Red deer; and SK, Sika deer.

FIGURE 4 | Whole-genome scale patterns of linkage disequilibrium across 
reintroduced Père David’s deer populations.
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genetic drift and inbreeding. Furthermore, the 12th Duke of 
Bedford even suspected that all current populations of Père 
David’s deer were descended from a single male (Sowerby, 
1949). Up to now, unfortunately almost nothing is known about 
the composition and structure of the Père David’s deer Y 
chromosome, and further knowledge on the Y chromosome 
in future studies may be  crucial for adding a new dimension 
to our understanding of the low level of genomic diversity. 
Taking the Przewalski’s horse as an example, only two haplotypes 
of Y chromosome were kept after experiencing a severe historically 
bottleneck (Kavar and Dovc, 2008), and the limited Y 
chromosome lineages partially contribute to homozygous 
variations of Przewalski’s horse (Do et  al., 2014).

To be noticed, the genomic diversity in the captive population 
was lower than that in the free-ranging population of Père 
David’s deer (Table  1), which was contrary to the results 
based on microsatellite (Zeng et  al., 2007). Such inconsistent 
results may be  attributed to different methods applied in 
different studies. Compared with neutral loci (e.g., 
microsatellite), the genomic approach can increase the power 
and accuracy of estimating a set of key parameters in 
conservation biology (Allendorf et  al., 2010; Fan et al., 2018). 
Conservation breeding actions play an important role to 
protect species by controlling threatening factors and providing 
reintroduction source (Ebenhard, 1995). However, a key issue 
associated with captive breeding is the limited gene pool, 
leading to the accumulation of inbreeding from the founder 
generation, due to small population sizes and constrained 
migration (Alroy, 2015; Mulvena et  al., 2020). The origin of 
Père David’s deer differs between Beijing and Jiangsu (Bai 
et al., 2012; Cao, 2021), which means that genetic composition 
varies between regions. In addition, small populations are 
expected to suffer from loss of genetic diversity through 
genetic drift and reduced fitness because of inbreeding (Kvie 
et al., 2019). As of 2000, the captive population size in Beijing 
has not exceeded 200 individuals, and in contrast, the population 
size in Jiangsu has nearly reached 6,000 (Figure  1).

A moderate genetic differentiation was represented among 
captive, free-ranging, and wild populations by both STRUCTURE 
and PCA analysis (Figure  2). The captive and free-ranging 
populations showed the highest level of genetic differentiation 
(Table  2), which was supported by the microsatellite based 
study (Zeng et  al., 2007). The population in Beijing was 
reintroduced from the Woburn Abbey, but the population in 
Jiangsu was established with founders from five zoo populations 
(Jiang and Ding, 2011). The different lineage would be  the 
main reason resulting in different genetic structure. In the 
past 40 years, 520 Père David’s deer in Beijing Milu Park have 
been released into 40 sites through 53 translocation events 
covering 20 provinces around China, but unfortunately, few 
individuals were translocated to Dafeng, Jiangsu. The lack of 
translocation between Beijing and Jiangsu may hinder the gene 
flow, and further drive genetic differentiation.

The demographic history analysis based on MSMC2 showed 
that the effective population size of Père David’s deer started 
to decline ~25.8 ka (Figure  3), which coincides with the 
inference according to PSMC (Zhu et  al., 2018). During late 

Pleistocene, large mammal declines became much more severe 
than previously expected due to the interaction effects of 
climate change and human activities, although the impact 
varies across continents or species (Barnosky et  al., 2004; 
Chen et  al., 2019). With the human population expanding 
dramatically (Li and Durbin, 2011), the population decline 
of Père David’s deer might be  at least partially attributable 
to human activities (e.g., human hunting), which was further 
supported by the fossil evidence (Dong et  al., 2019). This is 
further supported by new evidence from large-scale ruminant 
genome sequencing, given that the demographic pattern was 
species-specific because of variable habitat types or feeding 
types (Chen et al., 2019). With the population size decreasing, 
inbreeding accumulated during the evolutionary history of 
Père David’s deer (Zhu et  al., 2018). The LD pattern is a 
useful indicator for estimating inbreeding at the individual 
level, and generally LD rapidly decays to very low levels in 
populations with low inbreeding level (Wang et  al., 2021). 
Père David’s deer exhibited extremely high LD (Figure  4), 
which implied that a prolonged population decline might 
have caused an increased overall burden of inbreeding.

CONSERVATION IMPLICATIONS

This study evaluates genomic consequences of post-reintroduction 
of Père David’s deer using the conservation genomics approach, 
and the results would contribute to inform future conservation 
management. There are many factors influencing species 
reintroduction success, among which genetic is the most 
important (Flesch et  al., 2020). The genetic diversity of an 
endangered species is one of the main parameters that can 
directly reflect the evolutionary potential. Genetic evaluation 
can provide decision-making reference for the relevant 
government departments to formulate species protection strategies 
and plans. Genomic evaluation of reintroduced populations 
can help address the uncertainties in reintroduction projects. 
According to IUCN guidelines, genetic management should 
generally be  integrated into conservation planning with other 
management considerations (Ralls et  al., 2018).

In the future, the genetic evaluation should cover more 
populations and sample more individuals, for example, the 
population size of Père David’s deer has reached 1,600  in 
Shishou, Hubei province. The extremely low genetic diversity 
has always been a warning to humans that population genetic 
health of Père David’s deer is still relatively fragile, and how 
to maintain the current level and prevent further loss still 
remains a concern in conservation management. In the specific 
implementation of the reintroduction, there are still some 
geopolitical factors that may affect the source selection and 
the selection of reintroduction sites. It is recommended to 
conduct individual exchanges among different facilities, so as 
to enhance gene flow and reduce inbreeding. For example, 
the captive individuals in Beijing should be selected to be released 
to the wild in Jiangsu Dafeng National Nature Reserve. Before 
releasing, the genetic background of the source individuals 
should be monitored to ensure sufficient gene flow. In addition, 
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the samples of Père David’s deer are important resources for 
scientific research, especially the ones who exhibited abnormal 
phenotypes in the population, because they can be  used to 
study the inbreeding depression and genetic changes over time. 
So, we suggest building a sample library for reintroduced species.
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