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A B S T R A C T

In this article, we present an enhanced version of Cutler’s deconvolution method to address the limitations of the original algorithm in estimating 
realistic input and output parameters. Cutler’s method, based on orthogonal polynomials, suffers from unconstrained solutions, leading to the lack 
of realism in the deconvolved signals in some applications. Our proposed approach incorporates constraints using a ridge factor and Lagrangian 
multipliers in an iterative fashion, maintaining Cutler’s iterative projection-based nature. This extension avoids the need for external optimization 
solvers, making it particularly suitable for applications requiring constraints on inputs and outputs. We demonstrate the effectiveness of the proposed 
method through two practical applications: the estimation of COVID-19 curves and the study of mavoglurant, an experimental drug. Our results 
show that the extended method presents a sum of squared residuals in the same order of magnitude of that of the original Cutler’s method and other 
widely known unconstrained deconvolution techniques, but obtains instead physically plausible solutions, correcting the errors introduced by the 
alternative methods considered, as illustrated in our case studies.

1. Introduction

Deconvolution plays a crucial role in various scientific disciplines [7,17]. Its primary goal is to recover an original signal from 
an observed signal convoluted with a known system response or filter function [34]. Therefore, deconvolution can be thought of as 
inverting the system response on the observed signal so as to accurately recreate the original one. Recovering this information can 
provide a deeper understanding of the process under consideration and enhance decision-making in diverse applications. For instance, 
in geophysics, deconvolution is used to estimate information about the Earth’s subsurface from measured seismic signals [39,35]; in 
astronomy, it is used to remove atmospheric seeing degradation to obtain clearer images [38]; and in biomedical engineering one 
can find multiple applications, e.g., identifying types of cells [31,25,20] and In Vitro–In Vivo Correlations (IVIVC) [21], and finding 
the time profile in which insulin enters the blood after subcutaneous injections [36,9].

Numerous techniques have been proposed to tackle the deconvolution problem, ranging from numerical methods to optimization-

based approaches [38]. In addition, according to the way the input signal is deconvolved, it is possible to classify the methods that 
appear in the literature in three different categories: parametric approaches, i.e., methods assuming a functional form of the input 
whose parameters are unknown [12,42,23]; nonparametric approaches, i.e., methods that estimate the input signal without any prior 
assumption on its shape or time evolution [33,14,37]; and semiparametric approaches, i.e., methods that combine features of the 
two categories presented above [43,11]. However, many decovolution methods suffer from issues such as computational complexity, 
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parameter tuning, and ill-conditioning [40,39,31], mainly when they rely on the inversion of the convolution matrix, which can be 
ill-conditioned or even singular.

In this article, our primary objective is not simply to find an estimation of the input vector, but rather to extend and improve 
upon a parametric deconvolution method in a least-square sense for linear systems introduced by Cutler in 1978 [11]. This method 
is based on the use of orthogonal polynomials to project the observed signal onto the span of a set of basis vectors. By leveraging 
orthogonal polynomials, this method offers: i) improved numerical stability in calculations, minimizing the impact of small errors in 
the deconvolved signal; ii) improved noise resistance, leading to cleaner estimates of the underlying functions; iii) better handling 
of complex patterns, ensuring more accurate reconstructions than other methods; and iv) additional flexibility in the deconvolution 
process through the choice of specific orthogonal polynomials (e.g., Legendre [46], Racah [26], Hermite, Chebyshev, etc.) [32,2,15].

Indeed, the use of orthogonal polynomials simplifies the computation of input coefficients and helps avoid numerical issues that 
can plague other methods. Nevertheless, the original Cutler method remains unconstrained, which can lead to unrealistic parameter 
estimates, such as physiological signals that should be positive becoming negative at specific time points. To bridge this gap, our 
primary contribution is introducing constraints to improve upon Cutler’s original approach. Specifically, we focus on enhancing 
its applicability by ensuring the derived deconvolution results are more physically realistic. To this end, we propose two principal 
extensions to the Cutler method:

1. Incorporating a ridge factor to regularize the solution: This is a standard approach that introduces a tuning parameter to control 
the smoothness of the deconvolved signal, providing a way to minimize the impact of noise or other irregularities in the signal 
in order to obtain a more realistic and stable output.

2. Using Lagrange multipliers in an iterative fashion to deal with the constraints: Lagrangian multipliers allow us to address 
constraint violations explicitly through a cost function, providing a mechanism that ensures that deconvolved signals adhere to 
predefined conditions so that they are physically plausible.

While other alternatives might be possible, e.g., using the gradient projection method [10,13], we believe that the proposed approach 
is more natural as it maintains the simplicity and iterative nature of the original Cutler’s approach. As will be seen, the proposed 
method does not rely on complex computations, but on straightforward loops and scalar products. At this point, it is necessary

to remark that we do not aim to establish the superiority of our method over others, but rather to present a valid alternative 
that is simple to understand, implement, and well-suited to applications where constraints are required. That is, while there may be 
existing methods that could potentially serve this purpose, by extending Cutler’s algorithm we contribute to the toolbox of techniques 
available to the broader scientific community.

To demonstrate the practical relevance and applicability of our approach, the extended Cutler method is applied to two real-world 
examples. In the first example, we apply the method to COVID-19 curves, reconstructing the underlying dynamics of the pandemic 
and providing valuable insights into the evolution of the virus. This application is particularly relevant in the context of recent 
studies that have used deconvolution techniques to analyze the spread of infectious diseases [28,30]. In the second example, we 
apply our method to the study of mavoglurant, a drug used to treat neurological disorders. Here, the extended Cutler method is used 
to estimate the pharmacokinetic profile of the drug, helping researchers to better understand its absorption process. In this context, 
we also provide comparisons with other existing deconvolution techniques to illustrate the performance of our proposed method in 
the presence of noise, ill-conditioning, and other challenges.

The structure of this article is as follows. In Section 2, we introduce the mathematical framework and notation for the deconvolu-

tion problem, followed by a detailed explanation of the original Cutler’s method. In Section 3, the proposed extensions to the Cutler 
method are presented. In Section 4, we present numerical simulations, and Section 5 provides concluding remarks and discusses 
future research directions.

2. Problem setting and some classical methods for numerical deconvolution

Consider a discrete-time single-input single-output system with linear and time-invariant dynamics. For this class of systems, the 
dynamics can be modeled using its impulse response 𝑔 = [𝑔0, 𝑔1, …]⊤, which here is assumed to be finite. Here, 𝑔𝑘 denotes the value 
of the signal at time instant 𝑘. Note that with a certain abuse of notation we have written the discrete-time signal 𝑔 as a vector. The 
reason to do that will become clearer later.

In general, given an input 𝑢 and the impulse response 𝑔, the output of the system, say 𝑦, can be written as

𝑦𝑘 = (𝑔 ∗ 𝑢)[𝑘] =
𝑘∑

𝑡=−∞
𝑢𝑘−𝑡𝑔𝑡

=
𝑘∑

𝑡=−∞
𝑔𝑘−𝑡𝑢𝑡,

(1)

where 𝑘 is the discrete-time index and the operator ∗ stands for convolution. An intuitive way to understand what convolution 
means is to think of the input 𝑢 as a sum of scaled impulse functions. Since the system is linear and time-invariant, the superposition 
2

principle allows us to express the output 𝑦 as the sum of the corresponding scaled impulse responses of the system.
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Considering that both 𝑢𝑘 and 𝑔𝑘 are zero for 𝑘 < 0 and that all these signals can be observed until time instant 𝑘 = 𝑆 ,1 it is 
possible to rewrite Eq. (1) in an algebraic manner as

𝐲 =𝐺𝐮, (2)

where

𝐲 =

⎡⎢⎢⎢⎢⎢⎣

𝑦0
𝑦1
𝑦2
⋮
𝑦𝑆

⎤⎥⎥⎥⎥⎥⎦
, 𝐮 =

⎡⎢⎢⎢⎢⎢⎣

𝑢0
𝑢1
𝑢2
⋮
𝑢𝑆

⎤⎥⎥⎥⎥⎥⎦
, 𝐺 =

⎡⎢⎢⎢⎢⎢⎣

𝑔0 0 0 … 0
𝑔1 𝑔0 0 … 0
𝑔2 𝑔1 𝑔0 … 0
⋮ ⋮ ⋮ ⋱ ⋮
𝑔𝑆 𝑔𝑆−1 … … 𝑔0

⎤⎥⎥⎥⎥⎥⎦
,

being 𝐺 a Toeplitz matrix whose elements are given by the previously introduced impulse response sequence 𝑔. As can be seen, the 
dimensions of 𝐺 vary according to the length of the input and the output vector.

In this work, we consider the problem of finding an estimation of the input vector, say 𝐮̂, from a given an observation vector 𝐲
and the Toeplitz matrix 𝐺. As we will see in the coming subsections, there are a few methods that can be used in this regard.

2.1. Direct inversion

We start a small review of methods to solve our problem by introducing the simplest method to perform numerical deconvolution 
in a non-parametric fashion, which is known as direct inversion and leads us to solve algebraically a system of equations derived 
from Eq. (2) as

𝐮̂ =𝐺−1𝐲,

which is possible as long as 𝐺 has an inverse. However, this method has poor performance because 𝐺 can be ill-conditioned, showing 
high sensitivity with respect to changes in 𝐲, i.e., it can generate a significant variability of the estimate with minor changes in the 
measurements.

2.2. Least squares with regularization approach

Alternatively, one can find 𝑢̂ so that the sum of the squared of the residuals

𝑟 = 𝐲 −𝐺𝐮

are minimized, i.e.,

𝐮̂ = argmin
𝐮

(𝐲 −𝐺𝐮)⊤(𝐲 −𝐺𝐮).

This is a well-known optimization problem and its minimizer,

𝐮̂ = (𝐺⊤𝐺)−1𝐺𝐲, (3)

is derived in many books and articles such as [16]. However, the approach is not without its limitations, specially when 𝐺⊤𝐺 is 
near-singular.

To relieve computation issues when applying least-squares, works such as [19] propose shifting the diagonal of (𝐺⊤𝐺) by adding 
and extra term 𝜆reg𝐼 , where 𝐼 is an unit matrix of the corresponding size, as

𝐮̂ = (𝐺⊤𝐺 + 𝜆reg𝐼)−1𝐺⊤𝐲̂.

Here, 𝜆reg > 0 is the so-called ridge parameter, and enters as a regularization factor that alleviates numerical issues. This solution 
also corresponds to the minimizer of the following optimization problem

𝐮̂ = argmin
𝐮

(𝐲 −𝐺𝐮)⊤(𝐲 −𝐺𝐮) + 𝜆reg(𝐮⊤𝐮− 𝑐),

i.e., 𝜆reg can be seen as a Lagrange multiplier that penalizes the violation of the constraint 𝐮⊤𝐮 = 𝑐, where 𝑐 > 0. Therefore, tuning 
𝜆reg promotes a regularization of the norm of the estimated input via the cost function.

More advanced versions of this method have been proposed in the literature, e.g., in [14], where the input sequence is estimated 
as

𝐮̂ = argmin
𝐮

(
(𝐺𝐮− 𝐲)⊤ Σ−1

v (𝐺𝐮− 𝐲) + 𝜆reg𝐮Σ−1
u 𝐮

)
, (4)

1 The assumption that both signals are zero for 𝑘 < 0 is based on the causality principle, wherein the output at any given time is influenced only by current and 
3

past inputs, not future ones. However, this assumption could be relaxed since our method does not inherently restrict its application to solely causal systems.
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where, once more, 𝜆reg can be arbitrarily changed to obtain a trade-off between fidelity to the data and roughness of the input 
sequence estimate. In this version, Σv and Σu can be interpreted as variances of the output error and the input estimate, respectively, 
with the input sequence modeled as an integrated random walk model. From this viewpoint, these variances represent the prior 
knowledge of the output and input, which allows generating confidence intervals on the results obtained.

2.3. Numerical deconvolution based on orthogonal polynomials

This is a parametric approach that decomposes the input as

⎡⎢⎢⎢⎣
𝑢̂0
𝑢̂1
⋮
𝑢̂𝑆

⎤⎥⎥⎥⎦
⏟⏟⏟

𝐮̂

=

⎡⎢⎢⎢⎢⎣
𝑢
[1]
0 𝑢

[2]
0 … 𝑢

[𝑛]
0

𝑢
[1]
1 𝑢

[2]
1 … 𝑢

[𝑛]
1

⋮ ⋮ ⋱ ⋮

𝑢
[1]
𝑆

𝑢
[2]
𝑆

… 𝑢
[𝑛]
𝑆

⎤⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑈

⎡⎢⎢⎢⎣
𝑎1
𝑎2
⋮
𝑎𝑛

⎤⎥⎥⎥⎦
⏟⏟⏟

𝑎

, (5)

where 𝑎 is a vector containing 𝑛 scalar coefficients. Given the duality between discrete-time sequences and vectors, this means that

𝑢̂𝑘 =
𝑛∑
𝑖=1
𝑎𝑖𝑢

[𝑖]
𝑘
, ∀𝑘 ∈ {0,1, ..., 𝑆}.

That is, the deconvolved input becomes a linear combination of the columns of matrix 𝑈 , where 𝑢[𝑖] represents the 𝑖-th column of 
matrix 𝑈 , i.e., 𝑈 = [𝑢[1] 𝑢[2] … 𝑢[𝑛]], and 𝑢[𝑖]

𝑘
corresponds to its value at time instant (and row) 𝑘.

For reasons that will become apparent shortly, we are specifically looking for vectors 𝑢[𝑖] that stem from a polynomial. In our 
discrete-time setting, this means that

𝑢[𝑖] =𝑀𝑖𝑏
[𝑖], (6)

where 𝑏[𝑖] = [𝑏𝑖,1, 𝑏𝑖,2, … , 𝑏𝑖,𝑖]⊤ is a vector containing 𝑖 scalar coefficients and

𝑀𝑖 = [𝑚[1] 𝑚[2] … 𝑚[𝑖]], (7)

is a matrix containing 𝑖 vectors of the form 𝑚[𝑖] = [𝑚[𝑖]
0 , 𝑚

[𝑖]
1 , ⋯ , 𝑚[𝑖]

𝑆
]⊤, where 𝑚[𝑖]

𝑘
= 𝑘𝑖. Note that these vectors are monomials and 

therefore one can think of matrix 𝑀 as a monomial matrix. In particular, 𝑚[𝑖] is simply defined as the sequence containing the 
component-wise 𝑖-th power of the discrete-time index 𝑘. In a continuous time setting, this corresponds to the 𝑖-th power of the 
corresponding samples of the time vector, which explains why signals generating vectors as that written as Eq. (6) are polynomials.

Again, this means that

𝑢
[𝑖]
𝑘

=
𝑖∑
𝑗=1
𝑏
[𝑖]
𝑗
𝑚
[𝑗]
𝑘

=
𝑖∑
𝑗=1
𝑏
[𝑖]
𝑗
𝑘𝑗 , ∀𝑘 ∈ {0,1, ..., 𝑆}.

Likewise, the estimated output vector, say 𝐲̂ = [𝑦̂0, 𝑦̂1, ..., 𝑦̂𝑆 ]⊤, is given by 𝐲̂ =𝐺𝑈𝑎, and, therefore,

𝑦̂𝑘 =
𝑘∑
𝑡=0
𝑔𝑘−𝑡

𝑛∑
𝑖=1
𝑎𝑖𝑢

[𝑖]
𝑡 =

𝑛∑
𝑖=1
𝑎𝑖

𝑘∑
𝑡=0
𝑔𝑘−𝑡𝑢

[𝑖]
𝑡

⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑓
[𝑖]
𝑘

, ∀𝑘 ∈ {0,1, ..., 𝑆},

where 𝑓 [𝑖]
𝑘

denotes the 𝑘-th element of the sequence stemming from the linear transformation that is performed by the system on 
input vector 𝑢[𝑖].

Writing the input estimate following equations (5)-(7) offers advantages from a numerical viewpoint if the data-fitting process 
in a least-squares sense is performed using a set of orthogonal polynomial functions. This is precisely what was proposed by Cutler 
in [11], who adapted a well-known process for data fitting taken from [16] to the specific case of the input deconvolution of a linear 
system. In particular, Cutler customized the Gram-Schmidt orthogonalization method to find coefficients vector 𝑎 that minimizes the 
following objective function for any given polynomial order 𝑛:

𝑆∑(
𝑛∑ [𝑖]

)2
⊤

4

𝐽 (𝑎) =
𝑘=0

𝑦𝑘 −
𝑖=1
𝑎𝑖𝑓𝑘 = (𝐲 −𝐺𝑈𝑎) (𝐲 −𝐺𝑈𝑎). (8)
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The core of this approach is given in Algorithm 1 for a discrete-time linear system and works as follows2: input sequences 𝑢[𝑖] for 
𝑖 = 1, 2, ..., 𝑛 (the columns of the previously introduced matrix 𝑈 ) are generated such that they result in orthogonal outputs, i.e.,

(𝑦[𝑖])⊤𝑦[𝑗] = 0, ∀𝑖, 𝑗 ∈ {1,2,… , 𝑛}, 𝑖 ≠ 𝑗, (9)

where 𝑦[𝑖] =𝐺𝑢[𝑖]. Then, the estimated input of the system can be described as a weighted sum of the input vectors, i.e., 𝐮̂ =
∑
𝑖 𝑎𝑖𝑢

[𝑖], 
where 𝑎𝑖 is a coefficient computed from the projection of the output data vector 𝐲 onto 𝑦[𝑖].

In a nutshell, the method starts calculating the step response of the system and computes the projection of the measured output 
onto it (again, recall that sampled signals and vectors work analogously in this context), yielding coefficient 𝑎1. The next input 
polynomial is defined by multiplying the previous one by the discrete-time index and subtracting its projections of its output onto 
the previously computed output polynomials. For example, the second polynomial becomes a ramp minus a step weighted by 𝑏1,1, 
which is calculated to guarantee that the orthogonality at the output with the previous output polynomial. In this way 𝑎2 can be 
computed as the projection of the observed output onto the output corresponding to the second input polynomial. This basic process 
is iterated until the predefined polynomial order 𝑛 is attained. Also, note that it is possible to set a different stopping criterion. For 
example, one could keep adding terms until a threshold on the value attained by the residual mean square at the output generated 
by the current estimate is met, or until an indicator as the Akaike information criterion recommends to do so [3,6].

Finally, we conclude this subsection by providing an algebraic expression of the solution of Cutler’s approach, which was not 
derived in his manuscript despite its evident advantages to keep the notation simple. In particular, it is possible to compute the vector 
of coefficients 𝑎 considering (8), yielding 𝑎∗ = argmin

𝑎
(𝐲 − 𝐺𝑈𝑎)⊤(𝐲 − 𝐺𝑈𝑎). By defining 𝐺′ = 𝐺𝑈 , we can obtain an analogous 

solution to that of (3), i.e.,

𝑎 = (𝐺′T𝐺′)−1𝐺′𝐲 = (𝑈⊤𝐺⊤𝐺𝑈 )−1𝐺𝑈𝐲. (10)

To apply the solution of Equation (10), it is necessary to obtain first the set of vectors 𝑈 that generate orthogonal outputs. This 
can be done, for example, employing the variation of the Gram-Schmidt method that is given in the loop of Algorithm 1.

Algorithm 1: Numerical deconvolution based on orthogonal output sequences for discrete-time linear systems.

Define parameter 𝑛, initialize 𝑢[1] = [1, 1, ⋯ , 1]⊤ ∈ℝ(𝑆+1)×1 , and set 𝑇 = diag(𝑚[1]) = diag([0, 1, 2, ⋯ , 𝑆]). Then,

for 𝑖 = 1, … , 𝑛 do

𝑢[𝑖+1] = 𝑇 𝑢[𝑖] −
𝑖∑
𝑘=1
𝑏𝑖,𝑘𝑢

[𝑘] , with 𝑏𝑖,𝑘 = 𝑢[𝑖]
⊤
𝑇 ⊤𝐺⊤𝐺𝑢[𝑘]

𝑢[𝑘]
⊤
𝐺⊤𝐺𝑢[𝑘]

;

end

Result: Deconvolved input 𝐮̂ =
𝑛∑
𝑖=1
𝑎∗
𝑖
𝑢[𝑖] , where 𝑎∗

𝑖
= 𝐲⊤𝐺𝑢[𝑖]

𝑢[𝑖]⊤𝐺⊤𝐺𝑢[𝑖]
.

3. Constrained numerical deconvolution based on orthogonal polynomials

While Cutler’s method solves numerical issues regarding the computation of the input estimate in a parametric form, it has 
some downsides. For example, the estimates generated might not have sense from a physical viewpoint, e.g., deconvolved signals 
might become negative at some points, which is not realistic in application fields such as pharmacokinetics, where magnitudes as 
concentration are required to be positive. Also, the resulting signals may exhibit strong fluctuations in some cases, specially at the 
end of their range when the effect of the deconvolved input is only partially visible on the output. This section presents several 
alternatives to relieve these issues or to fix them altogether by adapting some well known approaches to the current setup. By 
doing this, we enhance the applicability of the original approach proposed by Cutler and provide means to compute realistic input 
estimates in a parametric and numerical fashion, also respecting an inherent feature of Cutler’s original method, which is its reliance 
on the Gram-Schmidt orthogonalization process to derive orthogonal polynomials for each specific application rather than using 
conventional orthogonal polynomial families.

Given the previously mentioned issues, in this section we provide two alternatives. The first one is the introduction of a regular-

ization term, which has the potential to solve minor constraint violations. The second mechanism is based on the introduction of the 
constraints in the cost function optimized using Lagrangian multipliers. In developing these alternatives, we aimed to preserve the 
foundational aspects of Cutler’s method, particularly its emphasis on the Gram-Schmidt process for orthogonalization. This adherence 
not only ensures compatibility with the original method but also maximizes the orthogonality and efficiency of the derived polyno-

mials. As will be seen, the two algorithms proposed respect the essence of the original Cutler’s method, enhancing its applicability 
to situations where constraints on signal values are significant.

2 To simplify the introduction of the method, we assume that the output of the system can be observed at each sampling time. This is done without loss of generality 
5

because it is straightforward to extend the method for the case of sparse measurements.
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3.1. Relieving constraint satisfaction via regularization approach

First, we modify the method by providing it with a regularization term similarly to Eq. (4). That is, the objective function we 
want to minimize is the following:

𝐽reg(𝑎) =
𝑆∑
𝑘=0

(
𝑦𝑘 −

𝑛∑
𝑖=1
𝑎𝑖𝑓

[𝑖]
𝑘

)2

+
𝑛∑
𝑖=1
𝜁(𝑖)𝑎2𝑖 ,

where 𝜁(𝑖) > 0 is a function of parameter 𝑖 that regularizes coefficient 𝑎𝑖. Note that this function allows penalizing more those 
coefficients associated with higher degrees polynomials. This way, it is possible to avoid extreme input estimates, so that vector 𝐮̂
becomes more plausible. Following similar steps as the original Cutler’s method, we will calculate coefficients 𝑎𝑗 , for all 𝑗 ∈ {1, ..., 𝑛}, 
by computing partial derivatives 𝜕𝐽reg(𝑎)∕𝜕𝑎𝑗 , i.e.,

𝜕𝐽reg(𝑎)
𝜕𝑎𝑗

= 2
𝑆∑
𝑘=0

(
𝑦𝑘 −

𝑛∑
𝑖=1
𝑎𝑖𝑓

[𝑖]
𝑘

)
𝑓
[𝑗]
𝑘

+ 2𝜁(𝑖)𝑎𝑖. (11)

Again, consider that (9) holds, then 
∑𝑆
𝑘=0 𝑓

[𝑖]
𝑘
𝑓
[𝑗]
𝑘

= 0 for all 𝑖 ≠ 𝑗. Given this and equating (11) to zero, we have that

−
𝑆∑
𝑘=0
𝑦𝑘𝑓

[𝑗]
𝑘

+ 𝑎∗𝑗
𝑆∑
𝑘=0
𝑓
[𝑗]
𝑘
𝑓
[𝑗]
𝑘

+ 𝑎∗𝑗 𝜁(𝑗) = 0.

Finally, isolating coefficients 𝑎∗
𝑗

and using a matrix notation, we obtain

𝑎∗𝑗 =
∑𝑆
𝑘=0 𝑦𝑘𝑓

[𝑗]
𝑘∑𝑆

𝑘=0(𝑓
[𝑗]
𝑘

)2 + 𝜁(𝑗)
=

𝐲⊤𝐺𝑢[𝑗]

𝑢[𝑗]⊤𝐺⊤𝐺𝑢[𝑗] + 𝜁(𝑗)
. (12)

The extended Cutler’s method with regularization factor is finally summarized in Algorithm 2.

Finally, we generalize these results in an algebraic form:

𝑎 = (𝑈⊤𝐺⊤𝑄𝐺𝑈 +𝑍)−1𝑄𝐺𝑈𝐲

where 𝑄 and 𝑍 are weighting matrices that can be exploited to obtain confidence intervals regarding the output and its corresponding 
deconvolved input (recall [14]). Note that the equivalence with Equation (12) is attained if 𝑍 = diag(𝜁𝑖) and Q is equal to the unit 
matrix of the corresponding size. Also, the weighting matrix penalizing the output can include zero rows so as to model the absence of 
measurements —a very frequent situation in the biomedical context—, yielding a series of coincidence points to drive the calculation 
of the coefficients.

Algorithm 2: Numerical deconvolution based on orthogonal output sequences for discrete-time linear systems with regular-

ization term.

Define parameters 𝑛 and function 𝜁 (⋅), initialize 𝑢[1] = 𝟏𝑆+1 = [1, 1, ⋯ , 1]⊤ , and set 𝑇 = diag(𝑚[1]) = diag([0, 1, ⋯ , 𝑆]). Then,

for 𝑖 = 1, … , 𝑛 do

𝑢[𝑖+1] = 𝑇 𝑢[𝑖] −
𝑖∑
𝑘=1
𝑏𝑖,𝑘𝑢

[𝑘] , with 𝑏𝑖,𝑘 = 𝑢[𝑖]
⊤
𝑇 ⊤𝐺⊤𝐺𝑢[𝑘]

𝑢[𝑘]
⊤
𝐺⊤𝐺𝑢[𝑘]

.

end

Result: Deconv. input 𝐮̂=
𝑛∑
𝑖=1
𝑎∗
𝑖
𝑢[𝑖] , with 𝑎∗

𝑖
= 𝐲⊤𝐺𝑢[𝑖]

𝑢[𝑖]⊤𝐺⊤𝐺𝑢[𝑖]+𝜁(𝑖)
.

3.2. Enforcing constraint satisfaction via Lagrangian multipliers

The regularization method introduced in the previous subsection can relieve issues related to extreme realization of the estimate. 
However, it does not guarantee that the values of the deconvolved input vector 𝐮̂ = [𝑢̂𝑘]𝑆𝑘=0 or estimated output 𝐲̂ = [𝑦̂𝑘]𝑆𝑘=0 are 
realistic. For example, we may require them to contain only nonnegative numbers. In order to address this type of conditions, we 
will assume that coefficients vector 𝑎 must satisfy the following inequalities for any given 𝑛:

𝑢̂𝑘 =
𝑛∑
𝑖=1
𝑎𝑖𝑢

[𝑖]
𝑘

≥ 𝛾u,

𝑦̂𝑘 =
𝑛∑
𝑖=1
𝑎𝑖𝑓

[𝑖]
𝑘

≥ 𝛾y,
(13)
6

∀𝑘 ∈ {0,1, ..., 𝑆},
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where 𝛾u and 𝛾y can be freely chosen. In what follows, we will consider Lagrangian-based methods together with Cutler’s algorithm 
to perform a constrained deconvolution. Particularly, we will optimize objective function (8) subject to (13) using a dual-ascent 
algorithm [5].

Let us use 𝑎̃𝑖 = −𝑎𝑖, and similarly 𝑎̃ = −𝑎 = [−𝑎𝑖]𝑛𝑖=1. Also, note that the new problem we address can be formulated as

min
𝑎̃

𝑆∑
𝑘=0

(
𝑦𝑘 +

𝑛∑
𝑖=1
𝑎̃𝑖𝑓

[𝑖]
𝑘

)2

= (𝐲 +𝐺𝑈𝑎̃)⊤ (𝐲 −𝐺𝑈𝑎̃) (14a)

s.t.

[
𝑈

𝐺𝑈

]
⏟⏟⏟
𝐻

𝑎̃ ≤

[
−𝛾u𝟏𝑆+1
−𝛾y𝟏𝑆+1

]
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

−𝜸

, (14b)

where 𝟏𝑡 denotes the all-ones vector of dimensions 𝑡 × 1, for any natural number 𝑡. Likewise, let us use 𝟎𝑡 to denote the all-zeros 
vector of corresponding dimensions, and let us denote the 𝑖-th column of matrix 𝐻 as ℎ[𝑖], i.e., 𝐻 = [ℎ[1], ℎ[2], ..., ℎ[𝑛]]. By forming 
the Lagrangian function of (14), the associated dual problem is given by

max
𝜆

min
𝑎̃

̃𝑛(𝑎̃, 𝜆) =
𝑆∑
𝑘=0

(
𝑦𝑘 +

𝑛∑
𝑖=1
𝑎̃𝑖𝑓

[𝑖]
𝑘

)2

+ 𝜆⊤
𝑛∑
𝑖=1
ℎ[𝑖]𝑎̃𝑖,

where 𝜆 ≥ 𝟎2(𝑆+1) is the vector of multipliers associated with (14b). Considering the above, problem (14) will be addressed by 
implementing the dual gradient ascent method in Algorithm 3. Note that the latter presents an iterative procedure where both 
Lagrange multipliers and Cutler’s coefficients vector 𝑎 are repeatedly updated until convergence. In this regard, an explicit expression 
of coefficients 𝑎𝑖 for all 𝑖 ∈ {1, 2, ..., 𝑛} is derived following similar steps as in Cutler’s original method. In particular, equating the 
partial derivative 𝜕̃𝑛(𝑎̃, 𝜆)∕𝜕𝑎̃𝑗 to zero for any 𝑗 ∈ {1, 2, ..., 𝑛}, we obtain

𝑆∑
𝑘=0

(
𝑦𝑘 +

𝑛∑
𝑖=1
𝑎̃𝑖𝑓

[𝑖]
𝑘

)
𝑓
[𝑗]
𝑘

+ 0.5𝜆⊤ℎ[𝑗] = 0.

If 
∑𝑆
𝑘=0 𝑓

[𝑖]
𝑘
𝑓
[𝑗]
𝑘

= 0 for all 𝑖 ≠ 𝑗, then,

𝑆∑
𝑘=0
𝑦𝑘𝑓

[𝑗]
𝑘

+ 𝑎̃∗𝑗
𝑆∑
𝑘=0
𝑓
[𝑗]
𝑘
𝑓
[𝑗]
𝑘

+ 0.5𝜆⊤ℎ[𝑗] = 0. (15)

From (15), it is straightforward to derive an explicit expression for coefficient 𝑎∗
𝑗
= −𝑎̃∗

𝑗
as a function of the Lagrange multipliers, i.e.,

𝑎∗𝑗 =
∑𝑆
𝑘=0 𝑦𝑘𝑓

[𝑗]
𝑘

+ 0.5𝜆⊤ℎ[𝑗]∑𝑆
𝑘=0 𝑓

[𝑗]
𝑘
𝑓
[𝑗]
𝑘

=
𝐲⊤𝐺𝑢[𝑗] + 0.5𝜆⊤ℎ[𝑗]

𝑢[𝑗]⊤𝐺⊤𝐺𝑢[𝑗]
.

Algorithm 3: Cutler Method with Lagrangian Multipliers.

Let superscript 𝑝 be the iteration index, 𝛼 > 0 the step size for the multipliers update, initialize 𝜆0 ≥ 𝟎2(𝑆+1) , and set parameters 𝑛 and 𝜸. Then, starting 
from 𝑝 = 0, consider the following steps:

1) Run the original Cutler’s method to find 𝑢[𝑖] for all 𝑖 ∈ {1, 2, ..., 𝑛}.

2) Compute coefficients 𝑎𝑖 :
for 𝑖 ∈ {1, 2, ..., 𝑛} do

𝑎
𝑝
𝑖
=

𝐲⊤𝐺𝑢[𝑖] + 0.5𝜆𝑝−1⊤ℎ[𝑖]

𝑢[𝑖]⊤𝐺⊤𝐺𝑢[𝑖]
.

3) Update 𝜆𝑝 =max
{
𝜆𝑝−1+𝛼(𝜸 −𝐻𝑎𝑝),𝟎2(𝑀+1)

}
, where 𝑎𝑝 = [𝑎𝑝

𝑖
]𝑛
𝑖=1 .

4) Define 𝑎∗ = [𝑎∗
𝑖
]𝑛
𝑖=1 = 𝑎

𝑝 , set 𝑝 ← 𝑝 + 1, and go to step 2) until convergence is reached.

Result: Deconvolved input 𝐮̂ =
𝑛∑
𝑖=1
𝑎∗
𝑖
𝑢[𝑖] .

4. Case studies

In this section, we demonstrate the effectiveness of our proposed deconvolution method in two different applications, namely, 
the estimation of COVID-19 contagion curves and the characterization of the absorption process of mavoglurant. Keep in mind that 
these examples do not intend to be exhaustive applications of the method, but illustrative examples of how our proposal can help 
7

overcome some of the issues that appear when applying the original Cutler method or some other well-known approaches. Finally, 
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Fig. 1. Official data published by Spanish health authorities. Blue data represent reported symptom onset; red data represent daily cases by diagnose date; green data 
stand for daily notification data.

to analyze the performance of our extended Cutler’s method, we focus on a quantitative performance measure — the sum of squared 
residuals (SSR)— and a qualitative one —the existence of constraint violations, which can be appreciated by visual inspection.3

4.1. Covid-19 contagion curves

The stochastic time-delay existing between the exposure to the virus and its potential detection complicates the reconstruction of 
the contagion curves. One way to deal with this issue, is to apply deconvolution methods as was done, e.g., in [18] to reconstruct 
the incidence curves for the 1918 influenza epidemic.

One simple way to test this approach is to use the abundant data from the COVID-19 pandemic. To this end, let us go back to 
the early stages of the pandemic, so that we can show what the application of the considered methods would have yielded based on 
the early characterization of the contagion dynamics. In particular, several works estimated the disease incubation period by using 
empirical data from China. For example, in February 2020, [4] and [24] reported respectively a mean incubation period of 6.4 days 
and 5.6 days. In addition, [41] estimated a median incubation time of 6.7 days, and a interval time of 4.5 days between the symptoms 
onset and the hospital visit, with a median time of 2.1 days between the visit to the hospital until the positive confirmation. See 
also [22], which estimated a median incubation period of 5.1 days, with fewer than 2.5% cases displaying symptoms within the first 
2.2 days after exposure, and symptom onset occurring within 11.5 days for 97.5% of them. Note that the reported estimates were 
generally in line with those of other known human coronaviruses, including SARS [8] and MERS [44]. Likewise, more recent works 
such as [29,27] have also reported incubation periods of about 6 days for different variants of COVID-19.

With these descriptions in mind, let us consider now the events that occurred in March of that year in Spain, for it is well-known 
that Spain was one of the most affected countries during the first wave of the COVID-19 pandemic, in part due to its initial lack 
of measures despite that neighboring countries like Italy were already suffering the pandemic. Therefore, let us use the same data 
released by the Spanish health authorities on the number of COVID-19 cases over time to estimate the contagion curves. In particular, 
Fig. 1 displays the official number of COVID-19 infections according to the date of diagnosis and date of symptom onset [1]. This 
figure is convenient because it provides information of the disease at different stages, but also it allows the estimation of the actual 
contagion curve from the symptom onset curve base on the Chinese studies.

To obtain the contagion curve, we apply our deconvolution method, and the resulting estimations are depicted in Fig. 2. In this 
regard, we have considered 𝑛 = 10, 𝛾u = 0, 𝛾y = 0, and 𝜁(𝑖) = 0.25𝑖2 for all 𝑖 = 1, 2, ..., 10.4 On the left column of Fig. 2, the estimations 
provided by the considered methods are shown. As can be seen, Cutler’s original method fails by exhibiting a very unrealistic behavior

by the end, although this issue does not affect the reconstructed output for the period that has been evaluated; the direct inversion 
method is not able to deal with the problem and encounters numerical issues that deprive the resulting estimate of any physical 
sense; also, non-negative least squares provide a very unlikely trajectory for the deconvolved signal, although the corresponding 
estimate for the output, which is shown on the right, correctly follows the reference output; the incorporation of a ridge-factor, has 

3 The MATLAB prototype code used for the experiments in this manuscript is available upon direct request to the authors. While the algorithms presented in 
the article are straightforward and can be readily implemented, the code developed is tailored for our specific experiments. Interested researchers may contact the 
corresponding author for access and further clarifications.

4 Parameters 𝛾u and 𝛾y , which determine the constraints, were chosen so that the corresponding variables have a realistic physical meaning. For example, we use 
𝛾u = 𝛾y = 0 since both 𝑢 and 𝑦 represent numbers of people, and therefore cannot be negative. In addition, degree 𝑛 was set so that the original Cutler’s method 
provided relatively accurate output estimations. Finally, parameter 𝜁 , which weights the regularization term, was set so as to observe some differences between the 
8

original Cutler’s method and its regularized variant.
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Table 1

SSR of the assessed methods for the Covid-19 
case study.

Method SSR

Cutler 2.231688e+06

Direct Inversion 2.573134e+178

Non negative LS 8.774296e+05

Cutler + RF 2.683020e+06

Cutler + LM 2.460620e+06

Cutler + RF + LM 2.464768e+06

Table 2

Coefficients of assessed parametric methods for the Covid-19 case study.

Coefficient Cutler Cutler + RF Cutler + LM Cutler + RF + LM

𝑎1 1.839e+03 1.829e+03 1.855e+03 1.846e+03

𝑎2 -1.753e+01 -1.626e+01 -1.573e+01 -1.565e+01

𝑎3 -8.560e+00 -8.688e+00 -8.388e+00 -8.379e+00

𝑎4 1.590e-01 1.636e-01 1.707e-01 1.711e-01

𝑎5 2.853e-02 2.830e-02 2.923e-02 2.927e-02

𝑎6 -1.071e-03 -1.028e-03 -1.069e-03 -1.070e-03

𝑎7 -6.347e-05 -6.291e-05 -6.560e-05 -6.570e-05

𝑎8 5.834e-06 4.807e-06 5.467e-06 5.425e-06

𝑎9 4.959e-08 1.607e-07 7.313e-08 7.348e-08

𝑎10 -2.146e-08 -1.751e-08 -1.103e-08 -1.091e-08

difficulties to correct the issues with Cutler’s method; finally, the use of the Lagrangian multipliers allows reconstructing plausible 
estimates, providing superior results when the ridge factor is not employed.

Finally, Tables 1 and 2 respectively provide the sum of squared residuals (SSR) of each method and the coefficients corresponding 
to Cutler’s original method and the proposed variations. As can be seen, relying only on SSR can be misguiding, for its superior 
performance is attained using a very unrealistic deconvolved signal. In other words, it is worth sacrificing some performance in 
terms of SSR for the sake of realism. Also, Table 2 show that the proposed methods tend to have greater impact on higher order 
coefficients, which makes sense since high-powered polynomials are more likely to generate larger deviations in the deconvolved 
signals.

4.2. Mavoglurant

Mavoglurant is an experimental drug candidate to mitigate the fragile X syndrome, which is related to autism and mental 
retardation. Its main disposition characteristics appear summarized in Table 3; the reader is referred to [45] and the references 
therein for an extensive description of the dataset, which comprised two studies, one measuring the response from a single 10-min 
IV infusion of the drug in 120 healthy subjects to characterize its pharmacokinetics and another focused on studying different release 
formulations under fasted and fed conditions.

The best characterization of the pharmacokinetics was provided by the following two state linear time-invariant model:

𝑑𝐴1
𝑑𝑡

= 𝐼(𝑡) −𝐴1(𝑐10 + 𝑐12) +𝐴2𝑐21

𝑑𝐴2
𝑑𝑡

=𝐴1𝑐12 −𝐴2𝑐21

(16)

where 𝐴1 and 𝐴2 respectively stand for the amount of drug (in mg) in the central peripheral compartments, measured in miligrams; 
𝑐10, 𝑐12 and 𝑐21 are first-order rate constants in ℎ−1 related to drug elimination and inter-compartmental transfers, respectively. 
Finally, 𝐼(𝑡) represents the drug input in the central compartment. The relationship between the parameters in Equation (16) and 
those in Table 3 is given by

𝑐12 =𝑄∕𝑉c,

𝑐21 =𝑄∕𝑉p,

𝑐10 = 𝐶𝐿∕𝑉c.

These equations have been programmed in Matlab so that the proposed method could be tested. Here, it is interesting that the 
pooled clinical studies found difficulties in characterizing the absorption process, which showed puzzling complexity as it exhibited 
several peaks, making it impossible to find a suitable linear model. As a consequence, the approach followed in [45] was to use a 
sum of three inverse Gaussian functions to describe the outcome of an oral dose. In this work, we exploit what is known about the 
9

model to find suitable input sequences that explain the experimental behavior found in oral absorption data.
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Fig. 2. Comparative analysis of deconvolution methods on contagion curve estimation during the first COVID-19 wave in Spain. Panels on the left column display the 
contagion estimates and those on the right column show the corresponding output estimates for each method (dashed red line) highlighting the deviation from the 
reference output (continuous blue line): (A, B) Cutler’s Original Method; (C, D) Direct Inversion; (E, F) Non-negative least squares; (G, H) Cutler with ridge factor; (I, 
J) Cutler with Lagrangian multipliers; and (K, L) Cutler with ridge factor and Lagrangian multipliers.

Table 3

Estimates of Mavoglurant Disposition Parameters [45].

Parameter Symbol Units Mean %RSE

Volume of distribution of central compartment 𝑉c l 58.7 3.75

Body weight covariate 𝜃BW,Vc
kg 0.543 26.1

Volume of distribution of peripherical compartment 𝑉p l 113 4.48

Body weight covariate 𝜃BW,Vp
kg 1.13 12.1

Plasma clearance CL l/h 29.3 2.48

Inter-compartmental clearance Q l/h 24.8 3.72

Fig. 3 shows the reconstruction of the input for the methods assessed, which corresponds to the output of the absorption process. 
These results have been obtained using parameters 𝑛 = 25, 𝛾u = 0, 𝛾y = 0, and 𝜁(𝑖) = 2.5𝑖2 for all 𝑖 = 1, 2, ..., 25. Here, the previously 
mentioned multiple peak issue can be clearly seen. Also, Cutler’s original method once more returns a deconvolved input with some 
negative parts, although the issue is less severe compared with the previous case study. Again, this issue can be corrected when 
using Lagrange multipliers in the estimation so that this constraint can be taken into account. As for the comparison in terms of 
10

SSR, Table 4 indicates that the best result is obtained by Direct Inversion, but then again one must note that this superior result is 



Heliyon 10 (2024) e24762J.M. Maestre, P. Chanfreut and L. Aarons

Fig. 3. Comparative analysis of deconvolution methods on the outcome of the absorption process on a subject after an oral dose of Mavoglurant. Panels on the left 
column display the contagion estimates and those on the right column show the corresponding output estimates for each method (dashed red line) highlighting the 
deviation from the reference output (continuous blue line): (A, B) Cutler’s Original Method; (C, D) Direct Inversion; (E, F) Non-negative least squares; (G, H) Cutler 
with ridge factor; (I, J) Cutler with Lagrangian multipliers; and (K, L) Cutler with ridge factor and Lagrangian multipliers.

Table 4

SSR of the assessed methods for mavoglu-

rant case study.

Method SSR

Cutler 2.356918e+02

Direct Inversion 3.568215e-27

Non negative LS 4.329964e+02

Cutler + RF 1.862009e+03

Cutler + LM 6.327929e+02

Cutler + RF + LM 6.327519e+02

obtained with an unrealistic evolution of the deconvolved signal, which becomes negative at some points. Hence, it is clear that it 
is preferable to attain a slightly worse SSR if a more plausible signal is obtained. Finally, Table 5 shows the multiple coefficients of 
the parametric methods for this particular case. The growth in the number of coefficients of this case study is due to the peaks of the 
signal, which cannot be properly represented with lower-ordered polynomials. Again, the larger relative changes in the coefficient 
11

value appear in the coefficients with the highest order for the previously explained reasons.
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Table 5

Coefficients of assessed parametric methods for the Mavoglurant case study.

Coefficient Cutler Cutler + RF Cutler + LM Cutler + RF + LM

𝑎1 1.394e+00 1.394e+00 1.442e+00 1.442e+00

𝑎2 -1.795e-01 -1.794e-01 -1.792e-01 -1.792e-01

𝑎3 1.117e-02 1.117e-02 1.061e-02 1.061e-02

𝑎4 3.036e-04 3.035e-04 3.477e-04 3.477e-04

𝑎5 -1.572e-04 -1.572e-04 -1.526e-04 -1.526e-04

𝑎6 1.796e-05 1.795e-05 1.713e-05 1.712e-05

𝑎7 -8.987e-07 -8.971e-07 -8.961e-07 -8.961e-07

𝑎8 -4.112e-08 -4.139e-08 -3.256e-08 -3.256e-08

𝑎9 1.173e-08 1.177e-08 1.108e-08 1.108e-08

𝑎10 -8.819e-10 -8.870e-10 -9.270e-10 -9.270e-10

𝑎11 -1.807e-12 -1.091e-12 1.066e-11 1.067e-11

𝑎12 6.816e-12 6.713e-12 6.679e-12 6.679e-12

𝑎13 -6.069e-13 -5.926e-13 -7.098e-13 -7.098e-13

𝑎14 -1.994e-14 -2.202e-14 -1.630e-14 -1.629e-14

𝑎15 1.317e-14 1.348e-14 1.304e-14 1.304e-14

𝑎16 -1.972e-15 -2.019e-15 -2.004e-15 -2.004e-15

𝑎17 1.508e-16 1.594e-16 1.586e-16 1.586e-16

𝑎18 5.831e-19 -1.267e-18 -3.617e-19 -3.621e-19

𝑎19 -2.073e-18 -1.613e-18 -1.945e-18 -1.946e-18

𝑎20 3.714e-19 2.519e-19 3.966e-19 3.966e-19

𝑎21 -4.460e-20 -1.564e-20 -5.042e-20 -5.042e-20

𝑎22 4.802e-21 -6.404e-22 5.365e-21 5.365e-21

𝑎23 -6.007e-22 8.219e-23 -5.126e-22 -5.125e-22

𝑎24 7.985e-23 -1.513e-24 3.843e-23 3.842e-23

𝑎25 -8.056e-24 9.744e-26 -3.454e-24 -3.452e-24

5. Conclusion

In conclusion, this paper presents a significant improvement over Cutler’s original deconvolution method by addressing its lim-

itations in estimating realistic input parameters. The extended method deals with constraints using a ridge factor and Lagrangian 
multipliers, which are applied iteratively. This approach maintains the original algorithm’s iterative projection-based nature, avoid-

ing the need for optimization solvers to perform constrained optimization. Moreover, the presented approach can handle a variety of 
signals and data types effectively, for Cutler’s algorithm is an all-purpose deconvolution technique, it inherently possesses a broad ap-

plicability to diverse types of signals. In this regard, the inclusion of the ridge factor and the Lagrangian multipliers in our extension 
does not restrict its versatility. Through two practical applications —the analysis of COVID-19 curves and the study of mavoglu-

rant, an experimental drug— we have demonstrated the effectiveness of our proposed method. The results show that our extension 
exchanges performance regarding the sum of squared residuals compared to the original Cutler’s method and other well known 
deconvolution techniques that perform an unconstrained optimization, but obtains instead physically plausible solutions, correcting 
the errors introduced by the alternative methods considered. Therefore, it becomes a more versatile tool for solving deconvolution 
problems in various scientific disciplines. Potential future explorations could focus on integrating more constraints or prior data to 
further enhance the deconvolution process, accommodating time-varying systems, and multi-dimensional problems.
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