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Multiple social network influences 
can generate unexpected 
environmental outcomes
J. Yletyinen1,2*, G. L. W. Perry3, P. Stahlmann‑Brown4, R. Pech2 & J. M. Tylianakis1

Understanding the function of social networks can make a critical contribution to achieving 
desirable environmental outcomes. Social-ecological systems are complex, adaptive systems in 
which environmental decision makers adapt to a changing social and ecological context. However, 
it remains unclear how multiple social influences interact with environmental feedbacks to generate 
environmental outcomes. Based on national-scale survey data and a social-ecological agent-based 
model in the context of voluntary private land conservation, our results suggest that social influences 
can operate synergistically or antagonistically, thereby enabling behaviors to spread by two or more 
mechanisms that amplify each other’s effects. Furthermore, information through social networks 
may indirectly affect and respond to isolated individuals through environmental change. The 
interplay of social influences can, therefore, explain the success or failure of conservation outcomes 
emerging from collective behavior. To understand the capacity of social influence to generate 
environmental outcomes, social networks must not be seen as ‘closed systems’; rather, the outcomes 
of environmental interventions depend on feedbacks between the environment and different 
components of the social system.

Solving environmental problems requires collective effort, including adoption of pro-environmental behaviors1–3. 
A major barrier for individuals to adopt pro-environmental behaviors is being embedded in a social context 
in which others do not approve of that behavior1. Leveraging social influence, basically communicating what 
“should be done”, may help to overcome this barrier and accelerate the spread of pro-environmental behaviors1,3,4. 
Humans exchange information and knowledge through social interactions, including expressed behaviors, and 
modify their behaviors and beliefs in response to those of others1,4,5. The networked character of social interac-
tions allows behaviors to spread through social networks, potentially creating clusters of people with similar 
behaviors and views6–9. Such behavioral clusters may emerge, for instance, from the tendency for people to form 
social relationships with like-minded people10 (i.e. ‘echo chambers’) into which new ideas cannot easily penetrate. 
Despite a wealth of work on the importance of social network connections to external actors in environmental 
management11, we know little about how multiple and interacting social influences contribute to the spread of 
pro-environmental behaviors and emergent environmental outcomes. Studies exploring the effects of social 
networks on environmental outcomes often focus on one type of social influence at a time, usually an ingroup 
based on similarity in demographic factors, beliefs, profession etc. (e.g. interactions among fishers9)3,12. However, 
individuals experience social influences from people outside the ingroup13,14, which may explain unexpected 
behavioral or environmental outcomes emerging from social groups.

A social-ecological systems (SES) view holds that human behavior constantly adapts to changing conditions 
and, in so doing, co-evolves with social and environmental contexts15,16. In addition to social influence, the 
environmental outcomes of behaviors are influenced by the biophysical context of decision-making and hetero-
geneity in each individual’s beliefs and actions15,17. In practice, through micro-scale patterns (such as individual 
beliefs, behaviors and social interactions), humans (as social actors in SES) collectively create and reinforce 
macro-scale patterns, such as social network structures, social norms, resource abundance and conservation 
landscapes15. These emerging macro-scale patterns, in turn, feedback to shape actors’ micro-scale behaviors15,16. 
Linking social actors’ behaviors to their decision-making context, and investigating their interplay over time as 
dynamic two-way interactions, is especially important for understanding environmental outcomes emerging from 
social actors’ collective behaviors16. For instance, if social influence leads to the adoption of pro-environmental 
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behaviors, such behavioral changes may not persist in a different social-ecological context. Moreover, the pres-
ence of multiple social influences may drive the simultaneous spread of desirable and undesirable social influ-
ence among social actors, which may break clusters of behaviors that social networks with one type of social 
influence can containe.g.9. This complex adaptive SES perspective of social influence may help to explain why 
the environmental outcomes of collective behavior can range from success to failure, and why the outcomes of 
interventions in social influence are inconsistent.

Here, we investigate the effect of multiple social influences on environmental outcomes in dynamic SESs. 
In particular, we use simulation modelling to ask whether the success of collective environmental action (vol-
untary habitat conservation on landscape levels) is influenced by inclusion of multiple social influences in 
individual (landowner) decision-making. Voluntary conservation of natural and semi-natural habitats in agricul-
tural landscapes epitomises a SES in which social influence strongly influences landowners’ pro-environmental 
behavior18–21. The environmental outcomes emerging from individual actions determine conservation success 
since a species’ persistence in a landscape is predicted by the composition, abundance and spatial configuration 
of habitats at the landscape level22,23. While social processes influence long-term conservation success24–26, the 
role of dynamic feedbacks between social and ecological outcomes must be better integrated into conservation 
science to improve our ability to achieve conservation goals27–31. Feedbacks underlie the persistence of ecologi-
cally or societally undesirable or desirable conservation statese.g.32,33, and incorporating human behavior into 
environmental systems research (and vice versa) can reveal a richer diversity of feedbacks than either social or 
ecological research alone34. Identifying interactions between multiple elements or processes31 can, for example, 
inform conservation initiatives that explicitly focus on reinforcing or dampening feedbacks of biodiversity loss29.

Here, we relax the common assumption in social network analysis that influence and behaviors almost inevita-
bly spread between interacting social actors. Instead, we assume that behavioral decisions are affected by multiple 
social influences and that environmentally desirable and undesirable behaviors can spread simultaneously6,35. 
Environmental managers, such as landowners, commonly interact with groups of actors with diverse interests14,20. 
Environmental behaviours can, therefore, be influenced by the information and perspectives gained via these 
interactions and the quality of the interactions, such as level of trust20. For example, landowners may contact 
authorities to gain information about environmental practices that is not available from fellow landowners and 
then adopt the practice if encouraged to do so by a like-minded landowner20,36. In this context, we introduce 
three types of social influence into landowners’ decisions to voluntarily protect habitat on their own land, based 
on data collected in a large online survey of rural landowners and land managers (hereafter, ’landowners’) in 
New Zealand (hereafter, ‘the survey’) (Fig. 1)37.

First, peer influence captures the frequency and perceived importance of conversations with other land-
owners about environmental performance on farms (the term “peer” in social networks may take on different 
meanings38–40; here, it denotes similarity38,41, that is, being another landowner). Peer influence is modelled as a 

Figure 1.   The concept of interacting social influences affecting environmental behavior. In this study, each 
landowner’s (blue node with black outline) decision about voluntary habitat conservation is affected by their 
interactions with a network of other landowners (blue nodes), three cross-scale actor groups (red nodes) and 
spatial knowledge diffusion mediated by change in biophysical context emerging from seeing other landowners’ 
conservation decisions (exemplified by one grey node). The width of connection between nodes illustrates the 
level of influence on landowner’s decision-making. The diversity and strength of social influences affecting 
decision-making vary among landowners. The figure was created using Microsoft PowerPoint version 16.43.



3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:9768  | https://doi.org/10.1038/s41598-021-89143-1

www.nature.com/scientificreports/

social peer group network with landowners as network nodes, and environmental conversations as links between 
the nodes. The second influence type is cross-scale influence, which represents the persuasiveness of cross-scale 
actors (i.e. social actors who do not themselves make decisions to convert land) on landowners14,20,42. We include 
government representatives, councils, and indigenous groups as cross-scale actors. Connectivity and level of 
influence for peer influence network and cross-scale influence are self-reported by the respondents of the survey. 
Both peer influence and cross-scale influence links are weighted by the level of influence on landowners, as self-
estimated by the respondents of the survey.

While peer influence and cross-scale influence are effected through conversations, spatial knowledge dif-
fusion is mediated through behavior. Spatial knowledge diffusion43,44 occurs among contiguous neighbouring 
properties, and influences landowners’ decision-making through expressed enviromental behaviors and their 
visible outcomes45,46. This comprises a feedback from local changes in the biophysical environment to landowner 
behavior. In practice, the landowners in our model can observe changes in land use on adjacent farms; they then 
include this knowledge of their neighbors’ behaviors in their decision-making during subsequent years. Finally, 
habitat protection decisions are affected by a landowner’s personality traits, i.e. actor attributes. Each land-owner 
has a set of actor-level characteristics that influence his or her decisions about participation in environmental 
action (e.g., personal beliefs and farm characteristics47); these are called actor attributes when associated with 
social networks. Much empirical research has sought to identify the predictors of landowners’ adoption of 
conservation practices47,48. A suite of universal predictors that would enable targeting specific farmer profiles in 
conservation has not been identified; instead, such predictors are likely to be context-dependent47,48.

Using the survey data, we implemented a dynamic, social-ecological agent-based model to evaluate the impact 
of multiple, interacting social influences on the outcomes of conservation action on agricultural land (Fig. 2). 
We assessed the influence of the three social influence types of on landowners’ decision-making by varying the 
relative strength of each from them having no influence to being the sole influence on conservation decisions 
(Table 1), and modeled the spread of environmental behaviors under these different conditions. Quantitative 
knowledge is generally not available on the predictors of conservation decisions or their relative importance47. 
Thus, we systematically explored the plausible parameter space to identify which parameters are influential in the 
study context (a sensitivity analysis49). We then evaluated the consequences of landowners’ behavior on landscape 
structure by measuring resulting landscape-level protected area, habitat fragmentation and area of covenanted 
land, i.e. permanently protected habitat. The total sum of the influence parameter values (i.e. relative weights 
of each influence on decision-making) always sums to one. This approach prevents the model from creating 
unrealistic parameter combinations, such as two social influence types simultaneously having 0.8 influence on 
an individual. In so doing, our approach acknowledges that landowners are always affected by multiple influ-
ences. The individual effects of each influence on decisions can only be considered alongside other influences 
and landowners’ susceptibility to each influence. The only influence type that cannot have a value of zero is actor 
attributes; the landowners’ decisions are always influenced by their own characteristics. 

The interplay of social influences in our study is not determined simply by the relative weights of each influ-
ence type on decision-making, but also by landowners’ self-reported individual differences in who they are 
influenced by and who they regularly interact with, as well as their actor attributes. Our study draws on exten-
sive survey data, which produces actor diversity in the model in terms of the owners’ susceptibility to different 
social influences. Thus, allocating a high weight to a given social influence type does not necessarily mean that 

Figure 2.   General model concept. The model consists of (A) three cross-scale actor groups and their influence 
links to landowners; (B) 200 heterogeneous landowners, each with his or her actor attributes, and influence 
links between landowners (peer influence); (C) a simulated agricultural landscape with areas available for 
conservation on each farm, upon which the landowner makes conservation decisions (dashed line); (D) a binary 
ecological landscape emerging from conservation action and consisting of either protected or unprotected land, 
coloured here accordingly; (E) spatial diffusion knowledge to each landowner from his or her neighbouring 
farms (here illustrated with one arrow only). (A,B) Network link weights represent the level of influence 
that landowners have self-reported their social connections to have. The figure was created using Microsoft 
PowerPoint version 16.43.
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landowners will be influenced by it, or be influenced to an extent that affects the collectively produced environ-
mental outcomes. It is the outcomes of the interactions in the model that are of interest.

To evaluate the influence of actor similarity-based landowners’ social networks, we used synthetic (i.e. gen-
erated by our model) social networks to perform actor-centric analysis50. In this analysis, the network plays an 
important role in the interaction between social actors, but different model outcomes are obtained by varying 
input parameters that are not related to the network itself50. A common approach to social network studies is 
investigating the extent to which peer influence and actor attributes explain environmental outcomese.g.9,51. Here, 
in the context of simulation modelling, we call our experiments taking this approach ‘Ingroup Influence’ experi-
ments as they include only peer influence and actor attributes in decision-making. We use the term ‘Multiple 
Influences’ experiments for simulations that include all three types of social influences and actor attributes in 
decision-making.

We conducted four in silico experiments (Table 1) to account for the influence of the network structure. The 
experiments were conducted with two synthetic, differently randomized peer influence networks. The actor 
similarity network is informed by survey data describing landowners’ interactions with different actor groups 
and self-perceived influence of these interactions. The network generation, therefore, captures social actors’ 
social network connectivity as a realistic number of links to other landowners and the influence of these links 
as self-reported in the survey. The second network is the Erdős-Rényi (ER) random network model52 in which 
landowners connect to each other at random at some fixed probability. We included the ER model for the purpose 
of determining the impact of actor similarity-based network on the environmental outcomes50. The ER model 
is not intended to capture characteristics of survey-informed social connectivity, but rather to serve as a null 
model against which to measure the impact of actor similarity-based network structure.

Table 1.   Model experiments. In each experiment, the effect of social influences was tested by systematically 
changing their influence in decision-making. Landowners’ decision options include voluntarily keeping or 
converting part of their farm to protected habitat, either permanently or for the time being, or keeping or 
converting the land to productive use. Parameters are varied across plausible parameter ranges to detect which 
parameters are influential on conservation outcomes. The sum of parameter values for social influences and 
actor attributes is always scaled to one. “Change-makers” is the percentage of landowners making a decision 
during each time step. “Time steps” is the minimum time interval between land use changes.

Experiment Parameter values

`Multiple influences experiment:
Includes all social influences and actor attributes in decision-making
Network model: actor similarity

Actor attributes: 0.1, 0.5, 1

Peer influence: 0, 0.5, 1

Cross-scale groups

Indigenous: 0, 0.5, 1

Council representatives: 0, 0.5, 1

Government representatives: 0, 0.5, 1

Spatial knowledge diffusion: 0, 0.5, 1

Change-makers: 0.3, 0.7, 1

Time steps: 0, 2, 6

Multiple influences (ER) experiment:
Includes all social influences and actor attributes in decision-making
Network model: Erdős Rényi

Actor attributes: 0.1, 0.5, 1

Peer influence: 0, 0.5, 1

Cross-scale groups

Indigenous: 0, 0.5, 1

Council representatives 0, 0.5, 1

Government representatives: 0, 0.5, 1

Spatial knowledge diffusion: 0, 0.5, 1

Change-makers: 0.3, 0.7, 1

Time steps: 0, 2, 6

Ingroup influence experiment:
Includes peer influence and actor attributes in decision-making
Network model: Actor similarity

Actor attributes: 0.1, 0.5, 1

Peer influence: 0, 0.5, 1

Change-makers: 0.3, 0.7, 1

Time steps: 0, 2, 6

Ingroup influence (ER) experiment:
Includes peer influence and actor attributes in decision-making
Network model: Erdős Rényi

Actor attributes: 0.1, 0.5, 1

Peer influence: 0, 0.5, 1

Change-makers: 0.3, 0.7, 1

Time steps: 0, 2, 6
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Results and discussion
When decision-making is embedded in a dynamic SES, multiple types of social influence interact and can create 
unanticipated social-ecological dynamics. We detected a greater range of outcomes in landscape structure in 
experiments where landowner decision-making was affected by all three social influences compared with only 
peer influence. This result is evidenced by the vertical spread in Fig. 3a–c. A greater range of outcomes, including 
extremes in environmental outcomes, which in this context are success or failure in achieved conservation land-
scapes, emerged only when landowners were influenced by multiple social influences. For example, the Multiple 
Influences experiments produced landscapes where 18% to 95% of land was protected, whereas the Ingroup 
Influence experiments produced landscapes with protected area of 21–70% of available land (Fig. 3a). Similarly, 
on average we detected greater variability in habitat fragmentation in the Multiple Influences experiments than 
in the Ingroup Influence experiments. Thus, the Multiple Influences experiments more often produced unex-
pected outcomes than the Ingroup Influence experiments. Furthermore, the Multiple Influences experiments 
resulted in, on average, more desirable environmental outcomes (i.e. more protected land) than Ingroup Influence 
experiments (when using ER model), but this effect of multiple social influences was reduced when landowners 
formed social connections with other similar landowners (the actor similarity-based network model) (Fig. 3a–c).

When investigating which social or social-ecological processes in the model explain the experiment-specific 
differences in environmental outcomes, we found that (i) interacting effects of social influences create mecha-
nisms that lead to accelerating change, and (ii) stronger social influence types can, in synergy or on their own, 
cancel the effect of a less dominant social influence. Our use of the term “strength” does not indicate only the 
relative weight of a social influence in decision-making, as per our analysis design; rather, a strong social influence 
is one that can affect and influence many landowners, even in the presence of other social influence types. These 
conclusions are based on the experiment-specific correlation (using Pearson’s r) between social influence and 
environmental outcomes (Fig. 4). First, our actor similarity-based and ER networks produced different results, 
demonstrating that different social influence types interacted with landowners’ peer group network structure 
(Figs. 3a–c, 4). When multiple social influences were included in landowner decision-making, spatial knowledge 
diffusion was the strongest predictor of environmental change. We interpret effect sizes (r) ≥ | 0.5 | as a strong 
association. This result is due in large part to the presence of a high number of landowners without network links 
to other landowners (i.e. isolates, Table 2) in our networks; spatial knowledge diffusion could directly affect all 
landowners, whereas peer group and cross-scale actor-influence directly affected only those landowners who had 
links with these groups. ER networks, which were generally more fragmented and contained more isolates than 
the survey-based networks, produced more desirable environmental outcomes (Table 2, Fig. 3a–c). This trend 
arises because landowners in actor similarity-based networks had more connections to others on average, and so 
had more potential to be influenced by their peer group than in ER networks. The typically cohesive structure of 
actor similarity-based networks allowed both undesirable and desirable behaviors to spread more effectively than 
in the more compartmentalized and fragmented ER networks (Table 2, Fig. 5). Thus, in the presence of strong 
spatial knowledge diffusion, social connections among like-minded landowners enabled peer group influence to 
mediate the spatial knowledge diffusion effect, producing ‘compromise’ environmental outcomes. In our study, 
both desirable and undesirable behaviors spread at the same time, and the typically cohesive structure of actor 
attribute–based networks allows both behaviors to spread more widely than in the more compartmentalized 
and fragmented random networks. Further, similarity among landowners was calculated using actor attributes. 
Thus, landowners who have a high (or low) probability of protecting land due to their attributes were connected 
to each other. Thus, altering behavior in such echo chambers would, in our study, require more behavioral diffu-
sion than would altering behaviors of landowners who have connections to a more mixed group of landowners 
(random networks). Our model does not adjust the homophily-mimicking connectivity during the simulation. 
The landowners’ conservation behavior could become more diverse, but the network is not rewiring accordingly; 
like-mindedness is based on a number of actor attributes and not only conservation behavior.  

To describe the structure of landowners’ peer influence networks, we measured a number of network indi-
ces, which have been found to be influential for environmental action in empirical and theoretical research 
(Table 2). We found moderate effect sizes (r > |0.3|) for structural network properties only in the Ingroup Influ-
ence experiment conducted with ER networks, which might suggest that network structure did not influence 
environmental outcomes in other experiments. However, our results do not support this interpretation. The 
differences in environmental outcomes between the actor similarity-based network and the ER network demon-
strate that network structure strongly influences the environmental outcomes in our model. The small effect of 
network structure shown in Fig. 4 is more likely due to the presence of stronger social influences (Table 2). Using 
the actor similarity-based network, which was generated to capture social connectivity and influence among 
landowners as self-reported in the survey and was based on like-mindedness, led, on average, to less-protected 
landscapes with more habitat fragmentation. Hence, network structure is another important factor in mediat-
ing environmental behavior in the presence of multiple types of social influences. However, measuring network 
indices could not disentangle which structural characteristics benefit environmental outcomes; future studies 
should test generating different network models and explore the association between modifications of network 
structures and environmental outcomes.

Since individual actor attributes did not influence environmental outcomes (effect sizes r > |0.3|) and a greater 
range of outcomes were detected in experiments with multiple social influences, the extreme outcomes emerged 
from the combined effects of spatial knowledge diffusion and peer influence. The results suggest that the combi-
nation of these two social influence types produced a social-ecological dynamic that generated accelerating gain 
or loss of natural habitats. While spatial knowledge diffusion produced spatial clusters of protected or unprotected 
areas, behavior in peer influence networks spread independently of landowners’ spatial locations. Behavioral 
change through peer group influence networks could therefore ‘jump’ in space and produce protected areas in 
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Figure 3.   The main environmental outcomes for experiments including multiple social influences and peer 
influence only. The blue distributions present results for experiments using actor similarity-based network 
model, and the red distributions show results for experiments using ER model. Comparisons of experiment-
specific outcomes are shown as bean plots. Horizontal black lines represent averages for experiment-specific 
distribution and dashed lines represent overall averages. (a and d) Show the total percentage of protected 
and covenanted area, respectively, of the land available for conservation in the modelled landscape. 
Fragmentation (b) represents the number of habitat fragments in the landscape and entropy the randomness of 
these fragments. The length of the bean per point found is 0.1. The high ends of the beans are cut to a maximum 
value of 0.2 for visibility of the distribution. The figure was produced using the Beanplot R package version 
1.277,78.
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Figure 4.   Experiment and model-specific correlation between environmental outcomes and factors that could 
influence environmental outcomes. Social influences and actor attribute included in decision-making are 
marked with a black rectangle, and the remaining variables on the y-axis are social network indices. The figure 
was produced using the ggplot2 R package version 3.0.377,79.

Table 2.   Social network indices. Calculated from networks for both network models, a total of 13,122 
simulations (6561 each). Density was used in network randomization in Erdős Rényi (ER) network model 
experiments. For each index, the table shows the minimum value, the mean value and the maximum 
value for all simulations, in respective order. The full table and descriptions for each index can be found in 
Supplementary Materials tables S3 and S4.

Social network index Actor similarity network ER network

Network size (number of links)

91.000 74.000

142.726 139.117

217.000 212.000

Bridging actors

26 8.000

46.272 30.565

70.000 60.000

Isolates

37.000 61.000

69.262 99.657

101.000 136.000

Compartmentalization

0.210 0.791

0.677 0.934

0.911 0.974

Average weighted indegree without isolates

0.523 0.642

0.723 0.918

0.979 1.225

Density

0.002 0.002

0.004 0.003

0.005 0.005

Density without isolates

0.006 0.010

0.008 0.014

0.012 0.021
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otherwise unprotected regions, or vice versa, which then seed new clusters induced by spatial knowledge diffu-
sion. The process is similar to the core-satellite spatial pattern seen in ecological invasion due to long-distance 
dispersal53. The detected social-ecological spatial dynamic is facilitated by more fragmentation and spatial habitat 
clustering (i.e. lower entropy) in Multiple Influences experiments, especially with actor similarity-based networks, 
which have fewer isolates. This combination allows more seeds to emerge that interact with social network dif-
fusion. In real systems, inertia effects, such as delays in creating or detecting local environmental change34, may 
slow change driven by such social-ecological mechanisms.

Furthermore, the results indicate that the strong combined effect of spatial knowledge diffusion and peer 
influence cancelled out that of cross-scale actors. Although in our model we assume a positive influence from 
cross-scale actors on landowner decisions to protect land, desired environmental outcomes occurred less often 
as the cross-scale actor influence on landowner decision-making increased (negative correlation in Fig. 4). That 
the weighting of other stronger drivers must decrease as the influence of cross-scale groups, which each had their 
own weighting, increases (because all influences were scaled to collectively sum to one), may explain the nega-
tive effect of these cross-scale groups. However, the relative weight of each influence is mediated by the social-
ecological context of the decision-making, such as landowners’ self-reported connectivity and susceptibility to 
cross-scale actors, or spatial patterns of the landscape. It is most likely that the weak and negative influence of 
cross-scale actors was due to the low number of landowners connected to cross-scale actors. In our sample of 
600 landowners, only 11 (1.8%) reported influential environmental conversations with indigenous groups, 143 
(28.3%) with local councils and 18 (3.0%) with central government representatives.

Finally, we included actor attributes both as a separate driver in decision-making and through actor attribute-
based similarity in the survey-based network construction. Hence, connectivity in the actor similarity-based 
networks propagates the influence of actor attributes.

None of the social influence types correlated with the area of covenanted land in any of the experiments 
(Fig. 4). Since covenanted land cannot legally be unprotected and returned to agricultural use, increases in 
covenanted areas in our model were mainly influenced by the extent of covenanted areas at the beginning of 
the model simulations (Supplementary Materials, Figure S1a–d). This outcome implies that in the model the 
landowners rarely made the decision to covenant land. The extent of conserved and covenanted areas at the 
beginning of the simulations was determined by survey responses of the landowners randomly selected for each 
simulation, contributing to the initial landscape composition being aligned with the characteristics of landown-
ers in the experiments.

Unanticipated environmental outcomes in social network studies can result from treating social networks 
as “closed systems”, i.e. failing to consider social influences from outside the network under study. In our study, 
inclusion of multiple social influences in landowner decision-making increased the variety of collectively 
achieved environmental outcomes and led more often to extreme environmental outcomes than a setting where 
only actor attributes and peer influence affected land-owners’ decision-making. Importantly, our study suggests 
that the effects of multiple social influences, when included in analysis of an SES, should not be assumed to be 
additive. These effects are mediated by social network structure, actor diversity and the presence of other types 

Figure 5.   Peer influence networks for the two network models, each captured from one of the simulations with 
multiple social influences. Blue nodes represent landowners who have protected natural habitat on their land, 
red nodes are landowners without protected land. Note the mix of blue and red landowners in structures where 
network influence alone would have produced clusters of unicolor nodes. The isolates (unconnected nodes) 
represent landowners who did not report influential environmental conversations with other landowners. The 
network was visualized using the Fruchterman-Reingold layout in iGraph R package77,80.
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of social influences. In this context, multiple social influences may interact antagonistically or synergistically 
and, in so doing, create unanticipated social-ecological mechanisms for environmental change. Consequently, 
the presence of multiple social influences can create more unpredictability in emerging environmental outcomes 
than when only one social influence (e.g. peer influence) is included in individual decision-making. Detecting 
these effects requires situating environmental decision-making in a dynamic social-ecological context in which 
human behavior and its context are ever evolving and influencing each othercf.15.

Numerous studies of social networks representing a single type of connectivity have linked network struc-
ture to environmental behavior or outcomes9,12,54, but few studies have measured the effect of micro-scale social 
interactions on environmental outcomes55. Although based on a national survey of New Zealand landowners 
and land managers, our model provides generalizable insights on potential social influence leverage points 
for conservation. The strong influence of spatial knowledge diffusion suggests that visible pro-environmental 
behavior46 provides a feedback between the ecological and social subsystems, which could change the behavior of 
people who lack social connections or whose social connections may not promote pro-environmental behavior. 
In so doing, spatial knowledge diffusion can produce spatial clusters of conservation activity that would benefit 
biodiversity and other environmental conditions. Purposefully establishing such ‘seeds’ of conservation could 
trigger willingness of others to adopt pro-environmental behavior(s), especially if seed landowners commit to 
long-term conservation via mechanisms such as legally binding covenants.

A social network with stronger peer influence links and fewer isolates could, in another setting, outweigh the 
influence of spatial knowledge diffusion. Intriguingly, a social-ecological feedback loop including environmental 
change, emergence of clustered protected areas or strong influence links between spatially decoupled landowners, 
could potentially provide early warning signs for accelerating landscape-level change. Alternatively, the pattern 
could provide an opportunity for network intervention56. For example, landowners encouraging their neighbors 
to undertake private land conservation integrates both ecological feedbacks and peer group network influence. 
This type of intervention has recently been tested with successful outcomes for landscape-level conservation36. In 
our study, the inclusion of multiple social influences and simultaneous spread of undesired and desired behaviors 
likely hindered clusters of behavior from emerging in ingroup networks (Fig. 5). However, we did not assess 
the presence of behavior-based clusters in our analysis as the aim was to measure environmental outcomes of 
landowners’ behavior.

Our results are based on allowing undesired and undesired behaviors to spread simultaneously. This context, 
together with the interplay of multiple social influences, will produce uncertainty in social network interventions. 
Identifying change agents (e.g. opinion leaders56) based on their network position is only the first step in using 
network interventions to accelerate behavior change. The ability of change agents to trigger behavioral change 
also depends on their positions in a wider, evolving social-ecological context57–59. Furthermore, while involve-
ment of cross-scale actors in environmental decision-making commonly increases the diversity of information 
in the network, relying on them to encourage pro-environmental behavior may be insufficient if they have few 
strong connections to landowners.

Finally, the important role played by isolates in our study highlights the need for careful setting of network 
boundaries60, i.e. who to include as network actors when preparing social network research or interventions. 
Snowball data collection methods60, for example, may lead to the inappropriate exclusion of isolates, as the 
sampling technique is based on recruiting acquaintances of network members. Network influence research 
resulting in unexpected environmental outcomes may benefit from testing the boundaries of social networks 
under study. Considering information flows from multiple sources is important, especially when social actors 
make decisions that require social reinforcement in the form of social norms or demonstration of benefits, in 
contrast to situations where behavioral change is easy and non-costly19.

Our model is necessarily a simplified representation of decision-making in SES and SES dynamics. We 
assumed that all landowners can allocate a fraction of their land to conservation, and we do not consider temporal 
changes in social or economic conditions, or habitat quality. Our representation of spatial knowledge diffusion is 
based on the idea that social norms and/or demonstration of conservation action generate a reinforcing feedback. 
However, a balancing feedback may also result from a decrease in protected areas triggering pro-environmental 
behavior as landowners observe an increased need for conservation61,62. While using synthetic social networks 
is common practice in agent-based modelling when research questions are difficult to test with other methods 
or empirical data are limited50,63, this approach may influence our results as the structure of our actor similarity-
based network varied only modestly. Furthermore, our actor similarity-based network model generation might 
not capture all topological features of real-world networks, and we therefore can only conclude that this mecha-
nism matters in the context of our study, without identifying the network structural or other pathways through 
which this effect is realised. To address this caveat, future research should test network-centric or structurally 
explicit analyses50. Such analyses could show that specific network structures, such as clustering, significantly 
influence behavioral diffusion in a social network even under multiple social influence types. Assessing the influ-
ence of network structures and the location of specific social actors in the network could enable the detection of 
causality between different social influences and social network structures. For example, if most landowners with 
connections to cross-scale actors tended to be clustered together with few links to other landowners, then cross-
scale influence would be limited at landscape extents. Although these issues remain unexplored in our study, the 
identification of these caveats through our research highlights the importance of developing complex simula-
tion models to better understand how social networks function when embedded in social-ecological dynamics.

To facilitate comparison with previous social network research, we treated the networks as static, although 
complex adaptation in SES will most likely include rewiring of social influence links and learning that changes the 
strength of influence among social actors. Studies that allow the social network structure to adapt to a changing 
social and ecological context during the simulation are needed. We also hope to see multi-level and multiplex 
network approaches adopted in studies considering multiple social influences in SESe.g.64,65. Finally, by scaling 
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the total influence of the behavioral drivers to always sum to one, we assumed that there is a maximum extent to 
which individual decision-making can be influenced. Hence, an increase in the importance of one driver results 
in a commensurate decrease for the others, which may explain the negative correlation between some drivers 
and environmental outcomes in the presence of strong drivers.

Studying social networks as part of larger social-ecological frameworks and drawing on interdisciplinary 
theory will improve our understanding of complex human and environmental dynamics. A critical step in this 
process is considering social influence networks as open systems that interact with other networks and the deci-
sion-making environment15,66. It is known, for example, that failure of nodes in one network leads to the failure 
of nodes in other networks through dependency links (e.g. problems in financial systems cascade to work places 
and, through unemployment, to families)66,67. Our study provides a step in this development path by considering 
the interplay of different types of social influences, embedding behavioral decisions into a dynamic SES context 
and evaluating the environmental outcomes of social influences with biodiversity-relevant landscape indicators.

Conclusions
Our research emphasizes how the presence of multiple social influence types can produce unexpected environ-
mental outcomes in environmental decision-making. Likewise, to understand links between social influence 
networks and environmental outcomes it is important to consider social influence as embedded in complex 
adaptive social-ecological systems, in which human behavior consistently adapts to changing social and ecological 
contexts. Social networks are not closed systems, but rather have potentially important feedbacks between the 
environment and different components of the social system. Considering social networks as adaptive elements 
of complex and dynamic social-ecological systems will improve our capacity to fully understand how social 
influence contributes to generating desired environmental outcomes.

Materials and methods
General model concept.  We developed an agent-based model to evaluate the impact of multiple, interact-
ing social influences on landowners’ conservation action on agricultural land, and consequently on landscape-
scale environmental outcomes (Fig.  2). A detailed Overview, Design concepts and Details (ODD) protocol 
(Grimm et al.68) of the model is available in the Supplementary Materials (SM). Data for the study were collected 
in the 2015 Survey of Rural Decision Makers37, which is a large, internet-based survey covering more than 3300 
farmers across all primary industries and regions of New Zealand. Due to question randomisation and survey 
branching, the usable data set for this survey included 600 private landowners and land managers involved in 
primary production. Isolates may emerge in survey data collectione.g.,69 and we retained them in our study net-
works because of their potentially important role in environmental or resource collectives.

Model simulations began with 200 landowners, randomly selected for each simulation from the 600 landown-
ers with complete survey data. These landowners were assigned at random to 200 farms on the model landscape. 
At the start of each simulation, protected natural habitat was present only on the farms of the landowners who 
reported having native forest or covenanted land. During each time step, a changing subset of landowners 
decided whether to protect natural habitat on their land; if they decided to protect the land, they also decided 
whether to covenant. (Covenanting land is a practice increasingly adopted by landowners in New Zealand. It is 
an agreement between a private landowner and the QE II National Trust to protect land, even if the property is 
sold to a new owner70). Landowners with self-reported barriers, such as fear of losing rights to own land, could 
not commit land to covenants. Landowners could decide against protecting land only if the habitat was not 
covenanted. The conservation landscape and conservation status of each landowner were updated according to 
landowners’ environmental behavior, so that during the subsequent time-step decisions took place in an updated 
social-ecological context. We simulated a period of 150 time-steps, which represents approximately 50 years. 
The model was run for a 50 time step burn-in period before data were collected.

The landscape component of the model was represented on a toroidally wrapped grid, i.e. a lattice. Each cell 
in the landscape could occupy one of three states: protected, unprotected, or covenanted. For habitat connectivity 
variables (number of habitat fragments, entropy), connected protected cells formed a non-fragmented habitat 
area; any non-protected cells between protected patches indicate the presence of habitat edges. Because our model 
landscape consists only of areas available for conservation, the percentages discussed in the study are not directly 
comparable to suggested critical thresholds in habitat declines that lead to abrupt biodiversity losses, e.g.71. We 
chose to model the land available for conservation, which we set to be 10% of each land-owner’s land with an 
assumption that the farm would remain financially viable. Accordingly, the model landscape consisted only of 
land potentially available for conservation (i.e. only land where at least partial protection for conservation is a 
feasible option), and is subdivided into farms owned by the 200 landowners represented in the simulation. Hence, 
fragmentation was determined relative to the maximum possible area, given the availability of farmland for 
protection. The amount of land available for conservation (10%) was arbitrary but was fixed across experimental 
treatments. This simplification avoided the possibility of unlikely outcomes such as landowners protecting 100% 
of their land, while allowing us to avoid further complicating the model by including economic processes and 
parameters. We assumed that the extent to which landowners prioritise profit over conservation are captured 
by the actor attributes, which were measured in the survey. The size of each farm was based on the survey data, 
scaled to be consistent in every run.

To determine a set of actor attributes that could influence native habitat protection, we performed logistic 
regression analyses on variables from the survey that described landowners’ views and values for conservation 
and covenants, their farming industry, land-use and whether they live on the farm (Supplementary Materials 
Table S5a–d, a detailed examination of the diversity of survey respondents can be found in13). The set of 28 
variables (Supplementary Materials Table S7) included in the regression was used to calculate pairwise Gower’s 
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dissimilarity72 for the 600 landowners (to be used in network generation below), which was used to construct 
actor similarity-based networks.

In peer group social networks, nodes represent landowners and directed links represent influential environ-
mental conversations between peers. Each land-user’s in-degree and link weight were reported in the survey 
as the number of landowners with whom they had environmental conversations and a categorical evaluation 
of the influence of these conversations (SM: Network Questions), respectively. We removed links for which the 
level of influence was reported as “not influential”. Because the survey captured the number and level of influ-
ence but not the identity of influence partners, we evaluated two methods for allocating these influence links 
to other landowners: Erdős–Rényi (ER) randomization52 or link allocation based on actor similarity to mimic 
homophily. Homophily is influence-based contagion driven by similar people adopting similar ideas and, over 
time, actor attributes can become correlated with the structure of social networks10,73,74. In actor similarity-based 
networks, like-minded landowners influence one another, such that the probability of each pair of landowners 
(with indegree > 0) being connected was inversely proportional to the dissimilarity in their attributes from the 
survey. As a null comparison against these networks, ER networks allocate links at random according to the 
Erdős–Rényi random graph models52. We used the mean link density of > 6500 model-generated actor similarity-
based networks (0.0035) as the probability of assigning a link between any two landowners in the ER networks. 
In ER networks, categorical weights representing slight/moderate/high influence were assigned to each link at 
random, whereas in actor similarity-based networks, the link weights are those self-reported by landowners 
for each social group in the survey. We included three cross-scale groups, which were included in the survey: 
central government representatives, local council representatives and an indigenous group. Links to cross-scale 
groups and their influence were reported by survey respondents as with peer links. In both network structures, 
the number of nodes was fixed at 200.

Simulations.  The effect of each type of social influence or actor attribute on decision making was scaled to 
sum to one (Table 1). To determine sensitivity of the results to model structure, and since it is unlikely that land-
owners would frequently change land-use, we varied the percentage of landowners who make a decision during 
each time-step (30, 70 or 100%) and the minimum time interval between land use changes (0, 2 or 6 time-steps) 
for each parameter combination. One simulation was run for each parameter value combination for the experi-
ments, including all social influence types or actor attributes, resulting in 6561 simulations per experiment. 
Ingroup Influence experiments (which had fewer unique combinations due to fewer drivers) were run with 
repeated simulations (n = 75) to total 6561 and have a consistent number of simulations for each experiment.

Land‑use decision making.  Each landowner’s decision to protect, or unprotect, habitat on their land was 
calculated using the weighted sum of the factors included in the decision making. Each social influence or actor 
attribute had a value between 0 and 1, with higher values indicating a higher likelihood of protecting land. Peer 
influence indicates the number and influence (weight) of links that a landowner had to other landowners across 
all the actor’s weighted links; it is based on weighted indegree and was calculated for actor i as:

where n is the number of nodes in the network, nc is number of nodes currently conserving habitat on their land, 
x is the value of the link (1 if the nodes are connected) to actor j and w is the link weight.

The influence from each cross-scale actor group was calculated relative to the maximum cross-scale influence 
(Cmax) in the land-owner network:

where k is the landowner’s in-degree to that cross-scale group and wc is the influence of those links (both derived 
from survey data).

The spatial information influence for respondent i was calculated as:

where Nc is the count of adjacent farms with protected habitat and N is the total number of adjacent farms.
Respondent attribute influence was calculated from a logistic regression with the probability of protection 

native forest as the outcome variable and survey responses as predictors (X):

where βn is the regression coefficient for variable Xn.
The probability of land being covenanted was calculated in a similar way to land protection, with the excep-

tion that if the respondent had reported reasons for not covenanting land (e.g., no suitable land available on 
farm or concerns over covenant regulations or losing the right to change covenanted land), they would always 
decide against it.

(1)Cd(i) =

∑nc
j=1

xijwij∑n
j=1

xijwij

(2)Ccs(i) =
kwc

Cmax

(3)E(i) =
Nc

N

(4)P(Y) =
1

1+ e(β0+β1iX1i+β2X2i+···βnXn)
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Finally, in our representation of decision making, the influence of each social influence or actor attribute is 
weighted by the landowner’s individual parameter values. The probability of a landowner protecting land is the 
weighted sum of n behavioral drivers:

where yj denotes the weight (parameter value in our model) of importance of each social influence type or 
respondent attribute in decision -making, and fj denotes the value of the influence.

Data and software availability.  We used NetLogo 6.0.3.75 for model programming and simulations, 
including the R extension76, and R Studio version 1.1.463 environment for supporting coding and analysis77. 
Pseudocode for the model and needed data input files for the model are available in Supplementary Materials, 
including a sample data for actor attributes. The full dataset can be requested from the authors with considera-
tion to survey respondents’ anonymity. Simulated, simplified landscapes and subsamples of landowners make 
the survey respondents unidentifiable in the model.
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