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Increasing studies show that gut microbiota play a central role in immunity, although the
impact of the microbiota on mediation of thymic T cells throughout life is not well
understood. Chickens have been shown to be a valuable model for studying basic
immunology. Here, we show that changes in the gut microbiota are associated with the
development of thymic T cells in young chickens. Our results showed that T-cell numbers
in newborn chicks sharply increased from day 0 and peaked at day 49. Interestingly, the
a-diversity score pattern of change in gut microbiota also increased after day 0 and
continued to increase until day 49. We found that early antibiotic treatment resulted in a
dramatic reduction in gut alpha diversity: principal component analysis (PCA) showed that
antibiotic treatment resulted in a different cluster from the controls on days 9 and 49. In the
antibiotic-treated chickens, we identified eight significantly different (p < 0.05) microbes at
the phylum level and 14 significantly different (p < 0.05) microbes at the genus level,
compared with the controls. Importantly, we found that antibiotic treatment led to a
decreased percentage and number of T cells in the thymus when measured at days 9 and
49, as evaluated by flow cytometry. Collectively, our data suggest that intestinal
microbiota may be involved in the regulation of T cells in birds, presenting the possibility
that interventions that actively modify the gut microbiota in early life may accelerate the
maturation of humoral immunity, with resulting anti-inflammatory effects against
different pathogens.
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INTRODUCTION

T cells, a type of lymphocyte, are central to the adaptive immune
response (1). T cells are derived from hematopoietic stem cells in
the bone marrow, migrate to the thymus for differentiation and
maturation, and are then transported to the periphery to carry
out immune functions (2). In early life, T cells can remove
pathogens and generate memory responses (3), and also establish
tolerance to harmless antigens (4).

Gut microbiota consist of complex mixtures of microorganisms
that have coevolved over time, building symbiotic relationshipswith
their hosts (5). The gutmicrobiota is known to play a significant role
in the development of the immune system, organismal health, and
disease (6–9), and changes in gut microbiota in early life can
profoundly impact the host immune system (10). For example, the
gutmicrobiota of preterm infants differs in composition from that of
full-term infants. Preterm infants also display a different
developmental trajectory of their peripheral immune cell
populations, compared with full-term infants (11). Interference
with the early gut microbiota leads to impaired thymocyte
development in mice, and these effects persist into adulthood (12).
In addition, alteration of microbiota structure in early life as a
consequence of antibiotic treatment in piglets can lead to excessive
inflammation, local tissue damage, and a possible increased risk of
immune-mediated disease following pathogenic bacterial infection
(13). In mouse models, antibiotic-treated and germ-free mice show
distinct intestinal T-cell receptor (TCR) repertoires compared with
their wild-type controls, suggesting that microbial antigens alter T-
cell development (14). Interestingly, T cells were first found in the
thymus of chicken (15). Therefore, the chicken offered an excellent
animal model in which to further study the relationship between the
host immunity and gut microbiota.

The mechanism(s) by which thymic T cells may be affected by
gut microbiota at different stages of growth, however, is poorly
understood. Here, we provide further evidence that gut
microbiota play a critical role in the early development of T
cells in chickens.
MATERIALS AND METHODS

Animal Study and Experimental Design
Chinese Yellow broiler breeders (Lingnan) used in this study
were obtained from a local hatchery (Lingnan, Guangdong Wiz
Agricultural Science & Technology Co. Ltd., Guangzhou, China)
and were cared for and used in accordance with the guidelines of
Guangdong Province on the Review of Welfare and Ethics of
Laboratory Animals and approved by the Guangdong Province
Administration Office of Laboratory Animals. The birds were fed
a corn and soybean meal-based diet, formulated to meet their
nutritional requirements.

A total of 80 one-day-old broilers were randomly divided into
two equal groups and fed the same diet with the antibiotic-
treatment group receiving drinking water containing penicillin
(200 mg/L), metronidazole (200 mg/L), and vancomycin
(100 mg/L) (16). Cecal samples were collected from chickens
on days 0 (freshly hatched chickens were not given antibiotic), 9,
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49, and 140. When birds were sacrificed by approved methods,
each thymus was immediately prepared for histological and flow
cytometric investigations. Cecal contents were collected and
stored at −80°C for further analysis.

Histology
Each thymus was collected, and portions were fixed in PBS
containing 10% neutral-buffered formalin. Paraffin-embedded
sections (5 mm) were stained with hematoxylin and eosin.

Flow Cytometric Analysis
Fresh thymus was collected, minced with scissors, and filtered
through a 100-mm nylon cell strainer (BD Falcon, San Jose, CA,
USA). The cells were suspended in PBS after washing. Total cell
numbers were determined using a hemocytometer. Suspended cells
were centrifuged at 1,200 rpm for 5 min at 4°C. The single-cell
suspension was stained with fluorochrome-conjugated mouse
antichicken T antibody (Cat. No. 8200-31, SouthernBiotech,
Birmingham, AL, USA) for 30 min on ice. After staining, cells
were washed and analyzed using a FACS Calibur flow cytometer
(Becton Dickinson, Palo Alto, CA, USA) and Cell Quest software
(Becton Dickinson).

Microbial Genomic DNA Extraction
The microbial composition of cecal contents from birds was
determined from microbial genomic DNA, as previously
described (17).

Bacterial 16S rDNA Gene Sequencing
The primer sequences for amplification of the V4 region
were as follows: forward 5′-GTGCCAGCMGCCGCGGTAA-3′
and reverse 5′-GGACTACHVGGGTWTCTAAT-3′. The melting
temperature was 55°C, and 25 PCR cycles were run. The validated
libraries were subjected to paired-end sequencing using the
MGISEQ-2000 platform.

Sequencing Data Analysis
Raw sequence reads were preprocessed to eliminate adapter
pollution and low quality to obtain clean reads. Paired-end
clean reads with overlaps were merged to tags by Fast Length
Adjustment of Short reads (FLASH, v1.2.11) (18). Bacterial tags
were clustered into operational taxonomic units (OTU) at 97%
sequence identity using USEARCH (v7.0.1090) (19). OTU
taxonomic classification was conducted by scripts of QIIME
(v1.8.0) software based on the Ribosomal Database Project
(RDP) database (20). Observed species and Shannon’s index
were calculated using Mothur (v1.31.2), and the rarefaction
curves were drawn using R (v3.4.1) software. Beta diversity
analysis based on weighted UniFrac distance was conducted by
QIIME (v1.80) software. The resulting distance matrices were
visualized using PCA with the “vegan” package of R (v3.4.1).

Statistical Analysis
Statistical analyses were performed using the GraphPad Prism 8.0
Software (La Jolla, CA, USA). Comparisons between treatment and
controls were performed using the Student’s t-test. p-Values <0.05
were considered to be statistically significant. Taxa abundances at
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the phylum and genus levels, and the alpha diversity comparisons
between two groups, were made by theWilcoxon test and visualized
through box-and-whisker plots. The significance of differences in
microbiota composition between groups was assessed by
permutational multivariate analysis of variance (PERMANOVA)
using the R package “vegan”.
RESULTS

Changes in Thymic Structure in Chickens
Following Antibiotic Treatment
The thymus is composed of two histologically discrete regions—
an outer region known as the cortex, where a stromal meshwork
houses densely packed immature thymocytes, and an inner
region known as the medulla, which is the region with less
densely localized mature thymocytes. Our results showed that
the corticomedullary ratio of the thymus gland tended to
decrease in the antibiotic-treated group compared with the
controls on day 9 (p > 0.05). On day 49, the antibiotic-treated
chickens had a significantly greater decrease in the
corticomedullary ratio of the thymus gland than the controls
(p < 0.05), with a further ratio decrease on day 140 (Figures 1A,
Frontiers in Immunology | www.frontiersin.org 3
B and Figure S1). Collectively, these data suggest that antibiotic-
induced thymus dysbiosis may have significant long-term effects
on chicken T cells.

Effects of Antibiotic Treatment on the
Proportion and Number of Thymic T Cells
Flow cytometry was used to quantify the proportion and
numbers of T cells in the thymus at different ages (days 0, 9,
49, and 140). On days 9 and 49, both proportion and number of
CD3+ T cells in the antibiotic-treated group were higher than in
the control group (p < 0.05), while no significant difference was
observed on day 140 (p > 0.05) (Figures 2A–C). These results
suggest that the potential influence of gut microbiota on thymic
T cells may be much stronger in younger chickens.

Effects of Antibiotic Treatment on the
Diversity of the Gut Microbiota
To better investigate the role of gut microbiota in chicken thymic
T cells, 16s rDNA gene sequencing was used to characterize
changes in the overall structure of the gut microbiota at different
ages (days 0, 9, 49, and 140). Figures 3A, B shows that the core
microbiota at different life stages (days 0, 9, 49, and 140)
comprised 107 OTU in controls, but only 46 OUT in birds
treated with antibiotic. We found that 80, 301, and 745 OTU
were shared by controls and chicks treated with antibiotics on
days 9, 49 and 140, respectively (Figures 3C–E). Compared with
the controls, the total number of OUT decreased in the
antibiotic-treated birds on days 9 and 49 (Figures 3C–E).

We next studied the changes in the alpha diversity of the gut
microbiota at different days in antibiotic-treated chicks. There
were significant differences in observed species between the
antibiotic-treated birds and the controls at the three ages (days
9, 49, and 140) (p < 0.05). Shannon’s indices showed that the
diversity was lower in the antibiotic-treated chickens than in the
controls on days 9 and 49 (p < 0.05) (Figures 4A, B). We
additionally assessed intersample variability in the community
structure (beta diversity) using an unsupervised principal
component analysis (PCA) of Bray-Curtis dissimilarity. The
PCA clearly showed statistical differences between the chickens
treated with antibiotic and controls, particularly on day 49
(p < 0.05); however, no clear clusters were present for either
group on day 140 (Figure 4C). These data suggest that changes
in the gut microbiota were also related to chicken age, and that
antibiotic exposure during critical periods of early development
may significantly influence gut microbiota in chickens.

Antibiotic-Induced Alterations of Gut
Microbiome Populations at the Phylum
and Genus Levels
To further understand changes in microbial community
composition, we compared the relative abundance of different
bacteria in the antibiotic-treated and control chickens at the
bacterial phylum and genus levels. The chicken gut microbiota
included hundreds of bacterial species dominated at the phylum
level by Firmicutes, Bacteroidetes, Proteobacteria , and
Actinobacteria. Dominant at the genus level were Escherichia,
A

B

FIGURE 1 | Antibiotic treatment leads to structural changes in the
thymic tissue. (A) Light micrograph of the thymus stained with hematoxylin
and eosin at different ages. Magnification, ×100; scale bar, 100 mm.
(B) Differences in the ratio of thymic cortex to medulla at different ages in the
controls (Ctr) and antibiotic-treated chickens (ABX). *p < 0.05; unpaired
t-test. n ≥ 10 for each group. ns, not significant.
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A

B C

FIGURE 2 | Flow cytometric analysis of T-cell numbers and proportions in thymic tissue. (A) Detection of T-cell content in thymic tissue at different ages by flow
cytometry. (B) The proportion of T cells in thymic tissue. (C) The number of T cells in thymic tissue. *p < 0.05, **p < 0.01, ***p < 0.001; unpaired t-test. Ctr, controls;
ABX, antibiotic-treated chickens. n ≥ 12 for each group. ns, not significant.
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Sutterella,Ruminococcus,Parabacteroides,Oscillospira,Clostridium,
Bacteroides,Eubacterium, andBlautia. At the phylum level, 25 phyla
were used (Figure S2A); of these, four phyla differed significantly
(p < 0.05) between the controls and antibiotic-treated chickens on
day 9 (Figure 5). With antibiotic treatment, relative abundances of
Firmicutes and Bacteroideteswere significantly decreased (p < 0.05),
whereas Proteobacteria was significantly increased (p < 0.05)
(Figure 5A). On day 49, we observed a decrease in Bacteroidetes
and Euryarchaeota and an increase in Proteobacteria,
Verrucomicrobia, Cyanobacteria, and Firmicutes in the antibiotic-
treated versus control chickens (p < 0.05) (Figure 5B). On day 140,
there was no significant difference between the control and
antibiotic-treated birds (p > 0.05) (data not shown).

At the genus level, 105 genera were used (Figure S2B). On
day 9, in the antibiotic-treated chickens, Escherichia and
Enterococcus showed a relatively higher abundance (p < 0.05)
compared with the controls, while Sutterella, Oscillospira,
Clostridium, and Parabacteroides showed a lower relative
abundance (p < 0.05) (Figure 6A). On day 49, the relative
abundances of Bacteroides, Methanobrevibacter, Megamonas,
Phascolarctobacterium, and Bilophila were significantly
decreased in the antibiotic-treated group compared with the
control group (p < 0.05), while the relative abundances of
Escherichia, Sutterella, Oscillospira , Akkermansia, and
Rumnococcus were significantly increased (p < 0.05)
Frontiers in Immunology | www.frontiersin.org 5
(Figure 6B). On day 140, only one genus, Methanobrevibater,
showed different patterns of distribution in the control and
antibiotic groups (p < 0.05) (Figure S3). These results further
show the effects of antibiotic treatment on gut microbial
composition, especially at early ages in the life cycle. As these
changes are correlated with changes in thymic structure in
chickens following antibiotic treatment, as described above, the
results further suggest that gut microbiota potentially influence
thymic T cells, especially early in life.
DISCUSSION

Gut microbes are known to have a profound impact on the
development of the immune system (21–23). In the present
study, we attempted to provide a comprehensive, time-
dimensional analysis of the association between gut microbes
and thymic T-cell development in birds.

The thymus has two main cellular zones including the cortex,
and the smaller central zone, the medulla, which is essential for
the production and generation of T cells (24–27). Here, we found
that in chickens, the antibiotic-treated chickens had a
significantly greater decrease in the cortex-medullary ratio of
the thymus gland than the controls at early ages. These structural
changes may be associated with T-cell development in birds. To
A B

C D E

FIGURE 3 | Overall structural changes in gut microbiota with antibiotic treatment. (A) Differences in the distribution of operational taxonomic units (OTU) at different
ages in the controls (Ctr) were analyzed using Venn diagrams. (B) Differences in the distribution of OTU at different ages in birds treated with antibiotics (ABX) were
analyzed using Venn diagrams. (C) Differences in OUT between Ctr and ABX on day 9 of antibiotic treatment, (D) on day 49 of antibiotic treatment, and (E) day 140.
n ≥ 8 for each group.
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determine whether the composition of gut microbiota is reflected
in the development of thymic T cells, we measured the numbers
and proportions of thymic T cells by flow cytometry, with and
without antibiotic treatment of the birds. The administration of
broad-spectrum antibiotics reduced the proportion and number
Frontiers in Immunology | www.frontiersin.org 6
of the thymic T cells compared with the controls on days 49 and
140. Previous studies have shown that vancomycin treatment
leads to a reduction of the number of Tregs and impairs the
induction of Th17 cells in the colonic lamina propria in
mice (28).
A B

C

FIGURE 4 | Effects of antibiotic treatment on the diversity of the gut microbiota. (A) Differences in a-diversity between control (Ctr) and antibiotic-treated (ABX)
chickens at different ages. (B) Differences in a-diversity between Ctr and ABX at different ages analyzed with the Shannon’s indices. (C) Differences in b-diversity
between Ctr and ABX groups at different ages analyzed with principal component analysis. *p < 0.05, **p < 0.01, ***p < 0.001; Wilcoxon rank-sum test. n ≥ 8 for
each group.
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Research on the effect of gut microbiota on the immune
system has provided increasing evidence that the gut microbiota
is a critical factor in the differentiation and development of
immune cells. Germ-free animals show extensive deficits in the
development of the gut-associated lymphoid tissues and defects
in antibody production (29–31). In our experiment, 16S rDNA
gene sequencing showed that eight significantly different
microbes were present at the phylum level in antibiotic-treated
birds. Interestingly, in one example, the relative abundances of
Proteobacteria significantly increased on days 9 and 49 with
antibiotic treatment. Proteobacteria, a phylum that comprises
several known human pathogens, is a potential diagnostic
signature of dysbiosis and risk of disease. Stunted children also
have altered gut bacterial communities with higher proportions
of Proteobacteria (32, 33).

In addition, in younger chickens, we found that the relative
abundance of Bacteroidetes was significantly decreased in the
birds treated with antibiotics compared with the control group.
It has been shown previously that the lack of Bacteroidetes
inhibits T-cell differentiation (34). Bacteroidetes are crucial for
early colonization of germfree mice, which then results in the
correction of their underdeveloped immune system (35). At
the genus level, antibiotic-treated versus control chickens
showed 14 significant differences at days 9 and 49. One
Frontiers in Immunology | www.frontiersin.org 7
difference was the relative abundance of Escherichia in the
antibiotic-treated birds compared with the controls on days 9
and 49. Interestingly, Escherichia has been reported to inhibit
the proliferation and differentiation of T cells (36, 37). This
result emphasized that more work should be performed to
further explore the interaction between gut microbes and host
thymic T cells. A recent study showed that intestinal microbial
colonization in early life causes the trafficking of microbial
antigens from the intestine to the thymus through intestinal
dendritic cells, which then induce the expansion of microbiota-
specific T cells in mice (38). It is important to discover whether
similar thymic trafficking of gut microbiota that induces T cells
occurs in birds, also driving the expansion of thymic T cells.
For example, microbial metabolites SCFAs in gut and CD4+ T-
cell subsets would be determined in the future because
SCFAs can be transported into the blood and then to thymic
tissue sites where they may have the potential to regulate T-
cell activity.

Our results emphasize the need for more work to further
explore the interaction between gut microbes and host thymic T
cells. Future studies should clarify which gut microbiota may
specifically stimulate T-cell development in the thymus, and such
bacteria might be used as a feed additive for birds. A better
understanding of the development of thymic T cells in early life,
A

B

FIGURE 5 | Relative abundance of the gut microbiota at the phylum level showing significant changes in response to antibiotic treatment during early life.
(A) Differences in relative abundance of phyla between the controls (Ctr) and antibiotic treatment (ABX) on day 9. (B) Differences in relative abundance of genera
between Ctr and ABX on day 49. *p < 0.05, **p < 0.01, ***p < 0.001; Wilcoxon rank-sum test. n ≥ 8 for each group. ns, not significant.
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including how to open the development window and start
thymic generation by the specified gut microbiota, may
eventually provide new ways to treat immune disorders, such
as inflammatory bowel disease.
Frontiers in Immunology | www.frontiersin.org 8
CONCLUSION

In summary, the results of the present study indicate that the
spectrum of gut microbiota correlated with the percentage and
A

B

FIGURE 6 | Gut microbiota showing significant changes in relative abundance at the phylum and genus level in response to antibiotic treatment during early life.
(A) Differences between the controls (Ctr) and antibiotic-treated birds (ABX) in phyla on day 9. (B) Differences in genera. *p < 0.05, **p < 0.01, ***p < 0.001; Wilcoxon
rank-sum test. n ≥ 8 for each group.
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number of thymic T cells early in the lives of these birds, and this
model may be useful in understanding the role of the gut
microbiota in modulating immunity.
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