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Abstract

Background: The complex yet interrelated connections between cancer metabolism and oncogenic driver genes
are relatively unexplored but have the potential to identify novel biomarkers and drug targets with prognostic and
therapeutic value. The goal of this study was to identify global metabolic profiles of breast tumors isolated from
multiple transgenic mouse models and to identify unique metabolic signatures driven by these oncogenes.

Methods: Using mass spectrometry (GC-MS, LC-MS/MS, and capillary zone electrophoresis (CZE)-MS platforms), we
quantified and compared the levels of 374 metabolites in breast tissue from normal and transgenic mouse breast
cancer models overexpressing a panel of oncogenes (PyMT, PyMT-DB, Wnt1, Neu, and C3-TAg). We also compared
the mouse metabolomics data to published human metabolomics data already linked to clinical data.

Results: Through analysis of our metabolomics data, we identified metabolic differences between normal and
tumor breast tissues as well as metabolic differences unique to each initiating oncogene. We also quantified the
metabolic profiles of the mammary fat pad versus mammary epithelium by CZE-MS/MS. However, the differences
between the tissues did not account for the majority of the metabolic differences between the normal mammary
gland and breast tumor tissues. Therefore, the differences between the cohorts were unlikely due to cellular
heterogeneity. Of the mouse models used in this study, C3-TAg was the only cohort with a tumor metabolic
signature composed of ten metabolites that had significant prognostic value in breast cancer patients. Gene
expression analysis identified candidate genes that may contribute to the metabolic reprogramming.

Conclusions: This study identifies oncogene-induced metabolic reprogramming within mouse breast tumors and
compares the results to that of human breast tumors, providing a unique look at the relationship between and
clinical value of oncogene initiation and metabolism during breast cancer.
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Background
In the beginning of the 20th century, Otto Warburg and
his colleagues described increased glycolysis in the
presence of oxygen (aerobic glycolysis) in actively grow-
ing tumors [1]. Research has identified several critical
metabolic pathways underlying cancer progression [2, 3].
However, after a century of extensive gene expression

and protein profiling of human tumors, relatively little is
known about the regulation of the metabolic changes
that contribute to cancer development. Identifying these
complex molecular events of cancer progression will
identify potential biomarkers and therapeutic targets of
cancer.
Oncometabolites are metabolites whose abnormal

accumulation induces malignancy [1, 3–5]. An example
of an oncometabolite is R-2-hydroxyglutarate (R2HG),
which is produced by mutated isocitrate dehydrogenase
[5–7]. Normally, isocitrate dehydrogenase (IDH1/2)
converts isocitrate into α-ketoglutarate. However, when
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IDH1 is mutated in gliomas and acute myeloid leukemias
(AML), R2HG is produced [7, 8]. The abnormal accumu-
lation of R2HG causes global DNA hypermethylation by
deactivating DNA demethylases, which causes upregula-
tion of the WNT, NOTCH, and TGF-β pathways respon-
sible for aberrant cell proliferation, differentiation, and
cancer [6, 7, 9–11]. Two drugs AG-120 and AG-221
(Agios Pharmaceuticals, Cambridge, MA), which target
the mutated IDH enzymes, are under phase 1 clinical tri-
als (NCT02632708, NCT02677922). In addition to R2HG
and the pathways regulated by it, other metabolic path-
ways may contribute to cancer and may define new cancer
subtypes relevant to personalized treatment of cancer in
patients.
While specific oncogene activation or tumor suppressor

deactivation can reprogram the underlying metabolism of
tumor tissue, few oncogenes and tumor suppressors have
been investigated. A few of the genes studied as initiators
of metabolic reprogramming include MYC, KRAS, and
BRCA1. MYC promotes cell survival and proliferation by
upregulating many crucial metabolic pathways, including
glucose and glutamine catabolism as well as lipid synthesis
and nucleotide synthesis [12, 13]. MYC also promotes the
accumulation of oncometabolite R2HG in breast cancer
[10]. KRAS enhances glycolysis but also reduces the oxida-
tive flux through the TCA cycle and increases the
utilization of glutamine as an energy source [14]. BRCA1
can metabolically reprogram cells by decreased glycolysis,
increased TCA cycle and oxidative phosphorylation, and
decreased ketone bodies and free fatty acids [15, 16]. Des-
pite all these studies, we still do not know the metabolic
pathways that are reprogrammed by most oncogenes. In
addition, many of the therapies used to treat patients are
themselves regulated by metabolic pathways (e.g., proc-
essed/activated in the body, differentially utilized based on
channel proteins or transporters), and metabolism can
significantly impact treatment efficacy. Therefore, compar-
ing the metabolic reprogramming induced by a panel of
oncogenes will aid in the development of more individual-
ized treatments that reverse the metabolic
reprogramming.
Our study aims to identify the scope of the metabolic

reprogramming that is caused by individual induced on-
cogenes by comparing the metabolic profiles of breast
tumors induced by tumor-initiating oncogenes. Previous
studies have identified genomic features of mouse breast
cancer models and the relationship with human breast
cancer [17–19]. In contrast to gene expression, the
metabolomics features of mouse breast cancer models
and the relationship with human breast cancer are
not established. Both the tumor metabolic pathways that
are differentially regulated within common transgenic
mouse models and the comparison of mouse model data
to human breast cancer clinical data are essential to

increase our understanding of the relationship between
initiating oncogenes, breast cancer phenotypes, and
metabolism. Through detection of the metabolites that
are significantly up/downregulated in different models of
breast cancer, our ultimate goal is to identify key metab-
olites, metabolic pathways, or even novel oncometabo-
lites that contribute to cancer progression or response to
treatment.

Methods
Transgenic mouse models
Mice developed spontaneous tumors through the trans-
genic expression of the indicated oncogenes: MMTV-
PyMT, MMTV-PyMT-DB, MMTV-Wnt1, MMTV-Her2/
neu, and C3(1)-SV40 T-antigen (C3-TAg). All animal ex-
periments were approved and conducted in accordance
with the University of Notre Dame Institution Animal
Care and Use Committee guidelines (protocol # 15-10-
2724). Mice used in this study were maintained under
pathogen-free conditions in the University of Notre Dame
Freimann Life Sciences animal facility.

Breast tumor sample preparation
Tumors were surgically removed and flash frozen after
collection. Mammary gland tissues were collected and
frozen from mice at ages ranging from 15 to 27 weeks of
age for profiling. Frozen tissue samples were sent to
Metabolon for metabolomics analysis. Samples were first
removed of protein fraction and then divided for liquid
chromatography (LC) and gas chromatography (GC) for
compound separation and then scanned through mass
spectrometry. The sample preparation process was car-
ried out using the automated MicroLab STAR® system
from Hamilton Company. Recovery standards were
added prior to the first step in the extraction process for
QC purposes. Sample preparation was conducted using
a proprietary series of organic and aqueous extractions
to remove the protein fraction while allowing maximum
recovery of small molecules. The resulting extract was
divided into two fractions: one for analysis by LC and
one for analysis by GC. Samples were placed briefly on a
TurboVap® (Zymark) to remove the organic solvent.
Each sample was then frozen and dried under vacuum.
Samples were then prepared for the appropriate instru-
ment, either LC/MS or GC/MS.

Liquid chromatography/mass spectrometry (LC/MS, LC/MS2)
This procedure was completed by Metabolon. The LC/
MS portion of the platform was based on a Waters
ACQUITY UPLC and a Thermo-Finnigan LTQ mass
spectrometer, which consisted of an electrospray
ionization (ESI) source and linear ion-trap (LIT) mass
analyzer. The sample extract was split into two aliquots,
dried, and then reconstituted in acidic or basic LC-
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compatible solvents, each of which contained 11 or more
injection standards at fixed concentrations. One aliquot
was analyzed using acidic positive ion-optimized condi-
tions and the other using basic negative ion-optimized
conditions in two independent injections using separate
dedicated columns. Extracts reconstituted in acidic condi-
tions were gradient eluted using water and methanol both
containing 0.1% Formic acid, while the basic extracts,
which also used water/methanol, contained 6.5 mM am-
monium bicarbonate. The MS analysis alternated between
MS and data-dependent MS2 scans using dynamic
exclusion.

Gas chromatography/mass spectrometry (GC/MS)
The samples destined for GC/MS analysis were re-dried
under vacuum desiccation for a minimum of 24 h prior
to being derivatized under dried nitrogen using
bistrimethyl-silyl-triflouroacetamide (BSTFA). The GC
column was 5% phenyl, and the temperature ramp is
from 40 to 300 °C in a 16-min period. Samples were an-
alyzed on a Thermo-Finnigan Trace DSQ fast-scanning
single-quadrupole mass spectrometer using electron
impact ionization. The instrument was tuned and
calibrated for mass resolution and mass accuracy on a
daily basis. The information output from the raw data
files was automatically extracted as discussed below.

Accurate mass determination and MS/MS fragmentation
(LC/MS), (LC/MS/MS)
The LC/MS portion of the platform was based on a
Waters ACQUITY UPLC and a Thermo-Finnigan LTQ-
FT mass spectrometer, which had a linear ion-trap (LIT)
front end and a Fourier-transform ion cyclotron reson-
ance (FT-ICR) mass spectrometer backend. For ions
with counts greater than 2 million, an accurate mass
measurement could be determined. Accurate mass mea-
surements could be made on the parent ion as well as
fragments. The typical mass error was less than 5 ppm.
Ions with less than two million counts required a greater
amount of effort to characterize. Fragmentation spectra
(MS/MS) were typically generated in data-dependent
manner, but if necessary, targeted MS/MS could be used,
such as in the case of lower level signals.

Data extraction and quality assurance
The data extraction of the raw mass spec data files
yielded information that was loaded into a relational
database and manipulated without resorting to BLOB
manipulation. Once in the database, the information was
examined, and appropriate QC limits were imposed.
Peaks were identified using Metabolon’s proprietary peak
integration software, and component parts were stored
in a separate and specifically designed complex data
structure.

Compound identification
Compounds were identified by comparison to library en-
tries of purified standards or recurrent unknown entities.
Known chemical entities were identified by comparison
to metabolomic library entries of purified standards. As
of this writing, more than 1000 commercially available
purified standard compounds had been acquired regis-
tered into LIMS for distribution to both the LC and GC
platforms for determination of their analytical character-
istics. The combination of chromatographic properties
and mass spectra gave an indication of a match to the
specific compound or an isobaric entity. Due to the
limitations of detection and database identification, not
all detected metabolites are detected or named.
Additional entities could be identified by their recurrent
nature (both chromatographic and mass spectral). These
compounds have the potential to be identified by future
acquisition of a matching purified standard or by
classical structural analysis.

Normalization
For studies spanning multiple days, data were normal-
ized to correct variation from instrument inter-day
tuning differences. Each compound was corrected in
run-day blocks by registering the medians to equal one
(1.00) and by normalizing each data point proportion-
ately (termed the “block correction”; Fig. 1). Studies that
did not require more than one day of analysis did not
require normalization except for purposes of data
visualization.

Separation of adipocyte-enriched and epithelial
cell-enriched mouse mammary tissue
The breast tissues were harvested from three-week-old
FVB mice prior to cutting and separating the epithelial
enriched sample, which included the nipple, and the adi-
pocyte enriched sample, which included no epithelium.
A y-incision was made in the abdominal region of the
mice to reveal the number 4 mammary gland. Two inci-
sions were made to isolate the lymph node. The nipple
side portion and the remaining portion of number 4
mammary gland were then collected in separate Eppen-
dorf tubes. The samples were flash frozen in liquid ni-
trogen and kept frozen before CZE mass spectrometry
analysis.

Capillary zone electrophoresis mass spectrometry
Sample preparation
Fat pad and nipple tissues were homogenized using a
CryoGrinder™ (OPS Diagnostics). Metabolites were
extracted using cold acetonitrile-water (80:20 v/v). Five
hundred microliter of extraction buffer was added to
20 mg of tissue, shaken vigorously for 2 min, and centri-
fuged (10,000 rpm × 5 min) [20]. The supernatant was
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collected, and the extraction procedure was repeated on
the residue. The pooled supernatant was clarified by
centrifugation at 13,000 rpm for 5 min. The clarified
supernatant was dried in a vacuum concentrator and
stored at − 20 °C until analysis.

CZE-ESI-MS conditions
Separations were completed using an uncoated 38 cm,
20-μm ID, 150-μm OD fused silica capillary. The distal
tip of the capillary was etched to ~ 40 μM outer diam-
eter with hydrofluoric acid [21, 22]. The metabolite
extract (10 mg/mL) was hydrodynamically injected at
6 psi for 2 s, corresponding to a 26 nL volume. The sep-
aration buffer was 0.5% acetic acid, and the electrospray
sheath liquid was composed of 0.5% formic acid, 10%
methanol. The separation voltage was 16.6 kV, and the
electrospray voltage was 1.2 kV. The capillary was
coupled to an OrbiTrap Velos mass spectrometer
(Thermo Fisher Scientific) using a third-generation
electrokinetically pumped, sheath-flow interface [22].

Electrospray was generated through a borosilicate glass
nanospray emitter pulled with a Sutter P-1000 micropip-
ette puller with an exit orifice of 25 μm inner diameter.

Mass spectrometer operating parameters
Full MS scans were acquired in the Orbitrap mass
analyzer over the m/z 100–500 range with a mass
resolution of 70,000 (at m/z 200). The target value was
1.00E+06. The ion selection threshold was 2.50E+04
counts, and the maximum allowed ion accumulation
times were 250 ms for full MS scans and 80 ms for
tandem mass spectra. The dynamic exclusion time
was set to 30 s.

Data analysis
Raw files were converted to mZXML using Proteowizard
(http://proteowizard.sourceforge.net/). The converted
files were submitted to XCMS Online metabolomics
data processing platform. XCMS aligns data and auto-
matically integrates and extracts peak intensities [23].

a

c

b

d

Fig. 1 Overview of metabolomics data. a Experimental design. Breast tumors were collected from five transgenic mouse models and normal
mammary tissue from littermates. Samples then were analyzed by GC-MS and LC-MS/MS to acquire metabolomics data, which was then used to
acquire oncogene-specific metabolic profiles. b Principal component analysis (PCA) of tumor metabolites. Each group of tumor samples (multi-colored)
are separated from normal mammary tissue samples (gray) and from other tumor models. c Unsupervised cluster analysis of 47 samples and 374
metabolites. Samples are separated by column, and metabolites are separated by row. All normal tissue was within cluster 1 (blue); tumors are nearly
all in cluster 2 (red), generally with high metabolite levels. d Super pathways of universally enriched metabolites in all tumor groups compared to nor-
mal tissue. The y-axis indicates the metabolic super pathways of metabolites, and the x-axis indicates the percentage of metabolites in each super
pathway. The bars indicate metabolites that were upregulated more than twofold (blue) or fivefold (red) in all five tumor groups compared to normal
tissue. The number of metabolites belonging to each major pathway was normalized against the total number of metabolites detected in the same
pathway. See also Additional files 1, 2, and 3.
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Feature selection produces a list of differentially
expressed metabolites based on P value (P ≤ 0.05, ≥ 1.5
fold change). These species were matched against the
LC-MS and GC-MS metabolite database and standards.
CZE-MS unique features were identified using MS2
data, METLIN, Human Metabolome Database (HMD),
LIPIDMAPS, and Mouse Multiple Tissue Metabolome
Database (MMMDB).

Statistical analysis
Statistical analyses were calculated with the program R
(http://cran.r-project.org/). The metabolomics raw data
were analyzed by significance tests and classification
analysis, as indicated. For pair-wise comparisons, we used
Welch’s t tests and/or Wilcoxon’s rank sum tests, as indi-
cated. For statistical designs comparing more than two sam-
ples, we used ANOVA (e.g., repeated measures ANOVA).

Gene expression analysis
Gene expression analysis was conducted with the Web
MEV platform (http://mev.tm4.org). Gene normalization
was done according to previously published protocol
[17]. For fold change analysis comparing expression of
different transgenic tumors versus other tumors, we
used linear models for microarray data (LIMMA) [24].
Gene functional annotation clustering was completed

with the DAVID bioinformatics tool [25, 26].

Results
Quantification of metabolites expressed in oncogene-driven
mouse breast tumors
We hypothesized that individual oncogenes differentially
regulate and reprogram the metabolism within breast
tumors. Using GC/LC/CZE mass spectrometry, we quanti-
fied the global metabolite profiles of mouse tissues collected
from normal wildtype mammary glands and breast tumors
derived from a panel of transgenic mouse models (Fig. 1a).
We quantified and clustered 374 named metabolites across
47 samples (12 normal and 35 tumor mouse mammary
tissues generated from five transgenic mouse lines). The
raw data and subsequent analyses are included in
Additional file 1. The mouse lines examined were MMTV-
PyMT [27], MMTV-PyMT-DB [28], MMTV-Wnt1 [29],
MMTV-Her2/neu [30], and C3(1)-SV40 T-antigen
(C3-TAg) (details in Additional file 2) [31]. The major
metabolic pathways that are represented by the 374 metab-
olites are shown in Additional file 3.
Principal component analysis (PCA) of the metabolomics

data identified variations across the samples based on their
metabolic profiles and was used for quality control. Normal
mammary tissue samples clustered together tightly (black
circle), suggesting similar metabolic profiles, whereas the
tumor samples for each oncogenic transgene were more
heterogeneous and diverged from normal tissue (Fig. 1b).

Component 1 separated normal mammary gland tissue
samples from tumor samples, and adding component 2
separated PyMT tumors from the other tumor groups.
Wnt1-induced tumors were the most heterogeneous and
clustered away from the other tumor models.

Global changes in tumor metabolic profiles independently
distinguish breast cancer from normal mammary tissue
We next determined which metabolites changed globally
across breast tumors compared to normal tissue. An aver-
age of 258 out of 374 metabolites (69%) varied significantly
between tumors and normal mouse mammary tissue, with
most of these metabolites upregulated in tumors (Add-
itional file 4). Unsupervised cluster analysis of the metabolic
data grouped the tumors predominantly into two major
clusters, which distinguished normal from tumor tissues
(Fig. 1c). Within the clusters, the metabolite levels primarily
increased across tumor samples (cluster 2, right) compared
to normal mammary tissue samples (cluster 1, left). The
clustering of metabolites is listed by their metabolic path-
ways on the y-axis of the heatmap. In comparison to the
globally upregulated amino acid and carbohydrate metabo-
lites, the lipid metabolism of the tumor samples did not
show such a singular trend. In addition to increased lipid
metabolites, we also found groups of lipid metabolites with
equal or lower levels in tumor samples compared to normal
mammary tissue samples. These data suggest that metabol-
ite signatures independently distinguish breast cancer tissue
from normal mammary gland tissue.
We identified the major metabolic pathways that chan-

ged the most between normal and tumor tissue. We
looked at the most highly enriched metabolites and
grouped the metabolites with twofold (149 metabolites)
enrichment in all tumor tissues compared to the normal
tissue. Within these 149 metabolites, we further grouped
the metabolites into the most highly enriched metabolites
(fivefold enriched) (Fig. 1d, Additional files 5 and 6). The
most highly enriched metabolites in tumors compared to
normal tissue were carbohydrate and amino acid metabo-
lites. Tumor tissues showed increased glucose metabolism,
amino acid metabolism, and TCA cycle intermediates, all
of which are consistent with increased energy production
and anaplerotic contributions from amino acid catabolism
(Additional file 1, pathway heatmap).
Glucose metabolism provides energy and anabolic pre-

cursors and is increased in the tumors, as indicated by in-
creased glycolytic and pentose phosphate intermediates,
sorbitol and other hexoses, and glycogen metabolites
(Fig. 2a, Additional file 1). Amino acid metabolism also in-
creased, as indicated by elevated levels of free amino acids
and their metabolites (Fig. 2b). The increased free amino
acids may reflect not only increased catabolism but also
increased amino acid uptake and/or protein degradation.
Indeed, levels of dipeptides and modified amino acids (e.g.,
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N6-acetyllysine) were higher in tumor than in normal tissue
(Additional files 1 and 6). TCA cycle intermediates also
increased and were consistent with increased energy
production and anaplerotic contributions from amino acid
catabolism (Fig. 2, Additional file 1). Finally, we also saw
increased expression of phospholipid precursors, such as
long-chain fatty acids and phospholipid turnover products
in tumor tissues. Similarly, cholesterol uptake, marked by
elevated cholesterol and the diet-derived sterol campesterol,
and levels of nucleotide metabolites also increased in tumor
tissues (Fig. 2c, Additional file 1). These changes were con-
sistent with increased synthesis and remodeling of cellular
membranes and increased nucleic acid production.

Metabolic profiles of mammary gland fat pad
and epithelium tissues suggest that the lipid differences
seen in the breast tumors are unlikely to be caused by
cellular heterogeneity
The differences between the metabolites of normal and
tumor tissue might reflect actual differences in the me-
tabolism of these tissues or alternatively might represent
the cell heterogeneity, with varied metabolism by cell
type, within these tissues. Normal mammary tissue is
mostly composed of adipocytes, while breast tumors
contain significantly more epithelium and less stroma
[32, 33]. Thus, the lipid pools are expected to be quite

different across normal and tumor tissue. Therefore, this
cell heterogeneity between normal mammary and tumor
tissue might sufficiently account for the metabolic differ-
ences between normal and tumor tissue. Differences could
reflect cell heterogeneity rather than actual changes in the
metabolism of the tissue.
We wanted to determine if the metabolic profile differ-

ences across our samples were due fundamentally to the
differences in the types of cells available in equivalent
masses of tissue, including changes in the fat pad stro-
mal cell populations (e.g., adipocytes and lipid content
in the mammary fat pad) of the tissue samples. To do
this, we collected, quantified, and compared metabolites
found within epithelium enriched and stromal enriched
regions of a three-weekold mammary gland collected
from a normal wildtype FVB/n mouse (Fig. 3). During
mammary gland development, the epithelium invades
from the nipple into the fat pad. Before puberty, the epi-
thelium is restricted proximal to the nipple, while the
majority of the fat pad contains no epithelium. We col-
lected tissue samples at the start of puberty (3–4 weeks old)
before the epithelium has invaded the whole fat pad and
separated the proximal nipple end (epithelium enriched)
from the distal fat pad (adipocyte enriched) (Fig. 3a). These
samples were processed for CZE-MS/MS, and the epithe-
lium enriched was compared to stroma enriched metabolic

a b c

Fig. 2 Metabolites supporting rapid growth are increased in tumors. Box and whisker plots of key metabolites of energy pathways and major
catabolism/anabolism pathways in normal mammary tissue and tumors of transgenic mice. y-axis: scaled intensity of metabolites by mass
spectrometry. Cross: mean value; center line: median; box lines: upper/lower quartile values; extended line: upper/lower extreme values; circles:
outliers. a Glycolysis and TCA cycle intermediate levels are higher in all tumor groups compared to control, consistent with higher energy flux in
rapid-growing tumors. b Amino acid metabolites are upregulated in all tumors compared to control. c Lipid and nucleotide pathway metabo-
lites have higher levels in tumors, consistent with the need for more building blocks in rapid-growing tumors. *P < 0.05, Welch’s t test
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profiles (raw data in Additional file 7). The samples ana-
lyzed for metabolites included the regions proximal (epithe-
lium enriched containing both epithelium and fat pad) and
distal (stromal enriched containing fat pad devoid of epithe-
lium) to the nipple. The metabolic differences between the
epithelium enriched and stromal enriched tissue samples
were then compared to the metabolites that differed be-
tween normal and cancer tissues to determine the meta-
bolic contribution of stroma and epithelium of a normal
mammary gland fat pad.
The results from our CZE-MS/MS metabolomics ana-

lysis identified 48 metabolites whose levels were signifi-
cantly different between epithelium- and stromal-enriched
tissues (Fig. 3b–d and Additional file 7). Of the 48 metab-
olites, 28 were higher in the epithelium enriched tissue, 20

were higher in the stroma enriched tissue (Fig. 3 and Add-
itional file 7). Of the 28 epithelial enriched metabolites,
most were amino acids, lipids, and nucleotide metabolites.
Since these 48 metabolites represent less than 5% of the
over 1300 metabolites detected in the CZE-MS/MS ex-
periment (Fig. 3b, c), this suggests that most of the metab-
olite differences we observed between normal and tumor
tissues are not due to cell heterogeneity but instead are
due to metabolic changes of cancer progression. There-
fore, the metabolic differences between the mammary tis-
sue and cancer tissue could represent changes from
within the cancer epithelial cells themselves or
alternatively from stromal cells that are recruited to or
modified by the normal fat pad stroma. However, based
on these data, we cannot determine the contribution of

ba

c

d

Fig. 3 Metabolic differences between the epithelium enriched and the stroma enriched breast tissue. To determine if the metabolic differences
we saw between normal mammary tissue and tumors are indeed due to cancer progression, rather than the difference in cell type
heterogeneity, we compared the mammary gland metabolome of stroma enriched tissue (adipocyte rich) and epithelium enriched tissue during
normal mammary gland development. a Overview of experimental design. Stroma enriched and epithelium enriched tissue were collected at
3 weeks, at the time when the mammary epithelium invades only a part of the mammary fat pad. b Of the 1365 different features detected, only
48 metabolites had significantly different levels. c Major pathway distribution of adipocyte enriched and epithelium enriched metabolites. d
Cloud plot of all metabolites with significantly different levels in the two tissue groups. Each circle indicates one metabolite, with the color
indicating the tissue detected in (green: epithelial cells, red: stroma). The size of the circles indicates the fold of change (compared to background
noise), and the color of the circles indicate P values (darker color indicating lower P value). The most significantly changed metabolites (with the
lowest P values) in both tissues were presented on the right side of the plot
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proliferation to the metabolite differences between the
normal mammary tissue and the tumor tissues.

Metabolic profile of Wnt1 tumors suggests differences in
eicosanoid, taurine, and one-carbon metabolism
We next compared the metabolites from each of the
oncogene-induced tumor samples to identify metabolic
profiles uniquely induced by each oncogene. We found
metabolic profiles that significantly changed (increased/
decreased) after expression of each oncogene compared
to the other tumor and normal tissue (Additional files 1
and 8).
The metabolic pathways of the Wnt1 tumors especially

differed from the other tumor models. Wnt1 tumors
contained significantly increased eicosanoids (e.g., pros-
taglandin E2, thromboxane B2, and 12/15-HETE), poly-
amines (putrescine, spermine, and spermidine),
and taurine synthesis (decreased cysteine with increased
hypotaurine and taurine) and decreased levels of free
fatty acids and lysolipids (Fig. 4, Additional file 1). Also,
a subset of metabolites from methionine and cysteine
metabolism and one-carbon metabolism pathways were
significantly differentially expressed in Wnt1 tumors
compared to the other tumors. For example, Wnt1 tu-
mors have increased taurine levels, while the other tu-
mors reduced taurine levels compared to normal tissue.
One-carbon metabolism contributes one-carbon units

in many biosynthetic metabolic pathways. One-carbon
metabolism seems to be lower in Wnt1 compared to
other tumors. Dipeptide levels were also higher in Wnt1
tumors than in the other tumors, indicating more active
amino acid metabolism (Additional file 1). Levels of
betaine (and isobars containing betaine-aldehyde and N-
methyldiethanolamine), an amino acid synthesized de
novo from choline, is also higher in the Wnt1 tumors
than in the other tumor groups. Notably, the levels of 5-
methyltetrahydrofolate (5-meTHF), the central
metabolite of the one-carbon pathway, were lower in
Wnt1 tumors compared to Her2/neu or PyMT tumors
(Additional file 1). Consistently, the long-chain fatty
acids and phospholipids decreased in Wnt1 compared to
other tumors (Additional file 1, pathway heatmap).

PyMT and PyMT-DB tumors differ in glucose, eicosanoid,
and glycogen metabolism
Compared to the PyMT mouse, the PyMT-DB mouse
contains two point mutations (Y315/322F) in the PyMT
oncogene that prevent the activation of phos-
phatidylinositol 3-kinase [28]. The general metabolic dif-
ferences between PyMT-DB and PyMT tumors included
reduced glucose metabolism and eicosanoids and in-
creased glycogen storage and glutathione in PyMT-DB
tumors compared to PyMT tumors (Fig. 5a, Add-
itional file 1 pathway heatmap). Glucose levels were

higher in PyMT-DB tumors, while glycerate and lactate
levels were lower (Fig. 5b). In addition, glycogen metab-
olites maltotriose and maltose were higher in PyMT-DB
tumors, suggesting increased glycogen synthesis in
PyMT tumors compared to PyMT-DB tumors (Fig. 5b).
Eicosanoid and arachidonate levels also were lower in
PyMT-DB tumors than in PyMT tumors (Fig. 5d, Add-
itional file 1). Additionally, we observed increased levels of
long-chain fatty acids in PyMT-DB compared to PyMT
tumors, suggesting increased fat storage or decreased fat
breakdown (Additional file 1).
Consistent with increased glutathione synthesis in

these tumors, the levels of glutathione (both the reduced
form GSH and the oxidized form GSSG) and ophthal-
mate, an analogous tripeptide that is also synthesized by
the same enzymes as glutathione, were both higher in
PyMT-DB tumors than in PyMT tumors (Fig. 5c). In
addition, a number of γ-glutamyl amino acid levels
(i.e., γ-glutamyl alanine, phenylalanine, and threonine)
and 5-oxoproline levels decreased in PyMT-DB tumors
relative to PyMT tumors (Fig. 5c, Additional file 1). The
significantly lower 5-oxoproline levels and unchanged
glutamate levels in PyMT-DB compared to PyMT tumors
remain consistent with reduced turnover of glutathione
via the γ-glutamyl cycle, possibly due to decreased γ-
glutamyl transpeptidase activity.

Metabolic profiles of HER2/neu tumors suggest altered
lipid metabolism
The most prominent metabolic profiles of the Neu tumors
suggested altered lipid metabolism. Neu tumors expressed
higher levels of lipids, including long-chain fatty acids,
polyunsaturated fatty acids, and inositol metabolism me-
tabolites, compared to the other tumor cohorts (Fig. 6a,
Additional file 1). The inositol pathway in particular stood
out, since nearly all of the detected metabolites from this
pathway were higher in Neu tumors than in other tumors
(Fig. 6b, Additional file 1 pathway heatmap). Of the lysoli-
pid metabolites examined, nearly all the phosphoinositols
(e.g., 1-oleoylglycerophosphoinositol) were higher in Neu
tumors as well. However, not all lipid metabolites are up-
regulated in Her2/neu tumors. Metabolites of acyl-
carnitine metabolism were lower in Her2/neu tumors com-
pared to the other models, with the exception of C3-TAg.
Compared with other tumor models, altered lipid metabol-
ism, followed by amino acids, best distinguished Her2/neu
tumors from the other models. Metabolically, PyMT-DB is
most similar to Her2/neu of the models examined.

Metabolic profiles of C3-TAg tumors have decreased
lipids and γ-glutamyl amino acids with increased
glycogen metabolites
In contrast to breast tumors from the other models, the
metabolic profiles of C3-TAg tumors include pathways
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that overlap with Wnt1 tumors, including decreased free
fatty acids and increased dipeptides, lysolipids, and
eicosanoids (Fig. 7a, Additional file 1). In addition, of all
of the tumor cohorts examined, C3-TAg tumors
expressed the lowest levels of most types of metabolites
(Fig. 7a). In particular, nearly all the γ-glutamyl amino
acids are lower in C3-TAg than in other tumors, indicat-
ing either a rapid depletion of γ-glutamyl amino acids
due to increased downstream demand or an upstream
inhibition of γ-glutamyl amino acid production. In con-
trast, both the reduced (GSH) and the oxidized (GSSG)
forms of glutathione are among the few metabolites that
increased in C3-TAg tumors (Fig. 7b). Taken together,
these data suggest an altered γ-glutamyl cycle in C3-TAg
tumors, with either increased glutathione production or
decreased glutathione breakdown. On the other hand,
amino acid metabolite levels were similar between C3-
TAg and the other tumors, except for cysteine, serine,

and branched chain amino acids leucine and valine
(Fig. 2b, Additional file 1).
Dipeptide levels and fat metabolism metabolites,

especially phospholipid metabolites and polyunsaturated
fatty acids, were generally lower in C3-TAg tumors than
in other tumors (Additional file 1, pathway heatmap).
Dipeptides are breakdown products of proteins and can
also come from dietary sources. Several dipeptides have
important functions, including as anti-oxidants or by
stimulating proliferation [34, 35]. While glycolysis and
TCA cycle intermediates did not change significantly,
the C3-TAg tumors produced reduced levels of pentose
metabolites, oligosaccharides, nicotinamide metabolites,
and folate metabolites, compared to other tumors
(Additional file 1).
Glycogen metabolite levels also greatly increased in

C3-TAg tumors compared to other tumors, suggesting a
more active glycogen metabolism in these tumors.

a

b

Fig. 4 Metabolomic differences associated with Wnt1-initiated tumors. Metabolomics revealed significantly different eicosanoid and cysteine-
methionine metabolites in Wnt1 tumors compared to other transgenic model tumors. a Eicosanoid metabolism. Left: the eicosanoid pathway,
with colors indicating increased metabolite levels compared to at least three other tumor groups (red), decreased levels (green), no change (blue),
or not detected (black). Right: Graphs of the quantification of eicosanoid precursors (AA) and some eicosanoids. Middle line of box plots indicates
median of sample group. *P < 0.05, Welch’s t test. b Quantification of cysteine-methionine metabolism. CDO1 (black) converts cysteine to hypo-
taurine. *P < 0.05, Welch’s t test. Statistical comparisons were made between Wnt1 and every other sample group. Abbreviations: COX cyclooxy-
genase, LOX lysyl oxidase DHGLA dihomo-γ-linolenic acid, HETE hydroxyeicosatetraenoic acid, SAM S-adenosyl methionine, SAH S-
adenosylhomocysteine, THF tetrahydrofolate, Cdo1 cysteine dioxygenase
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Prediction of human patient survival with C3-TAg
oncogene-specific metabolites
To determine if our metabolic profiles have clinical
significance, we determined if the metabolites identified
from our mouse study analysis had prognostic value in a
human breast tumor cohort. The cohort contained 67
human breast tumors and 65 tumor-adjacent noncancer-
ous tissues from an ethnically diverse group of patients
[10]. The significance of the metabolites affecting sur-
vival was calculated by fitting a Cox proportional hazard
model, using all of the survival times as the output and
metabolites as the input. For the metabolites used as in-
put, we used the list of model-specific metabolites iden-
tified from our metabolomics data (Additional file 8). In
our analysis, we first tested each of the individual

metabolites from the mouse model-specific metabolite
list for their prognostic value. However, with the excep-
tion of citrate and nicotinamide adenine dinucleotide
(NAD+), no individual metabolite was sufficient for
prognostic value (Additional file 9).
We hypothesized that because of the complexity of the

metabolic network, single metabolite cannot sufficiently
capture all the changes in the network and, thus, would
serve poorly as prognostic indicators. Alternatively,
oncogene-induced metabolic signatures composed of a
group of multiple metabolites might have prognostic
value in patients and serve as a biomarker of disease and
disease progression.
We took the top ten metabolites with the smallest

p values from each mouse model-specific metabolite

a b

d

c

Fig. 5 Metabolic comparison of PyMT vs. PyMT-DB tumors. PyMT-DB has increased glycolytic flux and more glycogen breakdown, as well as
reduced inflammation, according to the metabolomics results. a Super pathway distributions of significantly up/downregulated metabolites in
PyMT-DB tumors compared to PyMT tumors. Increases in energy, carbohydrate, amino acid, and lipid metabolism are apparent in PyMT-DB
tumors, as is the decrease in peptide metabolites. b Starch/glycogen metabolism is significantly increased in PyMT-DB tumors compared to PyMT
tumors. c Glutathione metabolism is altered in PyMT-DB compared to PyMT, with higher glutathione levels and lower γ-glutamyl cycle
intermediates. d Eicosanoid levels are lower in PyMT-DB vs. PyMT. *P < 0.05, Welch’s t test. Statistical comparisons were made between PyMT-DB
and every other sample group
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signature and combined them into a single metabolic
signature to predict patient survival (Table 1,
Additional file 9). Surprisingly, of the different trans-
genic mouse models, only the C3-TAg metabolic sig-
nature composed of ten metabolites had statistical
significance between patient outcome (P = 0.009). We
next modified the number of metabolites that we
included in the metabolic signatures. With fewer than
ten metabolites per signature, the PyMT-specific
metabolite signature also predicts patient survival with
modest statistical significance (nine metabolites: C3-TAg,
P = 0.03; PyMT, P = 0.04). Metabolic signatures of seven
metabolites also produced modest prognostic value for
C3-TAg (P = 0.02) and PyMT (P = 0.04) (Table 1,
Additional file 9). This result confirms our hypothesis that
a more complex metabolite signature is needed to predict

patient survival. Additionally, the exact number of metab-
olites needed in such a prognostic signature may need to
be determined by further statistical analysis.
Interestingly, while individual C3-TAg-specific metabo-

lites did not have prognostic value, the combined C3-TAg-
specific metabolites became the best signature of prognos-
tic outcome. This increase in predictive power demon-
strates the need for a complex metabolic signature in
studying such a complicated system as cancer metabolism.
Upon a closer inspection of C3-TAg-specific metab-

olites that were good prognostic markers, we noticed
many metabolites in the γ-glutamyl cycle, as well as
metabolites of the glycogen pathway. These two pathways
are among the most prominent differences in our metabo-
lomics data that separate C3-TAg tumors from other
tumors.

a

b

Fig. 6 Metabolic profile of Her2/neu tumors. Her2/neu tumors have increased lipid metabolism compared to other tumors. a Super pathway
distributions of significantly up/downregulated metabolites in Her2/neu tumors compared to tumors of other transgenic mouse models and
normal mammary tissue. Elevated levels of lipid metabolites are observed in Her2/neu tumors compared to other tumors. b Inositol metabolites
are upregulated in Her2/neu tumors compared to other tumors. *P < 0.05, Welch’s t test. Statistical comparisons were made between Her2/neu
and every other sample group
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C3-TAg alters gene expression and metabolism of breast
tumors
After identifying C3-TAg-specific metabolites as the best
prognostic indicators of human patient survival among
the different transgenic mouse models, we further in-
vestigated the similarities in metabolites and gene ex-
pression between the C3-TAg and human tumor
models. We determined if changes in gene expression
in the identified metabolic pathways could account for
some of the metabolite differences. To do this, we com-
pared our metabolomics data to a previously published
gene expression dataset that compares the gene expres-
sion patterns of genetically engineered mouse models and
human breast cancer patients [17]. The study included
samples from numerous mouse models, including most of

the ones used in our study as well as some that express
the TAg oncogene under different promoters. Since their
analysis did not distinguish between C3-TAg-induced
gene expression in tumors, we also conducted our own
analysis of the data using C3-TAg as a separate co-
hort (Additional file 10). In our analysis, we also limited
the comparisons by including only data from the mouse
models used in our metabolomics study (C3-TAg, Neu,
PyMT, Wnt1).
The number of genes with expression level changes

that either increased more than double or decreased
more than half in C3-TAg breast tumors, compared to
all other tumors, was larger than the number of genes
changed in the other breast tumors (564 genes for C3-
TAg, 61 for Neu, 41 for PyMT, 46 for Wnt1) (P < 0.05,

a

b

Fig. 7 Metabolic profile of C3-TAg tumors. C3-TAg has lower metabolite levels in all pathways compared to other tumor groups, but still maintains higher
levels of metabolites than normal mammary tissue. a Super pathway distributions of significantly up/downregulated metabolites in C3-TAg tumors com-
pared to tumors of other transgenic mouse models and normal mammary tissue. b Decreased turnover of glutathione via the γ-glutamyl cycle in C3-TAg
tumors compared to other tumors. *P < 0.05, Welch’s t test. Statistical comparisons were made between C3-TAg and every other sample group
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LIMMA). This suggests that C3-TAg has the most dis-
tinct global gene expression profile of all of the mouse
models analyzed.
The significant variations in gene-specific expression

in C3-TAg tumors are consistent with the significant
metabolic differences that we observed in the metabolic
profile of C3-TAg tumors and may account for some of
the observed metabolic changes. For example, our meta-
bolomics study discovered that C3-TAg tumors had both
globally reduced metabolite levels and reduced expres-
sion levels of metabolism-related genes, including
glutathione-related genes, compared to the other mouse
models. For example, the C3-TAg tumors had re-
duced expression of several genes responsible for
GSH breakdown compared to other tumors. These
genes included γ-glutamyl transferase (Ggt1) and
glutathione S-transferase (Gstt2 and Gstt3). Taken to-
gether, this suggests that the change in γ-glutamyl
cycle is due to a decreased breakdown of GSH that
produces γ-glutamyl amino acids, which are part of
the prognostic indicators of patient survival.
C3-TAg tumors also had increased expression of genes

related to proliferation and division as well as nucleotide
synthesis. Taken together with the metabolomics data,

this suggests that the C3-TAg tumor cells undergo rapid
cell division while at the same time reduce many of the
biosynthetic metabolism pathways.
The increased expression of glycogen metabolism

genes in C3-TAg tumors remains consistent with
the gene expression data. This includes increased ex-
pression of the Phk1 (phosphorylase kinase regulatory
subunit alpha 1) gene, which encodes for the alpha sub-
unit of phosphorylase b kinase enzyme for activating
phosphorylase b to increase glycogen breakdown.
Ppp1r2 and Ppp1r3c expression also increased, leading
to inhibition of protein phosphatase 1 (Pp1), which in
turn keeps glycogen synthase in the inactive form.
Taken together, results from gene expression analysis are

largely consistent with our metabolomics data. Combining
metabolomics data with gene expression data allowed us to
look at whole cellular processes in a way that is not
possible using either single dataset and helps to identify
better candidates for key regulators of metabolism.

Discussion
In this study, we hypothesized that individual oncogenes
regulate multiple metabolic pathways within tumor
tissue, much like oncogenes regulate gene expression.

Table 1 Survival prediction in human patients using model-specific metabolites

Value for met signature (no.
of metabolites in signature)

P value (10) P value (9) P value (8) P value (7) Metabolites used in COX proportional hazard model

Normal 0.002 0.001 0.003 0.01 Citrate; nicotinamide adenine dinucleotide (NAD+);
gamma-glutamyltyrosine; S-adenosylhomocysteine (SAH);
glycerophosphorylcholine (GPC); gamma-
glutamylglutamate; choline phosphate; ribose; mannitol$;
Isobar: ribulose 5-phosphate#, xylulose 5-phosphate*

Wnt1 0.79 0.786 0.72 0.63 2-Linoleoylglycerophosphoethanolamine; glycylleucine;
margarate (17:0); creatine; 10-nonadecenoate (19:1n9);
threonate; cytidine 5′-diphosphocholine; eicosenoate
(20:1n9 or 11)$; lysine#; 2-hydroxyglutarate*

Neu 0.82 0.746 0.65 0.55 2-Linoleoylglycerophosphoethanolamine; N-acetylaspartate
(NAA); pipecolate; glycerol 3-phosphate (G3P); dihomo-
linoleate (20:2n6); dihomo-linolenate (20:3n3 or n6); stearoyl
sphingomyelin; N6-acetyllysine$; trans-4-hydroxyproline#;
docosapentaenoate (n3 DPA; 22:5n3)*

C3-TAg 0.009 0.03 0.02 0.02 Gamma-glutamyltyrosine; choline phosphate; Isobar:
ribulose 5-phosphate, xylulose 5-phosphate; ribitol; gamma-
glutamylalanine; thymine; maltotriose; ribulose$; choline#;
5-oxoproline*

PyMT 0.05 0.04 0.07 0.04 Gamma-glutamyltyrosine; S-adenosylhomocysteine (SAH);
choline phosphate; stearoylcarnitine; phenyllactate (PLA);
Isobar: ribulose 5-phosphate, xylulose 5-phosphate; cystine;
N-acetylaspartate (NAA)$; gamma-glutamylalanine#;
2-hydroxyglutarate*

PyMT-DB 0.61 0.57 0.48 0.37 Ribose; maltose; margarate (17:0); 10-nonadecenoate
(19:1n9); maltotriose; cytidine 5′-diphosphocholine; urea;
glutathione, oxidized (GSSG)$; oleate (18:1n9)#;
10-heptadecenoate (17:1n7)*

P values were calculated by fitting a Cox proportional hazard model using survival times as output and the indicated metabolites as input. P values that are < 0.05
are italicized
*The metabolite not included in the 9 metabolite signature. See also Additional file 9
#The metabolite not included in the 8 metabolite signature. See also Additional file 9
$The metabolite not included in the 7 metabolite signature. See also Additional file 9
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We investigated the downstream metabolic changes
driven by specific oncogenes during breast cancer by
quantifying the metabolites of transgenic mouse breast
tumor tissue. Using breast tumors from a panel of
oncogene-driven transgenic mice, we identified the me-
tabolite signatures induced by specific oncogenes during
breast cancer metabolism. From the metabolic profiling,
we identified both metabolic profiles that differed be-
tween normal and tumor tissues as well as metabolic
profiles specific to each particular oncogene-driven
breast tumor model. Across tumor models we see global
increases in metabolites across many metabolic path-
ways, including those consistent with the metabolism of
rapidly proliferating cells. These results suggest that in-
dividual oncogenes are able to induce metabolic repro-
gramming of the tumor tissue. Based on our analysis
that compared the metabolites of the mammary gland
epithelium and stroma enriched samples, the observed
metabolic changes are unlikely due to differences in the
cell populations represented in tumor tissue and are
most likely result from changes induced by oncogene
initiation.

Oncogene-specific metabolic reprogramming during
breast cancer
Some of the oncogene-specific metabolic profiles are
consistent with known phenotypes and signaling path-
ways of the specific oncogenes. Alternatively, other
metabolic profiles are unique to this dataset and might
point us towards new directions to study how these
mouse models mimic human disease and aid in selecting
a personalized therapy for the tumor.
In particular, Her2/neu tumors had the highest and

C3-TAg the lowest number of increased metabolites
compared to other tumors, while the Wnt1 tumors were
the most heterogeneous and produced the most signifi-
cantly different metabolites compared to other models.
The PyMT and PyMT-DB tumors were most similar,
followed by PyMT-DB and Her2/neu tumors.
Multiple metabolic pathways were significantly differ-

ent in Wnt1 tumors compared to other models, includ-
ing a major shift in nutrient metabolism centered
around the one-carbon metabolism. One-carbon metab-
olism serves as an integrator of nutrients, incorporating
nutrients from various sources, such as amino acids
from diet and de novo synthesis, and regulating the out-
put in nucleotide and phospholipid synthesis to impact
many aspects of nucleotide, amino acid metabolism, and
lipid metabolism, including lipid storage [36]. Compared
to other tumor models, Wnt1 tumors showed a signifi-
cant increase in metabolites feeding into the one-carbon
metabolism, dipeptide levels, and de novo synthesized
amino acids, indicating more active protein metabolism.
On the other hand, metabolites in the one-carbon

metabolism (such as 5-meTHF) and in the downstream
metabolic pathways regulated by one-carbon metabolism
(such as lipid and nucleotide synthesis) are lowered in
Wnt1 tumors compared to other tumors. Taken to-
gether, this seems to indicate a decrease in nutrient
utilization through the one-carbon metabolism pathway.
Also, Wnt1 tumors accumulated hypotaurine and tau-
rine, which would have relied on the activation of tumor
suppressor cysteine dioxygenase 1 (Cdo1) [37, 38].
Finally, we saw a marked increase in eicosanoid levels in
Wnt1 tumors compared to other tumors, suggesting in-
creased inflammation.
In comparing the metabolites expressed by the

MMTV-PyMT and MMTV-PyMT-DB tumors, our data
support a role for the PI3K/AKT pathway in regulating
glucose uptake, glycogen metabolism, fat storage, and in-
flammation (Fig. 5, Additional files 1 and 4). These
models express the same driver oncogene polyomavirus
middle T antigen (PyMT), which leads to downstream
activation of MAPK and PI3K/Akt [39]. However, the
PyMT-DB mouse contains two point mutations (Y315/
322F) in the PyMT oncogene that prevent the activation
of phosphatidylinositol 3-kinase [28]. Therefore, the
metabolic differences observed between the PyMT and
PyMT-DB tumors should reflect the differential activa-
tion of the PI3K-AKT pathway between the two models.
Consistent with our data, Her2/neu and PyMT-DB
shared the most similar metabolic profiles (Fig. 6a),
since they both predominantly activate the MAPK
pathway [39, 40]. Our data showed decreased glyco-
gen synthesis and decreased glucose uptake as a re-
sult of PI3K/AKT deactivation in the PyMT-DB
tumors compared to PyMT tumors. In general, in
PyMT-DB, levels increased of glucose, glycerides,
glycogen metabolites, and some TCA intermediates,
while levels of glycolysis intermediates decreased
compared to PyMT. Consistent with our findings, Akt
activation increases glycolysis [41, 42]. AKT activation
also increases citrate and TCA cycle activation by the
action of ATP citrate lyase (ACL), which is important
for de novo lipid synthesis from citrate [41, 43]. The
increased citrate levels that we observe in PyMT-DB
compared to PyMT may, thus, reflect decreased acti-
vation of ACL. Our data also support roles for the
PI3K/AKT pathway in fat storage and inflammation.
The increased levels of long-chain fatty acids in
PyMT-DB suggest increased fat storage or decreased
fat breakdown in these tumors compared to PyMT
tumors. On the other hand, the eicosanoid levels of
PyMT-DB tumors are significantly lower than those
of PyMT tumors, a sign of less inflammation in the
former [44]. Finally, glutathione levels increased in
PyMT-DB tumors compared to PyMT. These data are
consistent with the observation that AKT activation
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increases reactive oxygen species (ROS) accumulation
and inhibits ROS scavengers [42].
Of the tumor models analyzed, Neu tumors made the

most lipid metabolites, which include storage fatty acids
and signaling-related phospholipids. These metabolites
included increases in long-chain fatty acids, polyunsatur-
ated fatty acids, phospholipids, and inositols. Interest-
ingly, we also saw a decrease in acyl-carnitine fatty acid
metabolism, which is responsible for converting fatty
acids into energy. This reduction of acyl-carnitine fatty
acid metabolism may indicate reduced consumption of
fatty acids and corresponds to the accumulation of long-
chain fatty acids in Her2/neu tumors. Reduced eicosa-
noids alongside increased eicosanoid precursors, such as
lineolate and dihomo-linolenate, suggest inhibition of ei-
cosanoid production.
Finally, C3-TAg tumors showed the most distinct

metabolic reprogramming of the tumor models that
were compared to other tumors. The γ-glutamyl cycle is
involved in many important functions such as the trans-
port of amino acids across membranes and the synthesis
and degradation of glutathione [45, 46]. Nearly all of the
γ-glutamyl amino acids detected in our study were lower
in C3-TAg tumors compared to other tumors, taken
together with lowered 5-oxoproline levels and slightly
increased glutathione levels, indicate a lowered turnover
of glutathione via the γ-glutamyl cycle. Reduced levels of
lipid metabolites, including polyunsaturated fatty acids,
phospholipids, and lysolipids), suggests either increased
lipid usage or decreased synthesis/storage in the C3-TAg
tumors. C3-TAg tumors also have lower levels of nucleo-
tide metabolites, especially nicotinamide metabolism.
Interestingly, despite having low levels in many carbohy-
drate metabolites such as galactose, lactose, and some
pentose metabolites, C3-TAg tumors have comparable
levels of glycolysis and TCA intermediates. Taken to-
gether, C3-TAg tumors have the least accumulation of
all major types of metabolites but still maintained energy
metabolism with a rate similar to the other tumor
models. This may indicate faster proliferation where
cells are constantly dividing and using up all nutrients,
or a more quiescent metabolic type with only the energy
pathway on full load.
The metabolic reprogramming of tumors undoubtedly

influences the tumors’ abilities to metabolize therapies
and to develop resistance to treatments. As such, under-
standing the global metabolic reprogramming induced
by expression of mutated oncogenes within tumor tissue
is a novel strategy that ultimately identifies candidate
treatments with efficacy against therapy-resistant cancers
[47]. Global metabolic profiles resulting from even a well-
studied pathway such as the PI3K/Akt pathway can aid in
identifying additional tumor metabolic pathways influ-
enced by PI3K/Akt signaling. For example, expression of

oncogenic Akt in human mammary epithelial cells causes
the metabolic reprogramming of multiple metabolic path-
ways that include the regulation of glycolysis and glutathi-
one biosynthesis [48]. Increased glutathione biosynthesis
was sufficient to cause resistance to therapy, while inhib-
ition of glutathione biosynthesis was efficacious at treating
the tumor as a combination therapy with an Akt pathway
inhibitor. These data suggest that targeting a tumor’s
addiction to particular metabolic pathways, such as gluta-
thione biosynthesis, could be a new Achilles’s heel used in
treating previously unresponsive tumors.

Conclusion
Our understanding of the global metabolic reprogram-
ming induced by oncogenes or loss of tumor suppressors
is limited to date [47]. In summary, in this study, we
identified unique metabolic profiles in breast tumors that
are induced by a panel of oncogenes. By comparing the
metabolic profiles of tumor models induced by specific
oncogenes, we were able to identify metabolic pathways
that are differentially regulated by each oncogene. By
comparing these profiles to human metabolomics data, we
uniquely identified C3-TAg tumor models as having prog-
nostic value and being similar to the metabolomics of hu-
man breast tumors. This study identifies unique pathways
that are candidate therapeutic targets for the treatment of
breast cancer for the indicated tumor models. Future re-
search will be required to look at the tumor metabolic
programs induced by both genomic events as well as in
response to treatment.

Additional files

Additional file 1: Raw data for GC/LC-MS/MS metabolomics. Related to
Figs. 1 and 2. This table contains all the GC/LC-MS/MS metabolomics
data. Included under separate tabs are raw data, statistical analysis,
pathway analysis, heat maps, and box plots. (XLSX 2322 kb)

Additional file 2: Mouse models used in the study. Related to Fig. 1.
This table includes the mouse models and the number of mice in each
group, including mouse genotype, age, and weight of sample sent.
(XLSX 13 kb)

Additional file 3: Super pathways of all detected metabolites. Pie
graphs show the super pathway distribution of all metabolites detected.
It is used as a background for Fig. 1d. (PPTX 73 kb)

Additional file 4: Statistical comparison between sample groups.
Related to Fig. 1. Welch’s two-sample t-test was used to identify
metabolites significantly different between two sample groups. Columns
indicate the groups compared, while rows indicate the number of
up/downregulated (red/green) metabolites. The first row with numbers
summarizes the number of metabolites that achieved statistical significance
(p≤ 0.05), while the second and third row contain breakdowns of up/down-
regulated metabolites. The next rows contain the number of metabolites
approaching significance (0.05 < p < 0.10). The differences between normal
tissue and tumors are much larger (> 200 significantly different metabolites)
than the differences among different tumor groups themselves (~ 100
significantly different metabolites). This shows that while cancer and normal
significantly differ in metabolic profiles, there is significant heterogeneity
among tumor models as well. (DOCX 14 kb)
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Additional file 5: List of greatly upregulated metabolites in tumors.
Related to Figs. 1 and 2. Metabolites that are significantly upregulated
(p < 0.05, Welch’s t-test) in all 5 tumor groups compared to normal are
then screened for mean values. (A) Metabolites that are two-fold
upregulated in all 5 tumor groups. (B) Metabolites that are five-fold
upregulated in all 5 tumor groups. (XLSX 15 kb)

Additional file 6: Sub-pathway distribution of universally upregulated
metabolites in all tumor groups. Supplementing Fig. 1d, this figure
shows the sub metabolic pathways of universally upregulated
metabolites in all tumor groups compared to normal mammary
tissue. X-axis indicates percentage of all metabolites detected in
each sub pathway that is upregulated, while y-axis indicates the sub
pathways. (PPTX 361 kb)

Additional file 7: Raw data for CZE-MS/MS and list of significantly
different metabolites from epithelial cells to adipocytes. Related to Fig. 1.
This table contains all the metabolomics information for the fat
pad/epithelium experiment, including raw data, statistical analysis, and
identities of the significantly different metabolites. (XLSX 694 kb)

Additional file 8: List of model specific metabolites. Related to Fig. 2.
Model specific metabolites were determined by non-parametric t-test
comparing one mouse model to all other groups. The metabolites listed
have a p-value smaller than 0.05. (XLSX 15 kb)

Additional file 9: Raw Data for Patient Survival Prediction Using Model
Specific Metabolites. Related to Table 1. Using a Cox proportional hazards
model, different metabolites and sets of metabolites were used as input to
predict patient survival in a previously published human breast cancer
patient metabolomics dataset. The p-values for each individual metabolite
as well as a combination of the metabolites are listed. (XLSX 11 kb)

Additional file 10: Gene expression analysis of transgenic mouse
models. Using previously published gene expression data from breast
tumors of transgenic mouse models [17], we found genes with
significantly different expression in each transgenic model compared to
all other transgenic models used in our study. For a complete analysis
using multiple other transgenic mouse model gene expression as
backgrounds (including the ones we used), please refer to the
supplementary files of the cited research article. (ZIP 463 kb)
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