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Abstract: The substitution of time- and labor-intensive empirical research as well as slow finite
difference time domain (FDTD) simulations with revolutionary techniques such as artificial neural
network (ANN)-based predictive modeling is the next trend in the field of nanophotonics. In this
work, we demonstrated that neural networks with proper architectures can rapidly predict the
far-field optical response of core–shell plasmonic metastructures. The results obtained with artificial
neural networks are comparable with FDTD simulations in accuracy but the speed of obtaining
them is between 100–1000 times faster than FDTD simulations. Further, we have proven that ANNs
does not have problems associated with FDTD simulations such as dependency of the speed of
convergence on the size of the structure. The other trend in photonics is the inverse design problem,
where the far-field optical response of a spherical core–shell metastructure can be linked to the design
parameters such as type of the material(s), core radius, and shell thickness using a neural network.
The findings of this paper provide evidence that machine learning (ML) techniques such as artificial
neural networks can potentially replace time-consuming finite domain methods in the future.

Keywords: core–shell nanoparticles; metal-semiconductor heterojunctions; plasmonic catalysis;
metal oxides; artificial intelligence

1. Introduction

There is tremendous research interest in the investigation of plasmonic phenom-
ena in and around coinage metal nanoparticles [1]. Plasmonic nanoparticles possess
interesting optoelectronic properties such as tunable optical resonances, production of
hot carriers through plasmon decay, local electromagnetic field enhancement and the
Purcell effect, which make them useful in a gamut of applications including surface-
enhanced Raman scattering (SERS), light emission, imaging, sensing, photovoltaics and
photocatalysis [2–5]. The optical properties of nanoparticles made of coinage metals (Au,
Ag and Cu) are known to be sensitive to the particle size, particle shape and the envi-
ronment surrounding the particle. A variety of plasmonic metals with different shapes
such as spheres, cubes, stars, octahedra and triangles with different optical properties have
been synthesized [6,7]. Amongst all these shapes, spheres are the easiest to fabricate while
simultaneously achieving a monodisperse size distribution and preventing aggregation.

The usage of plasmonic coinage metal nanoparticles in catalysis and sensing is dra-
matically hindered by their physico-chemical properties, such as the chemical and pho-
tochemical reactivity in electrolytes and oxidizing environments, the poor adsorption of
reactant atoms over noble metal surfaces, the inability to resist high temperature without
melting, reaction or shape change, poor separation and utilization of hot carriers generated
by plasmon decay, etc [8]. The chemical/photochemical stability, abrasion resistance and
thermal resistance of coinage metals can be improved by applying a protective layer (shell)
of ceramics such as metal oxides and nitrides [2,8–10]. When the said ceramic protecting
the plasmonic core from the environment also has semiconducting properties, a metal-
semiconductor heterojunction is created. The built-in electric field associated with such a
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metal-semiconductor heterojunction is a highly effective method to separate oppositely
charged carriers and enhance the charge transfer efficiency of a plasmonic hybrid nanopar-
ticle [11,12]. Semiconductor shells typically have a high frequency dielectric constant
higher than 5, which is complementary to the negative relative permittivity exhibited by
the coinage metals over the visible and near-infrared spectra range. Metal oxides also show
strong chemisorption of a number of reactant molecules including water, CO2, CO and a
host of organic molecules important in industrial heterogeneous catalysis. Thus, the fabri-
cation of such core–shell plasmonic meta-atoms results in a hybrid that inherits the useful
properties of both of the parent materials with unique optical, chemical and mechanical
properties which the individual parent materials would not possess alone [13,14]. All these
advantages enable core–shell plasmonic nanoparticles to offer tunable, high Q-factor opti-
cal resonances, efficient charge transfer, efficient harvesting and utilization of hot carriers,
strong interaction with reactant molecules, and good chemical and physical stability in
different environments for different applications [3,15,16]. Consequently, the investigation
of the optical properties of the core–shell hybrids is of great importance [15–17].

Since a number of degrees of freedom (choice of the core and shell materials, core
radius and shell thickness) exist in the fabrication of the core–shell hybrid, the problem of
inverse design of a perfect core–shell structure with a desired far-field optical response has
recently attracted more attention [18,19]. The inverse design can map the required far-field
optical response of a core–shell structure with the material properties. The inverse design
approach accelerates the design process and obviates the need for repetitive simulations to
reach the final far-field response [14,16,20].

Simulation approaches are utilized to investigate the optical properties of core–shell
hybrid systems and optimize their optical properties before fabrication to ensure that
resources such as researcher time, energy, fabrication, and characterization costs, etc., are
used minimally and efficiently. The finite difference time domain (FDTD) method is the
most convenient way to simulate the light–matter interactions [21]. In the FDTD method,
the shape of the nanoparticle and its constituent materials are defined first, then the FDTD
engine uses meshing grids to solve Maxwell’s equations on tiny blocks of the simulation
environment (Figure 1). The far-field response of a simulation target including absorption,
scattering and extinction spectra are among the most important pieces of information,
which can be obtained through FDTD simulations [1,21].

Figure 1. Schematic diagram representing the working principle of FDTD simulation.

Even though FDTD simulations constitute a powerful tool to obtain the near-field
and far-field optical response of the nanoparticles, this tool has its own shortcomings as
well. Since FDTD is a finite difference method, the computational cost of this method is
extremely dependent on the mesh size and the size of the simulation region. The following
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equations describe the relation between the computational expense and the simulation
time with the mesh size and over all size of the simulation region [22]:

Memory requirements ∼ V
(

1
dx

)3
(1)

Simulation Time ∼ V
(

1
dx

)4
(2)

Where dx is the mesh step size and V is the volume of the simulation region. These
two equations shed light on the extreme dependence of the finite difference methods on
the mesh size, a dependence that makes the FDTD method a time consuming and compu-
tationally expensive method, which requires both time and enough memory resources to
converge [20,23,24]. As a result, FDTD methods are considered slow by today’s standards
especially for simulation of light–matter interactions for the huge nanostructures [24].

The 21st century is likely to be the century of automation. Using prior experience from
the industrialization era, humankind already knows that automating a process is the key
to reducing its cost and improving its efficiency. From the advent of computing machines
in the mid 19th century, computers began to have an increasing impact on civilization and
the everyday lives of humans. Artificial intelligence and machine learning represent the
next frontier of computers able to think and learn, whose application in the present time
extends from autonomous driving to the virtual assistant in our smartphones. Recently,
artificial neural network (ANN)-based machine learning algorithms were successfully
utilized in applications such as computer vision, speech recognition, autonomous driving,
etc [20,23]. ANN is reported to successfully predict the outputs of the computationally
expensive finite difference methods to solve partial differential equations (PDEs) [25,26]
in applications ranging from heat transfer [27] to stress prediction [28] with little to no
computational expense [29]. Nelson and Di Vece trained a neural network using FDTD
simulation results to help optimize the optical absorption of halide perovskite solar cells
containing core–shell Ag nanoparticles [30]. Bravo-Abad and colleagues reviewed the
use of deep learning approaches in nanophotonics to perform the nonlinear mapping of
material geometry and composition with the resulting functional properties [18]. Inspired
by these ideas, herein we successfully trained different ANNs with different architectures
for ultrafast prediction of the far-field optical responses (including absorbance, scattering
and extinction) of plasmonic core–shell materials in the first step. In the second step, we
tried to address the inverse design problem using a unique ANN architecture, which can
predict the material characteristics needed to obtain a desired far-field response.

2. Methods
2.1. FDTD Simulations

The Lumerical® (Ansys, version: 8.24.2466) software package was used to obtain
the input data for the ANNs. The user-friendly environment provided by the graphical
user interface (GUI) of Lumerical software enables one to easily simulate light–matter
interactions. In addition, Lumerical’s GUI supports scripting commands, which facilitate
the automatic simulation of a batch of predefined simulations. The built-in material
library of Lumerical contains the optical constants of the most important semiconductors,
metals and dielectrics used in optoelectronic devices. All of these have made Lumerical
one of the most widely used programs for electromagnetic simulation applications. The
simulations in this work were performed using various combinations of the core and
shell materials with different thicknesses. For the core–shell structures, Au, Ag and Cu
(3 different core materials), which are the most important plasmonic metals [31] were
selected as the materials constituting the core while TiO2 [32], ZnO [33], InAs, InP and
GaAs (5 different shell materials), which are the most important semiconductor materials
used in optoelectronic devices were chosen as the shell materials. The materials used in
this study along with their indices are reported in Table 1.
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Table 1. Indices of the materials used in FDTD simulations.

None Au Ag Cu TiO2 ZnO InAs InP GaAs

0 1 2 3 4 5 6 7 8

Since TiO2 and ZnO were not defined in the built-in materials database of Lumerical,
they were added to the materials database using the wavelength-dependent refractive
indices reported in references [32,33], respectively. The environment surrounding the
core–shell structures was air (i.e., refractive index of the environment was set to 1). A
total field scatter field (TFSF) source with a bandwidth of 250–800 nm was added to the
simulation environment as a light source while absorption cross-section monitors were
used to record the absorption and scattering spectra. A uniform mesh with a size of
5 nm were rendered by the GUI and a more accurate mesh override with maximum size
of 2 nm on the surface of the core–shell structure was introduced later to increase the
accuracy of the calculations. Since the core–shell geometry is symmetrical, a symmetrical
boundary condition in the x direction and anti-symmetrical boundary condition in the y
direction were imposed to increase the speed of the simulation. For the core–shell structure
10 different radii were chosen in the range 2.5–50 nm and 10 different shell thicknesses
were chosen in the range 2.5–25 nm. This gave a total of 3 × 5 × 10 × 10 = 1500 different
simulated spectra. To obtain a smooth spectrum, the results of the monitors were collected
in 1000 data points, which were associated with the TFSF light source’s wavelength. The
simulations in total yielded 1500 × 1000 = 1,500,000 data points for each of the absorption,
scattering and extinction batch simulations. These simulated data were used as the feed for
the ANNs convergence in the next step.

2.2. ANN Architectures

Three different ANNs with three different structures were designed to predict the far-
field optical responses: the absorption prediction network (APN), the scattering prediction
network (SPN) and the extinction prediction network (EPN). The results obtained by FDTD
simulations were used as the input for training the three ANNs. The input data in all these
ANNs were the combination of both categorical data (e.g., Au and ZnO as the materials
used in the core and shell simulations) and quantitative data (e.g., the size of the core
radius or the shell thickness), in order to make the input data interpretable for the ANNs.
Hot encoding was used to convert the categorical data into binary (0 or 1) format. Since the
simulations were performed using 3 different core materials and 5 different shell materials,
the hot encoding results converted these two categorical values into 5 + 3 = 8 binary values.
In addition to this, the radius of the core, the shell thickness, and the wavelength of the
TFSF light source were also given as the input features to the neural network, which made
it 11 different input features in total. Figure 2 exhibits the 3 hidden layer ANN architecture
used for the absorption spectrum prediction (APN). The 11 features were fed to the neural
network as inputs, the 3 hidden layers had 40, 40 and 30 neurons (3381 parameters in total)
respectively and the output was a value between zero and 1 corresponding to the value
of the absorption in that specific wavelength. The architecture of ANNs for scattering
and extinction was the same with different neurons in each hidden layer, the three hidden
layers in SPN had 80, 80 and 80 nodes (14,001 parameters in total) and the three hidden
layers in EPN had 80, 80 and 120 neurons (17,281 parameters in total), respectively.



Nanomaterials 2021, 11, 633 5 of 14

Figure 2. Schematic diagram representing the architecture of the APN used for predicting the absorption spectra of the
plasmonic core–shell materials.

Since the outputs of neural network should be compared to the actual values from
the simulations, the problem is one of regression. The error functions for all the ANNs
were set to the mean squared error (MSE, Equation (3)) where ypredict is the value predicted
by the neural network and yactual is the value simulated by the neural network. The tanh
function was chosen as the activation function in all three layers of ANNs and the activation
function of the last layer was a linear activation function. To facilitate the convergence, the
input features were normalized to the values between 0 to 1 prior to training the ANNs. In
addition, 20% of the data was set aside as the test set and the training of the ANNs was
conducted on the 80% of the available data. The architecture of all the ANNs and their
hyper-parameters, such as the number of hidden layers, number of neurons in each layer,
batch size, the ratio between the train set and the test set and the active function were
optimized for each of the ANNs, and the final architectures are reported above.

MSE =
1
n ∑

n

(
ypredict − yactual

)2
(3)

The inverse design problem is slightly more complicated than the far-field optical
response prediction. While optical response prediction can simply be categorized as a
regression problem, the inverse design should successfully predict both the categorical (i.e.,
type of the materials used as core and shell) and continuous numerical (i.e., core radius
and shell thickness) values. The prediction of categorical values is a classification problem
while prediction of the numerical values of the geometric parameters of the core–shell
structure falls in the category of regression problems. To address this issue for the inverse
design problem, we developed two different architectures—a multi-class classifier inverse
design network (IDN-Classifier) and a regressor inverse design network (IDN-Regressor).
The simulated absorption spectra of the plasmonic core–shell structures (1000 datapoints
for each absorption spectrum) were used as the far-field optical response to feed the IDN
networks and the expected outputs of the IDNs were two datapoints associated with the
core radius and shell thickness for IDN-Regressor and eight categorical outputs (material
of choice for the core and shell) for IDN-Classifier.

Figure 3 illustrates the architecture of the IDN-Regressor. The IDN-Regressor consists
of 4 hidden layers with the first three layers containing an identical number of neurons
(350, 350, 350 and 120 neurons). The architecture of IDN-Classifier was the same with
250 neurons for the fourth hidden layer. The loss function for the IDN-Regressor was set
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to MSE (Equation (3)) and the loss function for the IDN-Classifier was set to binary cross
entropy (BCE, Equation (4)), where σ

(
ypredict

)
is the sigmoid function. The number of

trainable parameters were 639,138 and 685,808 for the IDN-Regressor and IDN-Classifier
respectively. The tanh activation function was chosen as the active function of each layer,
except for the last layers for both classifier and regressor inverse design networks. For
the last layer, the activation function of the IDN-Regressor was set to the linear activation
function and the activation function for the IDN-Classifier part was set to a sigmoid
activation function. The optimizer was set to Adam optimizer with a learning rate of 0.001.
All the hyperparameters, such as the number of hidden layers, the number of neurons in
each layer, optimizer type and learning rate of the optimizer, were optimized to minimize
the error with proper caution to avoid overfitting.

BCE = −
[
yactuallog σ

(
ypredict

)
+
(
1 − yactual

)
log
(

1 − σ
(

ypredict

))]
. (4)

Figure 3. Schematic diagram representing the architecture of IDN-Regressor used for inverse design problem.

3. Results and Discussion
3.1. Predicted Absorption, Scattering and Extinction Spectra by ANNs on the Previously Seen and
Unseen Data

The training process for each of the ANNs was performed using the optimized hyper-
parameters and the maximum number of epochs was set to 500. A call back function, which
set aside 10% of the training data with a patience of 10 for the validation loss, was used
to control the number of epochs for the training process of each of the ANNs. Figure 4
exhibits the training and validation loss as a function of number of epochs for APN, SPN
and EPN. The training loss function exhibited a gradual decrease as the number of epochs
increases and reached stable values in the range of 10−4 for the absorption and extinction
ANNs and in the range of 10−6 for the scattering ANN beyond 10 epochs. The validation
loss function also exhibited the same trend as the number of epochs increased and reached
stable values in the range of 10−4, 10−4 and 10−6 for the APN, EPN and SPN, respectively.
The fact that the value of validation loss is in close proximity of the training losses for all of
the trained ANNs shows that overfitting did not occur for any of these trained ANNs. This
was one of the ways to optimize the architecture of the ANNs because when the number of
the hidden layers was increased beyond 3 layers, the same trend could not be seen for the
validation loss function anymore. The optimized number of epochs determined by the call
back function for the training process of the APN was determined to be 56 while for the
SPN, the number of optimized epochs was 46 and for the EPN, the number of optimized
epochs was 63. After the training was complete, the error of prediction for the test set
was calculated to be 3.69 × 10−4, 1.12 × 10−6 and 1.85 × 10−4 for APN, SPN and EPN,
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respectively. As it has been mentioned in the ANN architecture section, the arcitecture of
each ANN was optimized to reach the least amount of error for the test set. Table 2 exhibits
a few different arcitectures for APN and their corresponsing errors on the test set as an
example. These results show that a model with less than three layers cannot do a good job
on predition on the test set. Also, when we increase the complexity of the APN from its
ideal structure (increasing the number of layers or increasing the number of neurons in
each layer), model tends to overfit and the test set error will increase.

Figure 4. The loss functions of absorption, scattering and extinction as a function of the number of epochs.

Table 2. The test error for APN networks with different architectures.

APN Architectures Test Error

[40,40,30] 3.69 × 10−4
[80,80,60] 6.23 × 10−4
[100,100] 8.56 × 10−4

[40,40,30,30] 7.09 × 10−4

After the training was completed, the trained ANNs were used to calculate the
absorption, scattering and the extinction spectra of the core–shell architectures. Figure 5
shows the comparison between the simulated, and ANN predicted, absorption, scattering
and extinction spectra of a few randomly selected structures (with core radius and shell
thicknesses already seen by the network). The inset of Figure 5 shows the materials chosen
as the core and shell. In light of the fact that, on average, 20% of these data has never been
used in the training or validation data sets, these results show an extremely acceptable
agreement between FDTD simulation target spectra and the ANN predicted spectra.
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Figure 5. The FDTD-simulated and ANN-predicted absorption, scattering and extinction spectra of Au@TiO2 (a,d,g),
Ag@ZnO (b,e,h), and Cu@InP (c,f,i) core–shell structures.

In order to examine the robustness of the trained ANNs in predicting the far-field
optical responses of the core–shell structures, a few core–shell structures with features (core
radii and shell thicknesses) that the trained ANNs did not get trained on at all were chosen
to test the robustness of the trained ANNs. Figure 6 shows the predicted optical response
of the robustness tests. The materials chosen for the core and shell and the corresponding
radii and the thicknesses are reported in the inset of each figure constituting the panel
in Figure 6. Interestingly, the results indicate excellent agreement between the FDTD
simulated spectra and their ANN predicted counterparts. In the first instance, an Au@TiO2
core–shell metastructure with 48 nm core radius and 6.5 nm shell thickness was chosen.
In this case, both the core radius and shell thickness are different from the core and shell
thicknesses the ANNs were trained on. In the second instance, an Ag@ZnO core–shell
structure was chosen wherein the shell thickness (10 nm) was chosen among the 10 shell
thickness values the ANNs were trained on but the core radius (16 nm) was not among
the core radii values used for training the ANNs. And in the last instance, a Cu@InP
core–shell structure was chosen; in this instance the core radius (13 nm) was chosen among
the 10 core radii the ANNs were trained on but the shell thickness (21 nm) was not among
those thickness values used for training the ANNs. The fact that in all of these instances the
trained ANNs could successfully predict the absorption, scattering and extinction spectra
of the coreshell metastructures evidences the robustness of the trained ANNs and proves
the fact that the training process yield a network that can actually predict each spectrum
while not merely remembering or interpolating the previously seen data.
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Figure 6. The FDTD simulated and ANN predicted absorption, scattering and extinction spectra of Au@TiO2 (a,d,g),
Ag@ZnO (b,e,h), and Cu@InP (c,f,i) core–shell structures.

3.2. The Inverse Design ANN

The training process for the IDN networks involved using the architecture described
in previous section. The maximum number of epochs for both IDN-Regressor and IDN-
Classifier were set to 500. The number of epochs were controlled using a callback function,
which split 10% of the data to monitor the validation loss with a patience of 10. Figure 7a,b
indicate the loss of IDNs as a function of number of epochs. Both the training loss and
validation losses of the classifier and regressor networks decreased as the number of epochs
increased. After 220 epochs, the classifier network’s loss reached the values of 0.003 and
0.0045 for the training and validation data sets while these numbers reached values of
0.61 and 0.78 the regressor network after 240 epochs. The fact that both training loss and
validation loss followed the same trend shows that overfitting on training data did not
occur for any of the IDN networks. After the training process finished, the errors for the
prediction of test data set were calculated to be 0.005 and 0.73 for the IDN-Classifier and
IDN-Regressor, respectively.
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Figure 7. The training and validation losses of (a) IDN-Classifier network and (b) IDN-Regressor as a function of epochs (c)
the training and validation accuracy of the IDN-Classifier as a function of number of epochs. (d,e,f) absorption spectra of
Au@InAs, Ag@InP and Cu@GaAs core–shell structures which were randomly selected from test set, and corresponding
simulated absorption spectra of the same core–shell structures with radius and shell thickness suggested by the IDN.

For the IDN-Classifier, only monitoring the loss as a function of number of epochs
is not enough to judge its performance. The accuracy of classification is an important
decision factor for evaluation of the performance of a classifier network. Figure 7c exhibits
the accuracy of classification for IDN-Classifier as a function of number of epochs for the
training and validation data sets. The accuracy plot shows a gradual increase as the number
of epochs increase and reached an excellent value of 95% and 94% for the training and
validation data sets after 220 epochs. Keeping in mind that the goal of IDN was to predict
the design parameters of the core–shell structure, which can mimic a desired absorption
spectrum, three randomly selected spectra from the test set were chosen to find out if
the design parameters suggested by the IDN network actually resulted in an absorption
spectrum similar to the input absorption spectrum. The design parameters suggested
by the IDNs for these three selected spectra were fed to Lumerical software to simulate
the absorption spectrum. Figure 7d–f shows these three randomly chosen spectra and
the FDTD simulated absorption spectra (dashed lines) using the IDN suggested design
parameters. The inset(s) of the images in Figure 7 show the predicted core radii and shell
thicknesses and materials suggested by the IDN. These results demonstrate the excellent
performance of the IDNs in suggesting the design parameters for a core–shell structure
with an optical response resembling the desired absorption spectrum.

3.3. Comparison between the Sspeed of FDTD Simulation vs Speed of ANN Prediction

During the simulation process, the simulation duration was recorded for each of
the 1500 simulations. Based on Equations (1) and (2) the simulation time using FDTD
method increases linearly with the size of the simulation region. For each specific core and
shell material, there were 10 × 10 = 100 simulations (10 different radii and 10 different
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thicknesses). Au and TiO2 were chosen as the instances for the core and shell materials
respectively and the duration of the 100 simulations using FDTD method as a function
of the size of the combined core–shell structure (radius of the core + shell thickness) was
monitored. Since the simulated radii of the cores was in the 2.5–50 nm range and the
shell thicknesses were in the 2.5–25 nm range, the y axis of the graph is in the range of
5–75 nm. Keeping the core and shell materials constant (Au and TiO2), the ANN’s predic-
tion duration for the same features used in the simulation, has been
recorded. Figure 8a shows the relation between the FDTD simulation and ANN prediction
durations with the size of the core–shell nanosphere’s radius. As shown
in Figure 8a, the duration of the simulation with FDTD falls within the second domain
while ANN prediction is in the millisecond range. The inset of Figure 8a exhibits the
relation between the ANN prediction durations with the size of the core–shell structure’s
radius in milliseconds domain. Furthermore, as mentioned in the introduction section,
the FDTD simulation duration is dependent on the size of the simulation region (dashed
blue line in Figure 8a is for guiding the eyes), which increases almost linearly with size of
the core–shell structure. The inset of Figure 8a shows that a similar relation for the ANN
prediction does not exist with the size of the structure since the prediction of the ANN is
instantaneous and almost constant (green dashed line in the inset of the Figure 8a is for
guiding the eyes.) This independence exhibits another advantage of the ANN prediction
over the FDTD simulation, which is that not only is it faster than the FDTD simulation, its
speed is also independent of the size of the structure. Figure 8b provides a comparison
of the relative speed of the ANN predictions and the FDTD simulations and shows that
for small structures, the speed of the ANN predictions can be 100 times faster than the
FDTD simulations while for larger structures (75 nm) it can be almost 1000 times faster.
Keeping in mind that the maximum size of the core–shell nanostructures was 75 nm in our
study, these results show that for larger structures, the ANNs predictions can significantly
outpace the FDTD simulation.

Figure 8. The FDTD simulation and ANN prediction time as a function of the radius of the core–shell structure (a) and the
relative speed of the FDTD simulation and ANN prediction as a function of the radius of the core–shell structure (b).

3.4. Significance for Nanomaterials Synthesis and Optimization, and Use in Functional Devices

The ability to quickly obtain the morphological parameters of a plasmonic nanomate-
rial with a desired optical response from an artificial neural network is a powerful enabler
of cutting edge experimental research. One could envisage a number of applications where
such information is decisive in design of experiments. For instance, LSPR-based sensors
frequently use a metal oxide shell around an Au or Ag nanoparticle to both enable facile
functionalization/chemisorption of analyte(s) on to the metal oxide surface and to protect
the Au/Ag core from wear and corrosion. The source LED wavelength is typically known
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for sensor deployment and the core–shell nanomaterial needs to have a plasmon resonance
well-matched to the light source to enable maximum refractive index sensitivity—this is
one practical example of the inverse design problem. When the analyte in question is a
biomolecule with a fluorescent tag and the fluorescence is to be detected or imaged, it is
desirable to match the emission maximum or absorption maximum of the fluorophore with
the plasmon resonance to achieve maximum local field enhancement of the light–matter
interaction to boost sensitivity—another example of the inverse design problem. In broad-
band light harvesting applications such as photovoltaics and photocatalysts, plasmonic
nanoparticles are used to generate hot carriers and/or to maximize light–matter interac-
tions. Furthermore, a thin insulating shell around the Ag/Au nanoparticle is needed to
minimize carrier recombination on the metal surface. The ANN-guided inverse design of a
core–shell plasmonic nanoparticle can then be used to boost the light absorption in spectral
ranges where the active layer does not absorb efficiently and to achieve the maximum local
electromagnetic field enhancement while still minimizing recombination.

4. Conclusions

Researchers throughout the world are finding novel applications for machine learning
and broadening its horizons everyday. Recently its horizons have been reaching into
simulations of the properties of nanomaterials as well. Electromagnetic phenomena are
described by the four Maxwell’s equations. Finite difference methods (including FDTD),
which are important tools for simulation of the optical properties of metamaterials rely
on solving partial differential equations in tiny building blocks (meshes) of the defined
structures, which renders them time consuming by today’s standards. In this report, we
have shown that artificial neural networks (ANNs) with the proper architecture and opti-
mized hyperparameters can rapidly predict the results of FDTD simulations. Plasmonic
core–shell materials with different core and shell materials, and various core radii and
shell thicknesses, are important materials for solar energy harvesting, sensing and light
emission applications. We have chosen plasmonic metamaterials with sizes within the
5–75 nm range as a case study and our results show that using artificial neural networks,
the far field optical response of the plasmonic core–shell materials can be rapidly pre-
dicted with high accuracy with little to no computational expense. Depending on the
size of the whole core–shell structure, the speed of ANN prediction was estimated to
be 100 to 1000 times higher than the FDTD simulations. The results from our work can
be used as a proof of concept for potential replacement of FDTD simulation with faster
artificial neural network methods. Furthermore, we have demonstrated that the problem
of inverse design of a core–shell plasmonic metastructure with a desired absorption re-
sponse can be easily tackled by a proper ANN structure. In general, the results from our
work can be considered as a proof of concept for the next generation of electromagnetic
simulations of nanomaterials, where rapid ANN can potentially replace sluggish finite
difference methods.
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