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Abstract: In recent years, there has been considerable interest in the use of cell-free supernatant of
probiotics culture for nutritional and functional applications. In this study, we investigated the effect
of the cell-free supernatant from Lactobacillus gasseri BNR17 (CFS) on anti-melanogenesis and reducing
oxidative stress in B16-F10 murine melanoma cells and HaCaT human keratinocytes. Treatment
with CFS significantly inhibited the production of extracellular and intracellular melanin without
cytotoxicity during melanogenesis induced by the α-MSH in B16-F10 cells. The CFS dramatically
reduced tyrosinase activity and the melanogenesis-related gene expression. Further, it showed
antioxidative effects in a dose-dependent manner in DPPH (2,2-diphenyl-1-picryl-hydrazyl-hydrate)
assays and significantly increased the mRNA levels of HO-1 and CAT in HaCaT cells. Furthermore,
the CFS increased HO-1 and anti-oxidative-related gene expression during H2O2-induced oxidative
stress in HaCaT cells. Together, this study suggests that the CFS reduces hyperpigmentation and
inhibits oxidative stress, and thus can be used as a potential skincare product in the future.
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1. Introduction

Melanin is the main component of skin color and protects the skin against harmful UV
radiation damage under physiological conditions [1]. However, abnormal melanin produc-
tion can result in hyper pigmentary disorders such as freckles, skin discoloration, melasma,
moles, and lentigo [2]. In mammals, melanin biosynthesis is controlled by enzymes such as
tyrosinase (TYR). Microphthalmia-associated transcription factor (MITF), tyrosinase-related
protein 1 (TYRP1), and tyrosinase-related protein 2 (TYRP2) also contribute to melanin
production. Specifically, melanin is synthesized from L-tyrosine by the action of tyrosinase.
L-tyrosine is converted to dihydroxyphenylalanine (L-DOPA) and then to DOPA quinone,
a precursor of melanin [3,4]. Additionally, melanogenesis produces hydrogen peroxide
(H2O2) and other reactive oxygen species (ROS) that expose human melanocytes to high
levels of oxidative stress [5].

Skin is constantly exposed to both exogenous and endogenous oxidative stress, re-
sulting in oxidative damages due to excessive ROS and lipid peroxidation. Especially,
oxidative stress, including H2O2 and other ROS, can cause cell death and damage following
UV irradiation and produce melanin in melanocytes [6,7]. In the synthesis of melanin, by
generating ROS, melanin synthesis cells are placed in an oxidative stress environment, and
melanin biosynthesis is continuously induced [8]. Further, oxidative stress is linked to the
pathogenesis of skin disorders, such as aging, wrinkles, and skin cancer [9–11]. In addition,
the increase in UV irradiation-induced ROS increases the expression level of matrix metallo-
proteinases, which are responsible for increasing collagen degradation [12]. Since inhibition
of oxidative stress is favorable for reducing and/or preventing atypical pigmentation in
melanocytes, various studies have been conducted to study the development of complex
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mixtures exhibiting antioxidant effects as well as the inhibition of tyrosinase activity [13,14].
Therefore, antioxidants are important not only for downregulating melanogenesis, but also
for maintaining healthy skin.

Oxidative stress, including H2O2 and other ROS, can cause cell death and damage fol-
lowing UV irradiation and produce melanin [6,7]. Further, oxidative stress is linked to the
pathogenesis of skin disorders, such as aging, wrinkles, and skin cancer [9–11]. In addition,
the increase in UV irradiation-induced ROS increases the expression level of matrix metal-
loproteinases that inhibit collagen synthesis [12]. Therefore, antioxidants are important not
only for downregulating melanogenesis but also for maintaining healthy skin.

Lactobacillus gasseri BNR17, a lactic acid bacterium, was isolated from human breast
milk [15]. Our previous studies have shown that L. gasseri BNR17 has potential benefits
in irritable bowel syndrome [16], weight control [17], type 2 diabetes [18], and alleviating
menopausal symptoms [19]. However, no studies have assessed the anti-melanogenic
and antioxidant activities of the cell-free supernatant from L. gasseri BNR17 (CFS). Thus,
this study aimed to verify the beneficial effects of CFS on the skin and whether it can be
developed as a skincare product in the future.

2. Results
2.1. Effect of CFS on Cell Viability in B16-F10 and HaCaT Cells

The cell viability assay was performed to determine whether the CFS was cytotoxic to
B16-F10 melanocytes and HaCaT keratinocytes. As shown Figure 1, no significant cytotoxic
effect was observed up to 1% (v/v) CFS in B16-F10 cells (Figure 1A) and up to 3% (v/v) CFS
in HaCaT cells (Figure 1C) for 24 h. Thus, a CFS concentration below 1% (v/v) in B16-F10
and 3% (v/v) in HaCaT was used for the subsequent experiments.
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Figure 1. Effect of CFS on B16-F10 and HaCaT cell viability. B16-F10 cells were treated with various 
concentrations of CFS for (A) 24 h and (B) 48 h. (C) HaCaT cells were treated with various concen-
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various CFS concentrations as shown in Figure 2. By visual observation, 0.5 and 1% (v/v) 
CFS significantly inhibited the melanin secretion into the culture medium in alpha-mela-
nocyte-stimulating hormone (α-MSH)-induced B16F0 cells, which was similar to the effect 
elicited by arbutin (positive control) (Figure 2A,B). 

Figure 1. Effect of CFS on B16-F10 and HaCaT cell viability. B16-F10 cells were treated with various
concentrations of CFS for (A) 24 h and (B) 48 h. (C) HaCaT cells were treated with various concentra-
tions of CFS for 24 h. Cell viability was assessed by WST-1 assay. CFS: cell-free supernatant from
L. gasseri BNR17. Values represent the mean ± SD of three independent experiments. * p < 0.05,
** p < 0.01, and *** p < 0.001 for control versus sample.

2.2. CFS Decreases Melanin Synthesis in B16-F10

To determine the effect of CFS on melanin secretion, B16-F10 cells were treated with
various CFS concentrations as shown in Figure 2. By visual observation, 0.5 and 1%
(v/v) CFS significantly inhibited the melanin secretion into the culture medium in alpha-
melanocyte-stimulating hormone (α-MSH)-induced B16F0 cells, which was similar to the
effect elicited by arbutin (positive control) (Figure 2A,B).

To confirm the effects of CFS on intracellular pigmentation, the intracellular melanin
content was measured using the melanin content assay. Similar to the result of arbutin
treatment, the color of the CFS-pretreated cells was brighter than that of the only α-MSH-
treated cells (Figure 3A). Notably, treatment with 1% (v/v) CFS significantly reduced the
cellular melanin content of α-MSH-stimulated cells (Figure 3B).
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ature range (37 °C and 100 °C) (Figure S1A). Further, the inhibitory effect of the CFS on 
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Figure 2. Effect of CFS on melanin secretion in B16-F10 cells. B16-F10 cells were exposed to
200 nM α-MSH in the presence of 0.5 and 1% (v/v) CFS or 200 µM AB. (A) Supernatant color of
B16-F10 samples and (B) medium melanin contents. The melanin levels were determined as described
in the Materials and Methods. CFS: cell-free supernatant from L. gasseri BNR17. Values represent the
mean ± SD of three independent experiments. ### p < 0.001 compared with control. ** p < 0.01 and
*** p < 0.001 compared with the α-MSH-treated control.
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Figure 3. Effect of CFS on melanin production in B16-F10 cells. B16-F10 cells were exposed to
200 nM α-MSH in the presence of 0.5 and 1% (v/v) CFS or 200 µM AB. (A) Representative images
of cell pellets after CFS treatment and (B) intracellular melanin contents. The melanin levels were
determined as described in the Materials and Methods. CFS: cell-free supernatant from L. gasseri
BNR17. Values represent the mean ± SD of three independent experiments. # p < 0.05 compared with
control. * p < 0.05 compared with the α-MSH-treated control.

In addition, the anti-melanogenic effect of CFS was maintained over a broad tem-
perature range (37 ◦C and 100 ◦C) (Figure S1A). Further, the inhibitory effect of the CFS
on melanin synthesis exhibited good thermostability for extracellular (Figure S1B) and
intracellular melanin (Figure S1C), and the reduction in melanin production by CFS was
similar to that of arbutin. These results suggest that CFS exerts an anti-melanogenic effect
by reducing melanin synthesis with good thermostability in B16-F10 cells.

2.3. CFS Reduced Intracellular Tyrosinase Activity in B16-F10

Tyrosinase is an essential enzyme in melanin biosynthesis. It converts L-tyrosine to
L-DOPA and then produces DOPA quinone, the precursor of melanin [20]. Therefore, we
investigated the role of the CFS in intracellular tyrosinase activity in α-MSH-treated B16-F10
cells. In this experiment, arbutin was used as a positive control to evaluate the inhibition
of enzyme activity on intracellular tyrosinase. As shown in Figure 4A, pretreatment with
0.5 and 1% (v/v) CFS brightened the colors of the culture media in a dose-dependent
manner than that of only α-MSH-treated cells. For the analysis of intracellular tyrosinase
activity, cell lysates pretreated with CFS were used as the intracellular enzyme sources of
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tyrosinases. The level of intracellular tyrosinase activities after only α-MSH treatment was
313%, which decreased to 91.5% and 79.5% upon pretreatment with 0.5 and 1% (v/v) CFS,
respectively. The inhibitory activity of CFS was better than that of 200 µM arbutin, which
decreased the intracellular tyrosinase activity to 140.4% (Figure 4B). These results were
consistent with the data from the tyrosinase activity assay kit (Figure 4C), while CFS did
not show any inhibition on the mushroom tyrosinase assay (data not shown).
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Figure 4. Effect of CFS on intracellular tyrosinase activity in B16-F10 cells. The tyrosinase activity
levels were determined as described in the Materials and Methods. (A) The color of the tyrosinase
activity after 40 h treatment of α-MSH, arbutin, and CFS. Intracellular tyrosinase activity was assayed
using DOPA activity (B) and enzyme activity assay kit (C) in the extracted protein samples. CFS:
cell-free supernatant from L. gasseri BNR17. Values represent the mean ± SD of three independent
experiments. ## p < 0.01 compared with control. ** p < 0.01 and *** p < 0.001 compared with the
α-MSH-treated control.

2.4. CFS Downresgulates α-MSH-Induced Melanogenesis-Related Gene Expression in B16-F10

Since CFS reduced melanin production by suppressing the intracellular tyrosinase
activity, we next confirmed whether it affected the expression of melanogenesis-related
genes, such as Mitf, Tyr, Tyrp1, and Tyrp2. Figure 5A demonstrates that the mRNA expres-
sion of Mitf significantly reduced after 1% (v/v) CFS treatment at 6 h. The mRNA levels of
Mitf and Tyr were lower in the cells treated with CFS than in the cells treated with arbutin.
Additionally, the high mRNA levels of Tyr, Tyrp1, and Tyrp2 during α-MSH treatment
significantly decreased by CFS treatment at 40 h (Figure 5B). These results suggested that
CFS may modulate Mitf to decrease mRNA levels of melanogenesis-associated markers.
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Figure 5. Effect of CFS on melanogenesis-related gene expression in B16-F10 cells. mRNA level
of genes determined by real-time RT-PCR. (A) Mitf and Tyr, 6 h after treatment. (B) Tyr, Tyrp1,
and Tyrp2, 40 h after treatment. B16-F10 cells were exposed to 200 nM α-MSH in the presence of
1% (v/v) CFS or 200 µM Arbutin. CFS: cell-free supernatant from L. gasseri BNR17. Values represent
the mean ± SD of three independent experiments. # p < 0.05 compared with control. * p < 0.05,
** p < 0.01, and *** p < 0.001 compared with the α-MSH treated control.

2.5. Radical Scavenging Activitiy of CFS

ROS-induced oxidative stress results in melanin synthesis and skin damage [21,22].
Thus, antioxidants reduce melanin production and have skin-protecting properties. To
investigate the antioxidative effect of CFS, we used various concentrations of the CFS (0.16,
0.312, 0.625, 1.25, 2.5, 5, and 10% (v/v)). Trolox (positive control) showed over 70% DPPH
radical scavenging activity. The 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical
scavenging activities of the CFS increased in a dose-dependent manner. (Figure 6).
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Figure 6. Effect of CFS on free radical scavenging activity by the DPPH assay. Trolox was used as
positive control. CFS: cell-free supernatant from L. gasseri BNR17. Values represent the mean ± SD of
three independent experiments.

2.6. Effect of CFS on Antioxidant-Related Gene Expression in HaCaT Cells

To characterize the mechanisms involved in the antioxidative effect of CFS, we eval-
uated the effect of CFS on antioxidant-related gene expression. CFS treatment increased
heme oxygenase 1 (HO-1) mRNA level in a concentration-dependent manner in HaCaT
cells (Figure 7A). In line with this finding, CFS treatment significantly increased the mRNA
levels of catalase (CAT), while glutathione peroxidase 1 (GPX1) and superoxide dismu-
tase 1 (SOD1) mRNA showed a tendency to increase (Figure 4B). Thus, CFS elicits its
antioxidative effect via inducing antioxidant-related gene expression.
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sion of (A) HO-1 and (B) CAT, GPX1, and SOD1 was determined by qRT-PCR. HaCaT cells were
treated with CFS at a concentration of 1 or 3% (v/v) for 24 h. CFS: cell-free supernatant from L. gasseri
BNR17. Data are presented as mean ± SEM. * p < 0.05 compared with the control.

As mentioned earlier, oxidative stress is closely associated with melanin synthesis
in melanocytes and skin damage in keratinocytes. During oxidative stress-induced skin
damage, antioxidative and free radical scavenging activities are critical for skin protection.
To investigate the intracellular antioxidative effect of CFS, HaCaT cells were pretreated with
CFS (1 and 3% (v/v)) for 1 h, followed by 10 µM H2O2 for an additional 24 h, and the mRNA
levels of HO-1, CAT, GPX1, and SOD1 were measured using real-time reverse transcriptase
PCR. Pretreatment with 3% (v/v) of CFS resulted in a dramatic increase in HO-1, CAT,
GPX1, and SOD1 mRNA levels, suggesting that the induction of antioxidant-related genes
by CFS treatment is associated with skin protection (Figure 8A,B).
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Figure 8. Antioxidant effects of CFS on H2O2-induced oxidative stress. HaCaT cells were prein-
cubated with CFS at the concentration of 1 or 3% (v/v) for 30 min and then incubated with H2O2

(10 µM) for 24 h. qRT-PCR analysis for (A) HO-1 and (B) CAT, GPX1, and SOD1. Data are pre-
sented as mean ± SEM. # p < 0.05 compared with control. * p < 0.05 compared with H2O2 treated
group, respectively.

3. Discussion

Probiotic intake is known for its ability to optimize, maintain, and restore the skin’s
microbiome in a variety of ways [23]. Additionally, several recent studies have reported that
Lactobacillus may help improve skin health. As representative studies, Limosilactobacillus
fermentum JNU532 and Lactobacillus acidophilus KCCM12625P were reported to be effective in
antioxidant [24] and pigmentation inhibition [25], and L. acidophilus IDCC 3302 was reported
to improve skin biological responses, such as antiphotodamage [26], anti-wrinkle [27], and
skin moisturizing effect [28]. Despite these previously published studies, studies on the
antioxidant and anti-pigmentation effects of L. garssri species as well as L. garssri BNR17
have not yet been conducted.

Lactobacillus gasseri BNR17 is isolated from human breast milk. It is widely used in
weight management and improving post-menopausal symptoms. Although it is known to
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improve human health, the significance of CFS in skin protection has not been evaluated.
Thus, we decided to investigate the benefits of CFS in skincare.

We found that CFS had a significant anti-melanogenic effect without cytotoxicity. The
possible mechanisms of anti-melanogenesis were linked to the transcriptional regulation
by transcription factors such as MITF to inhibit TYR, TYRP1, and TYRP2. In addition,
it was associated with reducing tyrosinase activity. Further, CFS exerts its antioxidant
effect via stimulating cytoprotective and anti-oxidant-related genes, such as HO-1, CAT,
GPX1, and SOD1. In addition, CFS showed thermostability without any decrease in its
anti-melanogenic efficacy. This finding agrees with the desirable criterion of any product to
be adopted for industrial manufacture.

Dooley et al. [29] demonstrated that a skin lightening agent should inhibit melanin
production in melanocytes by reducing the synthesis or activity of tyrosinase. In mammals,
melanin is an essential biological pigment produced in melanocytes via three melanocyte-
specific enzymes—TYR, TYRP1, and TYRP2. Tyrosinase initiates the melanin biosynthetic
process by oxidizing tyrosine to L-DOPA, and TYRP-1 and TYRP-2 have been demonstrated
to increase tyrosinase stability and induction of melanin synthesis [20]. In particular, MITF
is a master transcription factor of the melanocyte lineage that stimulates melanogenesis by
activating the transcription of tyrosinase, TYRP1, and TYRP2. In line with these previous
studies, CFS appeared to have anti-melanogenic activity similar to that of the positive
control arbutin in murine melanocytes. As illustrated in Figure 2, CFS significantly reduced
melanin secretion and its intracellular accumulation in the presence of α-MSH, a major
stimulator of melanin biosynthesis in melanocytes. Consistent with the data from α-MSH-
induced melanin production, CFS not only reduced tyrosinase activity, but decreased the
mRNA expression of Mitf, Tyr, Tyrp1, and Tyrp2 in α-MSH-induced murine melanocytes, as
well as showed thermostability with anti-melanogenic efficacy.

Antioxidants protect cells against oxidative stress-induced damage and are pivotal
in the inhibition of melanogenesis in melanocytes and the maintenance of healthy ker-
atinocytes [8,30]. The DPPH assay is widely used to measure the antioxidant properties
in vitro. If a sample itself has antioxidant effects, it can remove free radicals. CFS exhibited
antioxidant effects in the DPPH assay in vitro and in H2O2 treated-HaCaT cells (human ker-
atinocytes) both by direct and indirect treatment. CFS treatment induced HO-1 expression
at the transcriptional levels. Interestingly, CFS pretreatment followed by H2O2 exposure
increased HO-1 expression more than that in the H2O2 treatment alone. Since HO-1 protects
cells from diverse cellular stress, such as oxidative stress, inflammation, and apoptotic cell
death [31–33], increased levels of HO-1 by CFS might have a crucial role in the relevant
skin physiology. Further study will confirm additional skin functionality of CFS, such as
anti-aging and moisturizing, and it is also necessary to identify the functional substances.

Since we did not investigate the component analysis from CFS of L. gasseri BNR17
in the analytical methods, we cannot fully explain the mechanism responsible for the
anti-melanogenesis and antioxidant effects from CFS at present. To solve these problems,
we are currently conducting amino acid analysis and HPLC analysis, and these analyses
are in accordance with recently published reports. Various amino acids and peptides
have anti-melanogenic properties by inhibiting tyrosinase activity or down-regulating
TYR gene expression [34]. Additionally, proline-serine and valine-serine dipeptides are
reported to have anti-melanogenic effects by down-regulating the expression of MITF and
tyrosinase protein [35]. In the future, we plan to identify the components of CFS that affect
anti-melanogenic and antioxidant effects by synthesizing the results of the further analysis.
Moreover, additional research is needed to confirm the additional skin functionality of CFS,
such as anti-aging and moisturizing.

4. Materials and Methods
4.1. Preparation of Cell-Free Culture Supernatant

L. gasseri BRN17 (Accession No: KCTC10902 BP) was isolated from the human breast
milk and selected for its probiotic characteristics shown in a previous study [18]. L. gasseri
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BRN17 was aerobically cultured for 16 h at 37 ◦C according to previous studies [36]. Then,
the CFS of the L. gasseri BNR17 cultured medium was transferred to 1.5 mL microcentrifuge
tube and collected by centrifugation at 12,000× g for 10 min. Supernatant was transferred
to a new microcentrifuge tube, and then it was filtered with a 0.22 µm pore size filter unit
(Sartorius Stedim Biotech GmbH, Goettingen, Germany), subsequently. Thereafter, the CFS
was stored at −20 ◦C until use. MRS broth medium (filtered with a 0.22 µm pore size filter)
served as a negative control.

4.2. Cell Culture

The murine melanoma cell line B16-F10 (ATCC, Rockville, MD, USA) and the im-
mortal human keratinocyte cell line HaCaT (ACCEGEN, Fairfield, NJ, USA) were grown
in Dulbecco’s Modified Eagle’s Medium (WelGENE, Daegu, Korea) supplemented with
10% fetal bovine serum (HyClone, Logan, UT, USA) and antibiotic/antimycotic solution
(HyClone) at 37 ◦C in a humidified incubator (5% CO2).

4.3. Chemicals and Reagents

Melanogenesis stimulator α-MSH and inhibitor arbutin were purchased from Sigma-
Aldrich (St. Louis, MO, USA). TRIzol solution and bicinchoninic acid (BCA) protein assay
kit were purchased from Thermo Fisher Scientific (Waltham, MA, USA).

4.4. Cell Viability Assay

Cell viability was determined by the WST assay (AbFrontier, Seoul, Korea). B16-F10
cells and HaCaT cells were plated into a 96-well plate at a density of 1 × 104 cells/well for
24 h. In addition, to determine cell viability for 48 h, B16-F10 cells were plated into 96-well
plate at a density of 5 × 103 cells/well. After incubation, CFS was treated with various
concentrations (0.1, 0.5, 1, 2.5, and 5% (v/v) or 1, 3, and 5% (v/v) for 24 h or 48 h at 37 ◦C
in humidified air and 5% CO2). Following incubation, the cells were treated with WST
for 2 h. The absorbance was measured at 450 nm using an EZ Read 800 microplate reader
(Biochrom, Cambridge, UK). The percentage of cells showing cytotoxicity was determined
relative to the control group.

4.5. Measurement of Melanin Content

The extracellular melanin content was measured using a slight modification of a
previously reported method [37]. Briefly, B16-F10 cells were seeded in 6-well plates
(1 × 105 cells/well) and incubated for 24 h. After incubation, the culture media was re-
placed with the phenol-red free culture media containing CFS (0.5 and 1% (v/v)) or arbutin
(200 µM) for 48 h in the presence or absence of 200 nM α-MSH. After treatment, we collected
the media and measured the melanin levels at 492 nm using an ELISA reader. Intracellular
melanin contents were determined following a modified method to assess extracellular
melanin content. Briefly, B16-F10 cells were seeded in 6-well plates (1× 105 cells/well) and
incubated for 24 h. After incubation, the culture media was replaced with the phenol-red
free culture media containing CFS (0.5 and 1% (v/v)) or arbutin (200 µM) for 48 h in the
presence or absence of 200 nM α-MSH. The cells were collected by trypsinization and
suspended in 150 µL of 1 N NaOH (Samchun Chemical, Seoul, Korea) in 10% dimethyl
sulfoxide (Sigma-Aldrich). After heating at 60 ◦C for 2 h, the absorbance at 492 nm was
measured using a microplate reader. The final relative melanin content was normalized to
the cell numbers [38,39].

4.6. Analysis of Intracellular Tyrosinase Activity

The cellular tyrosinase activity were measured using tyrosinase Activity Assay Kit
(Abcam, Cambridge, UK) and a slight modification of a previously reported method [40].
B16-F10 cells were seeded in 60 mm dishes (2× 105 cells/dish) for 24 h and treated with CFS
(0.5 and 1% (v/v)) or arbutin (200 µM) for 40 h in the presence or absence of 200 nM α-MSH,
harvested by trypsinization, sonicated in assay buffer (Abcam, Cambridge, UK), and cen-
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trifuged at 12,000 rpm for 20 min. The protein concentration was determined by the Pierce™
BCA Protein Assay Kit (Thermo Fischer Scientific). The reaction mixture consisting of 20 µg
protein and 80 µL of 2 mg/mL L-DOPA (in 0.1 M sodium phosphate buffer, pH 6.8) was
added to each well of a 96-well plate. After incubation at 37 ◦C for 1 h, the optical density
at 492 nm was measured using a microplate reader.

4.7. Quantitative Reverse-Transcription Polymerase Chain Reaction

B16-F10 and HaCaT cells (5 × 104 cells/well) were plated on 12-well plates and in-
cubated. Then, B16-F10 cells were treated with 1% (v/v) CFS or arbutin (200 µM) for 6 h
and 40 h in the presence or absence of 200 nM α-MSH. HaCaT cells were pretreated with
CFS (1 and 3% (v/v)) for 30 min and then co-treated 100 µM H2O2 for 24 h. Then, the cells
were harvested and washed twice with phosphate-buffered saline. Total cellular RNA was
prepared using TRIzol solution according to the manufacturer’s instructions. RNA was con-
verted to cDNA using RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher Scientific),
according to the manufacturer’s instructions. The 2X GreenStar qPCR Master Mix (Bioneer,
Daejeon, Korea) was used in all the samples, and reactions were carried out in a 20 µL final
reaction volume. Each experiment was performed at least twice in duplicates using the
following primers in Supplementary Table S1. All gene expression levels were calculated
by using the Ct value by the method 2−∆∆Ct (where ∆Ct = Ct[target gene] − Ct[GAPDH]).

4.8. DPPH Assay

The antioxidative effect of CFS was determined with OxiTec™ DPPH Antioxidant
Assay Kit (BIOMAX, Seoul, Korea) according to the manufacturer’s instructions. Briefly,
the various concentration of CFS was prepared, and the DPPH working solution and assay
buffer were individually added into a 96-well assay plate. The plate was incubated at room
temperature for 30 min in the dark, and the absorbance was measured at 517 nm using a
microplate reader. The superoxide anion radical scavenging activity of CFS samples was
evaluated by Trolox (a water-soluble analog of vitamin E) standard. The superoxide anion
radical scavenging activity of CFS samples was normalized to the scavenging activity of
100 µg/mL Trolox.

4.9. Statistical Analysis

All data were analyzed using GraphPad Prism 5 software (La Jolla, CA, USA). Analyses
were performed using the Student’s t-test or the one-way analysis of variance test for
multiple comparisons. For all comparisons, p < 0.05 was considered statistically significant.

5. Conclusions

In summary, our present study suggests the potential of L. gasseri BNR17-derived CFS in
improving skin health. CFS inhibits melanogenesis while maintaining thermal stability by
downregulating transcription factors, melanogenesis-related genes, and tyrosinase activity.
Furthermore, CFS was shown to have antioxidant properties that could inhibit melanin
production and oxidative-stress-induced cell damage. Based on these findings, the cell-free
supernatant of L. gasseri BNR17 could be developed as a promising product for skincare.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/microorganisms10040788/s1, Figure S1: The thermostability of
CFS on melanogenesis in B16-F10, Table S1: Primer information.
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