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Impacts of complex behavioral 
responses on asymmetric 
interacting spreading dynamics in 
multiplex networks
Quan-Hui Liu1,2, Wei Wang1,2, Ming Tang1,2 & Hai-Feng Zhang3

Information diffusion and disease spreading in communication-contact layered network are typically 
asymmetrically coupled with each other, in which disease spreading can be significantly affected 
by the way an individual being aware of disease responds to the disease. Many recent studies have 
demonstrated that human behavioral adoption is a complex and non-Markovian process, where the 
probability of behavior adoption is dependent on the cumulative times of information received and 
the social reinforcement effect of the cumulative information. In this paper, the impacts of such a 
non-Markovian vaccination adoption behavior on the epidemic dynamics and the control effects are 
explored. It is found that this complex adoption behavior in the communication layer can significantly 
enhance the epidemic threshold and reduce the final infection rate. By defining the social cost as the 
total cost of vaccination and treatment, it can be seen that there exists an optimal social reinforcement 
effect and optimal information transmission rate allowing the minimal social cost. Moreover, a mean-
field theory is developed to verify the correctness of simulation results.

When a disease suddenly emerges, the dynamical processes of disease1–7 and information8–10 spreading are typ-
ically asymmetrically coupled with each other11–15. In particular, the spread of a disease can enhance the crisis 
awareness and thus facilitates the diffusion of the information about the disease16. Meanwhile, the diffusion of 
the information promotes more people to take preventive measures and consequently suppresses the epidemic 
spreading14. To understand the asymmetric interplay between the two kinds of spreading dynamics is of great 
importance for predicting and controlling epidemics, leading to a new direction of research in complex network 
science17–19. Funk et al. first presented an epidemiological model by incorporating the spread of awareness in a 
well-mixed population, and found that the awareness-based response can markedly reduce the final infection 
rate. When the awareness is sufficiently strong so as to modify the key parameters associated with the spreading 
dynamics such as the infection and recovery rates, the epidemic threshold can be enhanced17. Ruan et al. stud-
ied a susceptible-infected-recovered (SIR) model with information-driven vaccination, and found the epidemic 
spreading can be significantly suppressed when the information is well spread14.

With the development of technology, the information about disease can quickly diffuse through different 
channels, such as the word of mouth, news media and online social networks. Usually, the pathways for infor-
mation spreading are different from the pathways for disease spreading. In view of this, the asymmetric interplay 
between the information and the epidemic spreading dynamics needs to be considered within multiplex network 
framework18–23. In a multiplex network (multilayer network or overlay network), each network layer for one type 
of transportation process has an identical set of nodes and a distinct internal structure. And the interplay between 
multiple layers has diverse characteristics, such as inter-similarity24, multiple support dependence25, and inter 
degree-degree correlation26, etc. Along this line, Granell et al. established a two susceptible-infected-susceptible 
(SIS) processes coupled model to investigate the inhibitory effect of awareness spreading on epidemic spreading 
dynamics in a multiplex network, and the results showed that the epidemic threshold was determined by the 
structures of the two respective networks as well as the effective transmission rate of awareness18. Wang et al. 
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studied the asymmetrically interacting spreading dynamics based on a two susceptible-infected-recovered (SIR) 
processes coupled model in multiplex networks, and found that the outbreak of disease can lead to the propaga-
tion of information, and rise of epidemic threshold19.

In the asymmetrically interacting spreading dynamics, how an individual being aware of disease responds to 
the disease can significantly affect the epidemic spreading13,14,27. Sahneh et al. introduced an alter state into the SIS 
model, where the alerted individuals sensing infection adopt a preventive behavior. When the preventive behavior 
is implemented timely and effectively, disease cannot survive in the long run and will be completely contained12. 
Zhang et al. investigated to what extent behavioral responses based on local infection information can affect 
typical epidemic dynamics, and found that such responses can augment significantly the epidemic threshold, 
regardless of SIS or SIR processes27. All of the previous studies were built on a basic assumption: the behavioral 
responses to the disease, which is a Markovian process without memory, depend only on current dynamical infor-
mation such as infected neighbors.

However, behavioral response or behavior adoption is not a simple Markovian process which depends only 
on current dynamical information. Recent researches on behavior adoption such as innovation28 and healthy 
activities29 have confirmed that the adoption probability is also affected by previous dynamical information. This 
is equivalent to social affirmation or reinforcement effect, since multiple confirmation of the credibility and legit-
imacy of the behavior are always sought30–34. Specifically for an individual, if some of his/her friends have adopted 
a particular behavior before a given time whereas the other friends newly adopt the behavior, whether he/she 
adopt the behavior will take all the adopted friends’ adoption into account. Taking the adoption of healthy behav-
ior as an example, Centola has demonstrated that the probability for an individual to adopt a healthy behavior 
depends on the times of being informed30; in the microblogging retweeting process, the authors have shown that 
the probability of one individual retweeting a message increases when more friends have retweeted the mes-
sage35,36. Based on the memory of previous information, this reinforcement effect makes the behavior adoption 
processes essentially non-Markovian and more complicated.

As we know, taking vaccination against disease may carry some side effects or certain cost37,38, so the decision 
to take vaccination is worth pondering. Before taking a certain vaccine, people need to confirm the correctness 
of information which usually relies on the cumulative times of received information and the social reinforcement 
effect. Thus, the adoption of vaccination can be viewed as a complex adoption behavior. In this paper, the impact 
of complex vaccination adoption behavior on the two interacting spreading dynamics in a double-layer network 
is investigated. It is assumed that in physical-contact layer, the probability for an individual to adopt vaccina-
tion is determined by the times of the information about disease received in the communication layer and the 
social reinforcement effect of the cumulative information. It is showed by our findings that the two interacting 
spreading dynamics is remarkably influenced by this complex adoption behavior. In addition, given that taking 
vaccination as well as treating infected individuals bear certain costs, we define the social cost as the total cost of 
vaccination and treatment for infected individuals. Then, the effect of this complex vaccination adoption behavior 
on social cost is explored, and it is found that there are an optimal social reinforcement effect and optimal infor-
mation transmission rate which entail the minimal social cost.

Results
To present our primary study results, we first described the model of multiplex network, the spreading dynamical 
process in each layer, and the asymmetric interplay between the two spreading processes. Then, we elaborated the 
theoretical analysis of the asymmetric interacting spreading dynamics in multiplex networks. Finally, we demon-
strated the simulation results which are verified by the proposed theory.

Model of multiplex network. A multiplex network with two layers is constructed to represent the 
contact-communication coupled network. At the beginning, a communication network (labelled A) and a con-
tact network (labelled B) are respectively generated. Supposing that the degree distribution and network size of 
communication network A are of PA(kA) and N respectively, a random configuration network can be generated 
according to the given degree distribution, where self-loops or repeated links between a pair of nodes are not 
allowed5. Meanwhile, layer B is generated in the same way that the network size and degree distribution are given 
as N and PB(kB), respectively. After that, each node of layer A is matched one-to-one with that of layer B randomly. 
Moreover, to facilitate the analysis, the constructed double-layer network is an uncorrelated double-layer 
network, and the joint probability distribution of degree kA and degree kB of the same node can be written as  
PAB(kA, kB) =  PA(kA)PB(kB). It means that the degree distribution of one layer is independent of that of the other 
layer completely. In addition, when the network is very large and sparse, links in the double layers are scarcely 
overlapped due to random linking in random configuration network model. The theoretical framework of the 
asymmetric interacting spreading processes in this paper can be easily generalized to the multiplex networks with 
inter-layer degree correlations19 and overlapping links39.

Two interacting spreading dynamical processes. In such a double-layer network, an infec-
tious disease spreads through physical contact layer (layer B), and the triggered information about the dis-
ease diffuses through a communication layer (layer A). In the communication layer (layer A), an improved 
susceptible-infected-recovered (SIR) model6 is used to describe the dissemination of information about the dis-
ease. In this model, each node can be in one of the following three states: (1) susceptible state (S) in which the 
node has not received any information about the disease; (2) informed state (I), where the node has received the 
information at least one time and is capable of transmitting the information to other nodes in the same layer. 
More importantly, let M be the cumulative pieces of information that the node has received from its neighbors, 
which is used to characterize the memory effect of vaccination adoption behavior31,40; and (3) refractory state (R), 
in which the node has received the information but is not willing to pass it on to other nodes. During the process 
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of transmission, each informed node (I state) passes the information to all its neighbors in the communication 
network A at each time step. If a neighbor is in the S state, it will enter I state and update M =  1 with probability 
βA. If a neighbor is in the I state, it will receive the information again and update M =  M +  1 with probability βA. 
Meanwhile, the informed node enters the R state with probability μA, and once the node enters the R state, it will 
keep in this state forever. Furthermore, a node in layer A will get the information about the disease and update 
M =  1, once its counterpart node in layer B is infected. As a result, the dissemination of the information over layer 
A is facilitated by disease transmission in layer B.

The dynamics of epidemic in the contact network B is illustrated by a susceptible-infected-recovery-vaccinated 
(SIRV) model14, in which a fourth state, the state of vaccination is incorporated into the classical SIR model. The 
reaction process of the SIR component in layer B is the same as that of the classical SIR model with transmission 
rate βB and recovery rate μB. Since the behavior of taking vaccination against disease is essentially non-Markovian 
and complicated, we assume that the probability of a susceptible node turning into vaccinated state in layer B 
depends on the cumulative times of received information (i.e M) in layer A and the social reinforcement effect. 
For a susceptible node in layer B, if he receives at least one piece of information at the tth time step and has 
received M times of the information until time t, the probability that he takes vaccination at time t will be

ξ ξ ξ= + − − α− −e(1 )[1 ], (1)M
M

1 1
( 1)

where ξ1 is the vaccination adoption probability when a node receives the information about disease for the first 
time. And α means the node’s sensitivity to information, which is used to characterize the strength of social 
reinforcement effect. When α >  0, the adoption probability ξM increases with the value of M. The memory rein-
forcement effect disappears once α =  0. For a fixed M, the greater value of α, the stronger the reinforcement effect  
(i. e., the greater adoption probability ξM). As the adoption of vaccination is determined by the cumulative pieces 
of received information M and the sensitivity factor of social reinforcement effect α, it is a typical complex adop-
tion behavior. Our main purpose is to investigate the impact of sensitivity factor α on the two interacting epi-
demic dynamics. The two spreading processes and their dynamical interplay are schematically illustrated in Fig. 1. 
To simplify our descriptions and differentiate the states of nodes in the two layers, SA (RA) and SB (RB) are defined 
to be a node in S (R) state in layer A and layer B, respectively. Similarly, IA and IB are set as nodes in informed state 
and infected state in layer A and B, respectively. And VB is the node in vaccinated state in layer B.

Theoretical analysis. The epidemic threshold and the final infection density are the two key quantities in 
the dynamics of spreading. Thus, in this paper, a theory is proposed to predict these quantities for both informa-
tion and epidemic spreading in the double-layer network.

Let PA(kA) [PB(kB)] be the degree distribution of communication layer A (contact layer B), and the average 
degrees of A and B are = ∑k k P k( )A k A A AA

 and = ∑k k P k( )B k B B BB
, respectively. Here, our sole focus is the 

uncorrelated double-layer network, where the joint probability distribution of degree kA and degree kB of a node 
can be expressed as =P k k P k P k( , ) ( ) ( )AB A B A A B B . Meanwhile, we assume that there is no degree correlations 
between inner-layer links and inter-layer links. If the specific formula of PAB(kA, kB) is given, the developed theory 
can be extended to the correlated double-layer networks19,21,26. The variables of s t( )k

A
A

, ρ t( )k
A
A

 and r t( )k
A
A

 are used 
to denote the densities of the susceptible, informed, and recovered nodes with degree kA in layer A at time t, 
respectively. Thereinto, ρ ρ= ∑t m t( ) ( , )k
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m k

A
A A

, and ρ m t( , )k
A
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 is the density of IA nodes with degree kA which 
have received m pieces of information till time t. Similarly, s t( )k

B
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, ρ t( )k
B
B

, r t( )k
B
B

 and v t( )k
B
B

 are the densities of the 
susceptible, infected, recovered and vaccinated nodes with degree kB in layer B at time t, respectively. The effective 
transmission rates for the two spreading dynamics are respectively expressed as λA =  βA/μA and λB =  βB/μB. 
Without loss of generality, we set μA =  μB =  μ, which won’t affect the relative sizes of effective information and 
disease transmission rates.

The mean-field rate equation of the information spreading in layer A is
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where Ψ t( )S k
A

,A A
 [Ψ t( )S k

B
,B B

] denotes the probability of a SA (SB) node with degree kA (kB) in layer A (B) being 
informed (infected) by its neighbor in the same layer at time t (See Methods for details). The first term in the right 
hand side (RHS) of Eq. (2) means the loss of SA nodes since they have received information from their neighbors 
in layer A. And the second term represents the counterpart nodes of SA nodes in layer B are infected by the disease 
resulting in the decrease of SA nodes. For m =  1, the gain of ρ t(1, )k

A
A

 can only come from SA nodes. But for m >  1, 
the density of ρ m t( , )k

A
A

 can be increased by the case in which the IA nodes have already received n pieces of 
information and receive m −  n pieces of information again at time t. As a result, the rate equations of ρ m t( , )k

A
A

 
when m =  1 and m >  1 should be established, respectively.

When m =  1, the rate equation of ρ t(1, )k
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where π n( )S k
A

,A A
 is the probability of a SA node with degree kA in layer A which has n (n ≤  kA) number of informed 

neighbors, Bk, m(βA) denotes the binomial factor β β− −( )k
m (1 )A

m
A

k m and Ψ t( )I k
A

,A A
 means the probability of an IA 

node with degree kA being informed again by its neighbors in layer A at time t (See Methods for details). The first 
and second term in the RHS of Eq. (3) correspond to the case that the SA node receives one piece of information 
and the case that the SB node is infected by the disease, respectively. The third term means that the informed node 
(IA) which has only received one piece of information previously receives one or more pieces of information at 
time t. The fourth term describes the recovery of the IA node.

When m >  1, the rate equation of ρ m t( , )k
A
A

 can be described as
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Figure 1. Illustration of asymmetrically coupled spreading processes in a double-layered communication-
contact network. (a) Communication and contact networks, denoted respectively as layer A and layer B, each 
have four nodes. Each node of layer A is matched one-to-one with that of layer B randomly. A node i in layer A 
is represented as Ai

M, where the subscript and superscript respectively represent the index of node and the times 
of received information. (b) At t =  0, node B1 in layer B is randomly chosen as the initial infected node and its 
counterpart, node A1 in layer A, gains the information and becomes informed state and updates M =  1. While 
all other pairs of nodes, one from layer A and another from layer B, are in the susceptible state. (c) At t =  1, node 
B3 in layer B can be infected by infected neighbor B1 with probability βB, and if it is indeed infected, its 
corresponding node A3 in layer A will get the information as well and update M =  1. Within layer A the 
information is transmitted from A1 to A2, with M =  1 for A2. Since, by this time, A2 is already aware of the 
infection spreading, whereas its counterpart B2 in layer B takes vaccination with probability ξ1, but fails. At the 
same time, node A1 in layer A and its counterpart B1 in layer B enter into the refractory state with probability μA 
and μB, respectively. (d) At t =  2, in layer A, A3 successfully transmits the information to A2. In this case, node A2 
updates M =  2. At the same time, its counterpart B2 in layer B takes vaccination with probability ξ2 and 
successfully becomes a vaccinated node. The spreading dynamics terminate as all infected/informed nodes have 
entered into the refractory state.
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where π n( )I k
A

,A A
 represents the probability of an IA node with degree kA to have n (n ≤  kA) number of informed 

neighbors (See Methods for details). The first term in the RHS of Eq. (4) means that a SA node receives m pieces 
of information at time t. The second term in the RHS of Eq. (4) denotes the case in which the IA node with degree 
kA has received q ( < <q m0 ) pieces of information previously, and then receives m −  q pieces of information at 
time t. The third and the fourth term are the same to those of Eq. (3), which indicate the losses caused by the 
newly received information and the recovery of IA to RA, respectively. The rate equation for rk

A
A
 can be written as

∑µ ρ= .
dr t

dt
m t
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( , )

(5)
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The mean-field rate equation of the epidemic spreading in layer B is

∑ ∑χ χ= − Ψ − −
ds t

dt
s t t t s t t

( )
( ) ( ) ( ) ( ) ( ),

(6)

k
B

k
B

S k
B

k
S k
A

k
B

k
I k
A

, , ,
B

B B B
A

A A B
A

A A

where χ t( )S k
A

,A A
 [χ t( )I k

A
,A A

] refers to the probability that a SA (IA) node with degree kA newly receives information 
to make its counterpart node in layer B vaccinated (See Methods for details). The first term in the RHS of Eq. (6) 
means that the SB type nodes are infected by their neighbors in layer B. The second and third terms in the RHS of 
Eq. (6) represent that the SB nodes’ counterpart nodes are respectively in SA and IA state in layer A, receiving the 
information about disease and making SB nodes vaccinated.
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From Eqs (2–9), the density associated with each distinct state in layer A or B is given by

∑=x t P k x t( ) ( ) ( ),
(10)

H

k min

k max

H H k
H

,

,

H

H

H

where H ∈  {A, B}, x ∈  {s, ρ, r, v}, and kH,min (kH,max) denotes the smallest (largest) degree of layer H. Specially, the 
density of IA node with degree kA in layer A is ρ ρ= ∑t m t( ) ( , )k

A
m k

A
A A

. The final densities of the whole system can 
be obtained by taking the limit t →  ∞ .

Owing to the complicated interaction between the disease and information spreading process, it is unfeasi-
ble to derive the exact threshold values. Thus, a linear approximation method is applied to derive the outbreak 
threshold of information spreading in layer A (see Supporting Information for details) as

β
β β β

β β
=





≤
>

for
for

,
0, , (11)

Ac
Au B Bu

B Bu

where

β µ≡ −k k k/( ) (12)Au A A A
2

and

β µ≡ −k k k/( ) (13)Bu B B B
2

refer to the outbreak threshold of information spreading in layer A when it is isolated from layer B, and the out-
break threshold of epidemic spreading in layer B when the coupling between the two layers is absent, respectively.

For βA <  βAu, Eq. (11) shows that the information cannot break out in layer A if layer A and layer B are iso-
lated. When the two spreading dynamics are interacting, near the epidemic threshold, the spread of epidemic in 
layer B can only lead to a few of counterpart nodes in layer A “infected” with the information, and thus these 
informed nodes in layer A have negligible effect on the epidemic dynamics in layer B since βA <  βAu. The above 
explanation indicates that βBc ≈  βBu when βA <  βAu. However, for βA <  βAu, the information outbreaks in layer A 
which makes many counterpart nodes in layer B to be vaccinated, and thus hinders the spread of epidemic in 
layer B. Once a node is in the vaccination state, it will no longer be infected. Usually, we can regard this kind of 
vaccination as a type of “disease,” and every node in layer B can be in one of the two states: infected or vaccinated. 
Epidemic spreading and vaccination diffusion (derived by information diffusion) can thus be viewed as a pair 
of competing “diseases” spreading in layer B41. As pointed out by Karrer and Newman41, when two competing 
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diseases have different growth rates in large size network N, they can be treated as if they were in fact spreading 
non-concurrently, one after the other.

To clarify the interplay between epidemic and vaccination spreading, we should determine which one is the 
faster “disease”. At the early stage, the average number of infected and vaccinated nodes in layer B grows exponen-
tially (see Supporting Information). And the ratio of their growth rate can be expressed as

θ
β β
β β

=
(14)

A Bu

B Au

when θ <  1, i.e., β β β β>B Au A Bu, the disease process grows faster than the vaccination process. In this case, we 
can ignore the effect of vaccination on epidemic spreading. However, when θ >  1, the information process spreads 
faster than the epidemic process, which is in accord with reality since many on-line social networks and mass 
media can promote information spreading. Given that vaccination and epidemic can be treated successively and 
separately, by letting βB =  0 and obtaining the final density of vaccination ∞

β =
v ( )B

0B
 from Eq. (9), the threshold 

of epidemic outbreak is given as19

β
µ

=
− ∞ −

.
β =

k
v k k[1 ( ) ]( ) (15)

Bc
B

B
B B0

2
B

Simulation results. The standard configuration model is used to generate a network with power-law degree 
distribution42,43 for the communication subnetwork (layer A). The contact subnetwork for layer B is of the Erdös 
and Rényi (ER) type44. The notation SF-ER is adopted to denote the double-layer network. The network sizes of 
both layers are set to be = =N N 10000A B  and their average degrees are 〈 kA〉  =  〈 kB〉  =  8. The degree distribution 
of communication layer A is expressed as = Γ γ−P k k( )A A A A, when the coefficient is Γ = ∑ γ−k1/ k

k
Amin

max A and the 
maximum degree is γ −~k Nmax

1/( 1)A . The degree distribution of contact layer B is = −P k e k k( ) / !B B
k

B
k

B
B B . 

Without loss of generality, we set γA =  3.0, ξ1 =  0.05, and μA =  μB =  μ =  0.5 in the following simulations. To initi-
ate an epidemic spreading process, a node in layer B is randomly infected and its counterpart node in layer A is 
thus in the informed state, too. The spreading dynamics terminates when all infected/informed nodes in both 
layers are recovered, and the final densities ∞r ( )A , ∞r ( )B , and ∞v ( )B  are then recorded. We use 2 ×  103 inde-
pendent dynamical realizations in a fixed double-layer network and average on 30 different double-layer networks 
to obtain these final densities of each state.

In ref. 45, the variability measure has been verified to be very effective in identifying the SIR epidemic thresh-
olds on various networks. However, for the interacting spreading dynamics, the interplay between them intro-
duces a large external fluctuation into the respective spreading dynamics46, thus invalidate the variability measure. 
Therefore, we only qualitatively analyze the impact of the value of α (depicting the social reinforcement effect) on 
the outbreaks of information and disease. In the following simulations, we respectively define the reference infor-
mation threshold (λAe) and the reference epidemic threshold (λBe) to valuate the outbreak possibility. At the refer-
ence threshold, the outbreak rate just reaches a reference value (e.g., 0.01 or 0.05) by using a tolerance47. The larger 
the value of reference information (epidemic) threshold, the harder the outbreak of the information (epidemic).

From Fig. 2(a,b), it can be seen that the impacts of the value of α on the reference information threshold λAe 
in layer A can almost be ignored. Nevertheless, it is shown by Fig. 2(c,d) that α has a remarkable influence on the 
reference epidemic threshold λBe in layer B when the information spreads faster than the disease. In particular, the 
epidemic threshold first increases with the value of α, but then tends to be stable when the value of α increases. 
The greater value of α leads to the stronger reinforcement effect (i. e., the greater adoption probability ξM) in layer 
A, which thus can more effectively suppress the outbreak of epidemic in layer B. However, with the increasing of 
α, the reinforcement effect of multiple information will reach a saturation point due to the restriction of network 
structure (e.g., mean degree and degree distribution) and information diffusion (e.g., transmission rate and recov-
ery rate). Comparing Fig. 2(d) with Fig. 2(c), it can be seen that a larger value of λA also causes a higher reference 
epidemic threshold λBe (i.e., the disease transmission probability at which the final infection density reaches a 
fixed value such as rB(∞ ) =  0.01, 0.05).

It is shown by Fig. 3(a–c) that with different values of λB, more nodes in layer B will be vaccinated [see 
Fig. 3(c)] with the increase of parameter α, leading to the spreading of epidemic in layer B to be reduced or elimi-
nated [see Fig. 3(b)]. Moreover, the reduction of epidemic also decreases the number of informed individuals [see 
Fig. 3(a)], i.e., rA is reduced too. It can also be seen from Fig. 3(a–c) that α has a big influence on the values of rA, 
rB and vB when α ∈  (0, 1), but little influence when α ∈  [1, 5]. Figure 3(d–f) demonstrate the effects of λA on rA, rB 
and vB with different values of α. From Fig. 3(d), it can be found that rA decreases with λA when λA increases from 
zero, which is somewhat non-intuitive. As we know, when λA increases from zero, the spreading of information 
quickly inhibits the spreading of epidemic, which also reduces the promotion effect of epidemic on information 
spreading. Moreover, the competing effects of the two aspects (the enhancement of information spreading due 
to the increase of λA and the drop of information spreading due to the reduction of epidemic) may lead to the 
reduction of rA. However, as we further increase the value of λA, the information can spread quickly and more 
individuals will be informed [see Fig. 3(d)], which induces more people to be correspondingly vaccinated [see 
Fig. 3(f)], naturally, the number of infected individuals is reduced [see Fig. 3(e)]. It is noted that there are some 
discrepancies between the theoretical predictions and simulation results in Fig. 3, because the developed mean 
field theory can’t accurately capture the dynamical correlations between the two layers19.

We then further study the effects of α and λB on the values of rA, rB and vB in Fig. 4. From Fig. 4(a,b), it can be 
seen that, though the values of rA and rB increase with λB as λB >  λBu, their growth rate slows down with larger 
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α. Figure 4 demonstrates that increasing α can stimulate more individuals to take vaccination, thus raising the 
value of vA. In RR-ER and SF-SF double-layer networks, the impact of social reinforcement effect on asymmetric 
interacting spreading dynamics is also explored and the obtained conclusion is consistent (see Figs S1–S3 and 
Figs S5–S7 in Supporting Information).

Social cost. Measures to prevent or eliminate diseases48–50 often mean certain social cost37,38, such as, the cost 
of treating infected individuals and vaccinating susceptible individuals, cost of isolation, cost of reducing outgo-
ing and so on. Although the rapid spread of information and the strong social reinforcement effect can effectively 
promote the vaccination behavior and thus suppress epidemic spreading, the total cost of vaccination will be 
greatly increased. From an overall perspective, the government wants to control the diseases to the greatest extent 
with the minimal cost. In doing so, we define the social cost38 as

=
∑ +Λ∈C

V c R c
N

( )
, (16)

i B i V B i R, ,

here, Λ  is the set of all nodes in layer B. VB,i =  1 denotes the node i is in V state, otherwise, VB,i =  0. In the same 
way, RB,i =  1 means node i has recovered from disease, otherwise, RB,i =  0. Since every node in layer B can be in 
one of the three states: susceptible, recovered or vaccinated, it is impossible for VB, i and RB,i equaling to one at the 
same time. cV or cR denotes the cost of vaccination or treatment for a node. For the sake of simplicity, we assume 
the cost of vaccination and the cost of treatment are comparable and set both of them as unit for all individuals51,52,  
i.e., cV =  cR =  1, and in this case, C =  rB +  vB.

Now we want to know how social reinforcement effect and information diffusion affect the social cost. 
Figure 5(a,b) present the social cost C as a function of the sensitivity factor α and the effective information trans-
mission rate λA, respectively. As shown in Fig. 5(a), there exists an optimal value of α which can guarantee the 
minimal social cost when λA is larger than λB (e.g., λA =  0.5). However, with λA <  λB, increasing α can reduce the 
social cost to some extent because the epidemic spreading is suppressed more or less. Also, there exists an optimal 
value of λA leading to the minimal social cost [see Fig. 5(b)]. When the number of vaccinated nodes is few, each 

Figure 2. The impacts of social reinforcement effect on the outbreak threshold. For SF-ER double-layer 
networks, the reference information threshold λAe and the reference epidemic threshold λBe as the function 
of the value of α are obtained by numerical simulations. Owing to the difficulty of determining the threshold 
values from numerical predictions, the reference density, for which the final recovery density in layer A (B) are 
0.01 (black down triangles) and 0.05 (red squares), are set to be the reference threshold values. The blue solid 
line is the corresponding theoretical prediction from Eqs (11–13) and (15). (a) In communication layer A, the 
reference information threshold λAe performs as a function of α for λB =  0.05; (b) In communication layer A, 
the reference information threshold λAe performs as a function of α at λB =  0.5; (c) In the physical contact layer 
B, the reference epidemic threshold λBe performs as a function of α for λA =  0.3; (d) In the physical contact layer 
B, the reference epidemic threshold λBe performs as a function of α at λA =  0.5.
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vaccinated node can protect more than one node from infection, i.e., the herd immunity effect can be successfully 
produced when VB is small. Thus, increasing the value of α or λA stimulates more vaccinated nodes, which can 
effectively reduce the social cost. With further increasing the number of vaccinated nodes the disease can be con-
trolled to a very low level. Apparently, it is unnecessary to increase the vaccination coverage any more, because the 
total social cost will be increased again when VB is further increased. Therefore, an optimal vaccination coverage 
(i.e., optimal values of α and λA) can be gained by employing the two competing effects, thus guaranteeing the 
minimal social cost. Consistent conclusions are also obtained in analyzing the influence of social reinforcement 
effect and information diffusion on social cost in RR-ER double-layer and SF-SF double-layer networks (see Fig. 
S4 and Fig. S8 in Supporting Information). This suggests that reasonably control the social reinforcement effect 
and the spread of information is very critical to minimizing the total social cost. For the social reinforcement 
effect, the risk of disease cannot be ignored, neither should it be exaggerated. As to the spread of disease infor-
mation, the government should not only ensure the rapid spread of it but also avoid the excessive spread of it. In 
Fig. 5(c,d), with the increase of λA (α), the optimal αo (λAo) is reduced, which means that with a faster spread of 
information (a stronger social reinforcement effect), a minimal social cost is required for a weaker social rein-
forcement effect (a slower spread of information).

Usually, different relative costs of vaccination and treatment are required for different diseases38,53,54. 
Considering the self-interest characteristic of individuals in real society55, the behavior of taking vaccination is 
unnecessary for individuals if the cost of vaccination surpasses that of treatment. Therefore, the cost of treatment 
is considered to be greater than that of vaccination52,56. The impacts of different relative costs of vaccination and 
treatment (e.g., cR/cV =  2 in Fig. S9 and cR/cV =  5 in Fig. S10) on the optimal control are also studied in Supporting 
Information. It is found that the above conclusion remains unchanged qualitatively, but further study is still 
required56.

Discussion
In summarize, in this paper, a memory-based complex adoption mechanism was introduced into an asymmetri-
cally interacting, double-layer network model to elucidate the mutual effects among information diffusion, epi-
demic spreading and the complex vaccination adoption mechanism. In the model, the information propagation 
and epidemic spreading occur in layer A and layer B, respectively. Moreover, the probability of vaccination for 
each informed individual depends on the times of information who has received and the social reinforcement 

Figure 3. The impacts of social reinforcement effect and information transmission rate on final states. For 
SF-ER double-layer network, subfigures (a–c) show the values of rA, rB and vB as a function of α with different 
values of λB (0.3, 0.5, and 0.8), and their analytical predictions are corresponded to the black solid, red dashed, 
and blue doted lines, respectively. Where λA is set as 0.5. Subfigures (d–f) illustrate the values of rA, rB and vB 
versus the parameter λA for different values of α (0, 0.2, and 1.0), corresponding to the black solid, red dashed, 
and blue doted lines respectively. When λB is fixed at 0.5.
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effect. A mean-field based analysis was developed to reveal the two intricate spreading dynamics and to verify 
results of extensive simulations. Our findings show that such a complex vaccination adoption behavior with 
non-markov characteristics can inhibit the spread of disease and increase the epidemic threshold in the contact 
layer. Furthermore, when we consider the cost of vaccination and cost of the treatment for infected individuals, 
we found that there exists an optimal memory reinforcement effect and an optimal transmission rate of informa-
tion which can minimize the social cost.

The challenges of studying the intricate interplay between social and biological contagions in human popula-
tions are generating interesting science57. In this work, we just considered the social reinforcement effect of cumu-
lative information in complex adoption behavior and thus studied its impact on the two interacting spreading 
dynamics. As a matter of fact, the behavioral response to disease is also affected by socioeconomic factors such as 
psychological reflection, economic cost and infection status. The adoption behavior thus presents a more complex 
and diverse response mode, which may remarkably influence the asymmetric interacting spreading dynamics, 
especially for epidemic spreading. Our efforts along this line would stimulate further studies in the more realistic 
situation of asymmetric interactions.

Figure 4. A systematic investigation of the impacts of social reinforcement effect and disease transmission 
rate on final states. For SF-ER double-layer network, (a) recovered density rA, (b) recovered density rB, (c) the 
vaccination density vB versus α and βB for λA =  0.5.
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Methods
Mean-Field equations for the spreading dynamics in layer A. To derive the mean-field rate equations 
for the density variables, we considered the probabilities that SA (SB) node is informed (infected) during the small 
time interval [t, t +  dt]. According to the description of information spreading processes in two interacting 
spreading dynamical processes, it can be known that the loss of s t( )k

A
A

 (i.e., the density of the susceptible nodes 
with degree kA) is caused by two aspects: 1) a SA node has received one or more pieces of information from its 
neighbors in layer A, i.e., the node is informed by its neighbors; 2) a SA node’s counterpart node in layer B is sus-
ceptible (i.e., SB), and it is infected by the disease at this time step.

In random configuration networks without degree correlations, for a SA node, the probability that one ran-
domly selected neighbor is in IA state58 is given as

ρ
Θ =

∑ ′ − ′′ ′
t

k P k t

k
( )

( 1) ( ) ( )
,

(17)
S
A k A A A k

A

A
A

A A

where

∑ρ ρ=′ ′t m t( ) ( , )
(18)k

A

m
k
A

A A

is the density of IA nodes with degree ′k A at time t, and ρ ′ m t( , )k
A
A

 is the density of IA nodes with degree ′k A which 
have received m pieces of information till time t. One should note that, ′ −k 1A  was adopted rather than ′k A in 
Eq. (17). For a SA node, since all of its neighbors cannot be informed by the SA node, one of its infected neighbors 
with degree ′k A concedes a possibility that other ′ −k 1A  links connect to the SA node, excluding the link between 
this infected neighbor and its parent infected node. If we neglect the dynamical correlations between neighbor-
hood, for a SA node, the probability for the node to have n number of IA neighbors is

Figure 5. Impacts of social reinforcement effect and information transmission rate on the social cost and 
optimal control. For SF-ER double-layer network, the social cost C is versus the parameters of α and λA in 
subfigures (a,b), respectively. Here, the value of λB is fixed at 0.3. The optimal αo versus βA and optimal λAo 
versus α are demonstrated in subfigures (c,d), respectively. In (a) three different values of λA (0.2, 0.3, and 0.5) 
are selected, corresponding to the black circle solid, red triangle solid, and blue square solid lines, respectively. 
In (b) different values of α (0.25, 0.5 and 1.0) corresponds to the black circle solid, red triangle solid, and blue 
square solid lines, respectively. (c) the αo versus λA and (d) the λAo versus α under different λB (0.2, 0.3 and 0.5) 
correspond to the black circle solid, red triangle solid, and blue square solid lines, respectively.
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π = 
Θ


n B t( ) ( ) , (19)S k

A
k n S

A
, ,A A A A

where B q( )k m,  denotes the binomial factor − −( )k
m q q(1 )m k m . Based on the above factors, the probability of a SA 

node with degree kA to receive the information at least once is

∑π βΨ = 
 − − 

.
=

t n( ) ( ) 1 (1 )
(20)S k

A

n

k

S k
A

A
n

,
1

,A A

A

A A

Similar to Eqs (17), (18) and (19), for a SA node in layer B, the probability that one randomly selected neighbor 
is in IB state is

ρ
Θ =

∑ ′ − ′′ ′
t

k P k t

k
( )

( 1) ( ) ( )
,

(21)
S
B k B B B k

B

B
B

B B

and

π = Θn B t( ) ( ( )) (22)S k
B

k n S
B

, ,B B B B

is the probability of a SB node with degree kB which has n number of IB nodes in his neighborhood. Moreover, the 
probability of the SB node with degree kB to be infected is

∑π βΨ = − − .
=

t n( ) ( )[1 (1 ) ]
(23)S k

B

n

k

S k
B

B
n

,
1

,B B

B

B B

At time step t, the density of ρ m t( , )k
A
A

 can be altered by two opposite cases: 1) for a node that is in SA state 
before time step t and simultaneously receives m pieces of information at time t or that has received n (0 <  n <  m) 
pieces of information and simultaneously receives m −  n pieces of information at time t, leading to the gains of 
ρ m t( , )k

A
A

; 2) for an IA node which has received m pieces of information, and then receives one or more pieces of 
information again at time t, or the IA node recoveries to RA node, resulting in the losses of ρ m t( , )k

A
A

.
For an IA node, the probability that one selected neighbor is in IA state is given as

ρ
Θ =

∑ ′ ′
.

′ ′
t

k P k t

k
( )

( ) ( )

(24)
I
A k A A A k

A

A
A

A A

Thus, the probability of an IA node with degree kA to have n (n ≤  kA) number of informed neighbors is

π = 
Θ


.n B t( ) ( ) (25)I k

A
k n I

A
, ,A A A A

As a result, the probability that the IA node has received at least one piece of information is

∑π βΨ = − − .
=

t n( ) ( )[1 (1 ) ]
(26)I k

A

n

k

I k
A

A
n

,
1

,A A

A

A A

Mean-field equations for the spreading dynamics in layer B. There are two cases which can lead to 
the decrease of s t( )k

B
B

, as follows: 1) a SB node is infected by its neighbors in layer B with probability Ψ t( )S k
B

,B B
;  

2) The SB node goes to VB state because its counterpart node in layer A is informed and is willing to take vaccina-
tion. Firstly, we can conclude that a node must be in SB state if its counterpart node in layer A is in SA state. 
Ignoring the inter-layer degree correlations and dynamical correlations, the probability that the counterpart node 
of a node with degree kB has degree kA and is in SA state can be written as P k s t( ) ( )A A k

A
A

. Combining Eqs (1) and 
(19), for a SA node of degree kA which has n number of informed neighbors and has just received q pieces of infor-
mation at time t, the probability of taking vaccination is determined by the term π β ξn B( ) ( )S k

A
n q A q, ,A A

. Considering 
the different numbers of n and p, the probability of an individual to adopt vaccination can be obtained as

∑ ∑χ π β ξ= .
= =

t P k s t n B( ) ( ) ( ) ( ) ( )
(27)

S k
A

A A k
A

n

k

S k
A

q

n

n q A q,
1

,
1

,A A A

A

A A

Secondly, when a node of degree kB is in SB state with probability s t( )k
B
B

 in layer B, its counterpart node may 
have already been informed of m pieces of information with probability ρP k m t( ) ( , )A A k

A
A

, if inter-layer degree 
correlations and dynamical correlations are ignored. Accumulating different cases of ρ m t( , )k

A
A

, the probability of 
an individual to take vaccination can be given as

∑ ∑ ∑χ ρ π β ξ= .
= =

+t P k m t n B( ) ( ) ( , ) ( ) ( )
(28)
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